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Distributed Projection-Based Algorithms for Source
Localization in Wireless Sensor Networks
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Abstract—In this paper, we investigate source localization for
wireless sensor networks based on received signal strength. We
first formulate the localization problem as the intersection compu-
tation of a group of sensing rings, and then convert this non-convex
problem into two weighted convex optimization problems. We next
propose a unified distributed alternating projection algorithm to
solve the resulting weighted optimization problems, where sensor
nodes can communicate only locally with their neighbors over a
time-varying jointly-connected topology. We also show that sensor
nodes’ estimates can achieve consensus on a possible minimizer.
Both theoretical analysis and some comparative simulations reveal
that the proposed approach has good estimation performance in
both the consistent and inconsistent cases.

Index Terms—Source localization, wireless sensor networks,
distributed algorithms, intersection computation, constrained con-
vex optimization.

I. INTRODUCTION

IN wireless sensor networks, how to locate source nodes is
one of the fundamental tasks due to the importance of posi-

tion information for the network. In recent years, some types
of measurement approaches to source localization, including
time difference of arrival, angle of arrival and received signal
strength, and energy measurement-based approaches have been
proposed for wireless sensor networks (WSNs) [1]–[8]. Some
classical estimation approaches such as maximum likelihood
estimation (MLE) [3] and nonlinear least squares (NLS) [9]
estimation derived for the source localization problem are often
very complex and maybe trapped by a local optimum, and
therefore, numerous suboptimal techniques have been proposed
to reduce the complexity in solving the MLE or NLS problems,
such as convex relaxation methods [6], [27]–[32].
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Source localization algorithms can be categorized into two
classes from an implementation point of view: centralized and
distributed algorithms. In [10], [11], projection-based methods
were studied for source localization, which are usually cen-
tralized and implemented in a sequential or parallel manner
without rigorous analysis. The main disadvantage of central-
ized methods is that they require a central unit to gather and
process the measurements from the sensor nodes. To overcome
this disadvantage, some distributed algorithms were developed,
where local communications between neighboring nodes are
realized by wireless transmissions. For example, a distributed
implementation of the incremental gradient algorithm was
proposed to solve the nonlinear least-squares problem in [5],
and a weighted direct least-squares formulation was reported
in [9] for a tradeoff between performance and computational
complexity, while a distributed asynchronous algorithm was
proposed to deal with the maximum likelihood convex relax-
ation in [32].

A fully distributed projection-based approach was also de-
veloped for the source localization in [12], where the problem
was formulated as a convex feasibility problem or convex
intersection problem (CIP), and both the consistent and incon-
sistent cases were discussed. In fact, distributed optimization
to achieve a global optimal objective by local optimization and
local information exchange mechanism has received consider-
able attention [15]–[18], and CIP has also been widely stud-
ied in distributed optimization literature. Various distributed
projection-based algorithms for CIP were proposed over the
past decade [13]–[15], [19], [20].

Clearly, communications among sensor nodes play an im-
portant role in the implementation of distributed algorithms.
The communication topology of a sensor network may be time-
varying because of environmental influence, or link failure, or
energy saving. A well-known concept to describe the time-
varying connectivity is called uniform joint-strong-connected
(UJSC), which has been widely used in the multi-agent lit-
erature [16], [17], [20] to demonstrate that their proposed
algorithms are robust to the variable communication topology.

Here we give a formulation by treating the source local-
ization problem as an intersection computation problem of a
group of sensing rings in two different localization cases: the
consistent case (when the intersection of the rings is nonempty)
and the inconsistent case (when the intersection is empty). Note
that the ring intersection computation is a non-convex con-
strained optimization problem, whose exact optimal solution is
very hard to find. Obviously, the convex problem under fixed
topologies discussed in [12] is a very special case of our non-
convex problem under switching communication topologies.

1536-1276 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



3132 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 14, NO. 6, JUNE 2015

In the literature, some convex relaxation methods, based on
semidefinite programming [27], [28], second order cone pro-
gramming [6], [29], sum of squares [30] and Lagrangian dual
[22], [23], have been proposed to overcome the difficulty
caused by the non-convexity. However, their results can not
be applied directly to our problem because, in our problem
setup: (i) each sensor can only observe its own sensing ring
and share its source localization estimate with its neighbors,
without knowing the information of any other sensing rings;
(ii) the communication topology defining the neighbor rela-
tionship is time-varying and may not be connected at each
moment. To solve the problem, we take a convex approximation
technique to get a suboptimal estimation. By converting the
non-convex problem into a weighted unconstrained convex
problem in the inconsistent case and a weighted constrained
convex problem in the consistent case, we further propose a
unified distributed projection-based algorithm and prove its
optimal convergence in these two cases. Notice that the con-
vergence analysis for our problem is much more difficult than
that in [12], because we have to handle a constrained convex
optimization in a distributed way, rather than the unconstrained
optimization, especially when each agent only knows its own
constraint set (sensing ring). Moreover, we have to guarantee
the convergence under some weaker connectivity conditions,
compared with either the same constraint set case or uniform
weight assumptions in [16].

This paper is organized as follows. In Section II, we provide
a new formulation for the source localization problem along
with basic concepts. In Section III, we present an alternating
projection algorithm with some preliminary results. Then in
Sections IV we give the main results and convergence analysis
for both the consistent and inconsistent cases under switching
interaction topologies. Following that, we carry out simulation
studies to verify our theoretical results in Section V. Finally, we
give concluding remarks in Section VI.

II. PROBLEM FORMULATION

In this section, we give a formulation for source localization
based on intersection computation.

Consider a network composed of n (wireless) sensors that
can only interact with each other through local time-varying
communications in the sensor field denoted by S ⊆ R

2. The
problem of interest is to determine the location of an active
acoustic source in this sensor network.

A. Topology of Sensor Network

Here we consider the time-varying communication topology
for the investigated sensor network.

At first, we review some useful concepts related to graph
theory [24]. A directed graph is a pair G = (V, E), where V =
{1, 2, · · · , n} is the node set, and E ⊆ V × V the edge set. In
the paper, we regard sensor i as node i. Node i is a neighbor
of j if (i, j) ∈ E . Let Ni be the set of neighbors of node i. A
path of length r from a node i1 to a node ir+1 is a sequence
of r + 1 distinct nodes i1, · · · , ir+1 such that (iq, iq+1) ∈ E for
q = 1, · · · , r. If there is a path between any two nodes i, j ∈ V ,
then G is said to be strongly connected.

However, the communication topologies over sensor net-
works may be time-varying in practice due to link failure or
energy saving. As usual, the topology can be described by a
time-varying directed graph Gk = (V, E(k)) with k ≥ 0, where
E(k) represents the set of communication links at time k. For
any two sensors i, j ∈ V , j can get the information from i
at time k if and only if (i, j) ∈ E(k). Denote Ni(k) = {j ∈
V|(j, i) ∈ E(k)}, and we assume i ∈ Ni in this paper. Let
aij(k) represent the weight of arc (j, i) at time k, aij(k) > 0
if (j, i) ∈ E(k); aij(k) = 0 otherwise. A(k) = [aij(k)] is the
corresponding weighted adjacency matrix.

The following two assumptions on the graphs for sensor net-
works are widely used in the distributed optimization literature
[15], [16], [20].

Assumption 1: (Weight Rule) There exists a scalar η with
0 < η < 1 such that aij(k) ≥ η if aij(k) > 0 for i, j ∈ V and
k ≥ 0. Moreover,

∑n
i=1 ais(k) =

∑n
j=1 asj(k) = 1 for s ∈ V .

Assumption 2: (Connectivity) The communication graph is
uniformly jointly strongly connected (UJSC), i.e., there is an
integer T > 0 such that the directed graph (V,∪T

t=1E(k + t))
is strongly connected for any k ≥ 0.

Remark 2.1: Assumption 1 has been widely used in the dis-
tributed optimization literature, and in the bidirectional graph
case (that is, (i, j) ∈ E(k) if and only if (j, i) ∈ E(k)), it can be
easily satisfied by adopting Metropolis weight rule [34]:

aij(k)=

⎧⎨
⎩

1/ (max {|Ni(k)| , |Nj(k)|}+ 1) , (i, j) ∈ E(k);
1−

∑
p �=i aip(k), j = i;

0, otherwise.

In the directed graph case, we can also obtain an adjacency
matrix to satisfy Assumption 1 starting from an arbitrary ad-
jacency matrix using some algorithms such as the distributed
imbalance-correcting algorithm [35].

Denote Φ(k, s) = A(k)A(k − 1) · · ·A(s) for k ≥ s ≥ 0.
Then we review some convergence results of transition matrix
Φ(k, s) in [15].

Lemma 2.2: Suppose Assumptions 1 and 2 hold. Then∣∣∣∣[Φ(k, s)]ij − 1

n

∣∣∣∣ ≤ λγk−s

with [Φ(k, s)]ij the ij-th entry of transition matrix Φ(k, s) for
i, j ∈ {1, · · · , n}, and k ≥ s ≥ 0, λ = 2(1 + η(1−n)T )/(1−
η(n−1)T ) and γ = (1− η(n−1)T )1/((n−1)T ).

B. Sensing Area

We now discuss the sensing area of each sensor to locate a
source. We start with some preliminaries about convex analysis
[26]. A set K ⊆ R

m is convex if ax+ (1− a)y ∈ K for any
x, y ∈ K and 0 ≤ a ≤ 1. For any x ∈ R

m, there is a unique ele-
ment PK(x) ∈ K satisfying ‖x− PK(x)‖ = infy∈K ‖x− y‖,
which is denoted by |x|K , where K ⊆ R

m is a nonempty closed
convex set and PK denotes the projection operator onto K.
Denote |x|K = 0 for any x if K = ∅, for convenience. A func-
tion f(·) : Rm → R is said to be convex if f(ax+ (1− a)y) ≤
af(x) + (1− a)f(y) for any x, y ∈ R

m and 0 ≤ a ≤ 1. Let
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f(·) : Rm → R be a convex function, vector ζ ∈ R
m is a

subgradient of f at y ∈ R
m if

f(x)− f(y) ≥ ζT (x− y), ∀ x ∈ R
m, (1)

where ζT denotes the transpose of vector ζ. The following are
some useful results [16], [21] on the properties of projection
operator which are instrumental for the analysis later.

Lemma 2.3: Let K be a closed convex set in R
m. Then

(i) ‖PK(x)− y‖2 ≤ ‖x− y‖2 − ‖PK(x)− x‖2 for any
y ∈ K and x;

(ii) ||x|K − |y|K | ≤ ‖x− y‖ for any x and y;
(iii) |x|K is a convex function and |x|2K is continuously differ-

entiable with ∇|x|2K = 2(x− PK(x)), where ∇ stands
for the gradient.

Let the source be located at an unknown coordinate pair ρ =
[ρ1, ρ2]

T in a sensor field S ⊆ R
2 which emits a signal with

power level P . The considered n sensors perform sensing based
on energy detection. At sensor i with its known coordinate si,
i = 1, · · · , n, the received signal power can be written as fol-
lows [3], [4], [8]:

Psi = gi
P

Dν
is

+ εi, (2)

where gi is the gain factor of sensor i, Dis := ‖ρ− si‖, ν
is the power-loss factor, which depends on the propagation
environment and varies from 2 to 5, and εi is the receiver
noise at the i-th sensor. For simplicity, we assume that εi(i =
1, · · · , n) are zero-mean uncorrelated Gaussian processes with
variances {σ2

i }, i.e., εi ∼ N(0, σ2
i ).

In this paper, we assume that the source power P is known,
and the only parameter to be estimated is the location vector
ρ of the source. The maximum likelihood estimator (MLE) is
found by solving the nonlinear least-squares problem when the
noise is Gaussian, that is,

ρ∗ML = argmin
ρ

n∑
i=1

(
Psi − giP

Dν
is

)2

σ2
i

= argmin
ρ

n∑
i=1

φi(ρ),

where φi(ρ) :=

(
Psi

− giP

Dν
is

)2

σ2
i

. Clearly, φi(ρ) attains its mini-

mum 0 on the circle defined as follows:

Ci =
{
ρ ∈ R

2 : ‖ρ− si‖ =

(
giP

Psi

)1/ν
}
.

However, due to the observation noise, the source may not ap-
pear exactly on the circles {Ci}ni=1 but be contained in a group
of sensing areas described by rings in the following forms:

Ri =

{
ρ :

(
giP

Psi + ξiσi

) 1
ν

< ‖ρ− si‖ <

(
giP

Psi − ξiσi

) 1
ν

}

where ξiσi indicates the area of noise distribution for sensor
i with a given trust parameter 0 < ξi <

Psi

σi
. Obviously, as ξi

increases, the possibility of the source located in the ring Ri

increases, which will be 99.7% if ξi = 3. In this paper, we take
ξi = min

{
3,

Psi

σi

}
.

Fig. 1. (a) Consistent case; (b) inconsistent case.

Denote the outer open disk of ring Ri by

X0
i =

{
ρ ∈ R

2 : ‖ρ− si‖ <

(
giP

Psi − ξiσi

)1/ν
}
,

and the inner open disk by

Y 0
i =

{
ρ ∈ R

2 : ‖ρ− si‖ <

(
giP

Psi + ξiσi

)1/ν
}
.

Let Xi and Yi be the closures of X0
i and Y 0

i , respectively.
Ri = X0

i \ Yi = {x : x ∈ X0
i , x �∈ Yi} is an open ring for i =

1, · · · , n. Since the ring Ri is the sensing area of sensor i, it is
natural to assume that sensor i can get the information about
the sets Xi and Yi, though it does not know anything about Rj

when j �= i.

C. Formulation

The source localization problem can be formulated as finding
a point in the intersection set of the sensing rings as its lo-
cation estimate. However, for any given ξi, there is still some
possibility for the source to be located outside of the ring
Ri. Hence, there are two cases for the source localization as
a ring intersection computation problem: i) Consistent case:
R0 :=

⋂n
i=1 Ri �= ∅; ii) Inconsistent case: R0 = ∅ (as shown

in Fig. 1, the black dot and small squares denote the source and
the sensors, respectively).

Remark 2.4: In the consistent case, since
⋂n

i=1 X
0
i ⊆ X0 :=⋂n

i=1 Xi is an open and nonempty set, there exists at least one
interior point in the intersection set X0.

Generally speaking, the intersection computation of rings,
which are not convex, is still very complicated. One of the
reasons is that it is difficult to ensure that the optimal point is
located outside of all the inner disks {Yi}ni=1 in the non-convex
problem. Therefore, we formulate the source localization prob-
lem as the following two convex problems:

i) Inconsistent case: the source can not be in Ri for all
i = 1, · · · , n, and we give a trade-off solution for the lo-
calization problem by finding a point x∗ ∈ R

2 to minimize
the weighted sum of the squares of the distances to the
outer disks {Xi}ni=1 and inner disks {Yi}ni=1, i.e.,

min
n∑

i=1

(
|x|2Xi

+ bi|x|2Yi

)
; (3)
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ii) Consistent case: the source is inside the intersection
set X0, and then the source localization problem can
be solved by finding a point x∗ ∈ X0 to minimize the
weighted sum function (3), that is,

min

n∑
i=1

(
|x|2Xi

+ bi|x|2Yi

)
, subject to x ∈ X0, (4)

or equivalently,

min

n∑
i=1

bi|x|2Yi
, subject to x ∈ X0, (5)

where b1, · · · , bn are the positive scalar parameters.
Roughly speaking, {bi}ni=1 can be viewed as the weighted

parameters to make our considered problem become a “virtual”
convex intersection problem for a group of certain convex sets
{Qi}ni=1 with Yi ⊆ Qi ⊆ Xi.

Denote by Z∗ and X∗ the optimal solution sets of the uncon-
strained problem (3) and constrained problem (4), respectively.
Then we give our localization formulation as follows:

Definition 2.5: The distributed source localization problem
is solved if we can find a distributed algorithm such that,
for any initial condition xi(0) ∈ R

2, i ∈ V , there exists an
optimal solution x∗ ∈ Z∗ with limk→∞ xi(k) = x∗, i ∈ V if
problem is inconsistent; there exists an optimal solution x∗ ∈
X∗ with limk→∞ xi(k) = x∗ for i ∈ V otherwise. In both
cases, x∗ is termed as the optimal estimate of the source
location.

Remark 2.6: Our formulation of the source localization is
more general than or different from those given in the litera-
ture such as [12], [27]–[29]. First of all, we consider jointly-
connected switching communication topologies, while fixed
topologies were basically discussed in [12], [27]–[29]. Next,
some existing results formulate the localization problem as an
easily-solved convex optimization problem in [12], but ours is
a constrained problem. Moreover, different from the problem
setups of the rings’ intersection investigated in some literature
[27]–[29], each sensor in our problem can only access the
information about its own sensing ring without knowing any
other rings, and the only available information from its time-
varying neighbor sensors is their estimates about the source.
Certainly, if the information about the sensing rings can be
shared among all the sensors, the semidefinite programming
(SDP) and linear cone programming (LCP) methods can be
easily applied.

In what follows, we will construct a unified algorithm for
both cases and then provide its convergence proofs in the two
cases, respectively.

III. DISTRIBUTED ALGORITHM AND PRELIMINARIES

In this section, we propose a distributed alternating pro-
jection algorithm (DAPA) for the source localization problem
with jointly-connected switching topologies and then give some
preliminary results.

A. Algorithm

The main idea of DAPA is to allow sensor i(i ∈ V) with an
initial estimate xi(0) ∈ R

2 to update its estimate by combining
the estimates received from its neighbors, and meanwhile, to
employ the projections on its inner disk Yi and its outer closed
disk Xi, respectively. To be precise, sensor i is allowed to
update its estimate according to the following rule:⎧⎨

⎩
vi(k) =

∑n
j=1 aij(k)xj(k),

wi(k) = vi(k)− αk∇fi (vi(k)) ,
xi(k + 1) = wi(k)− βk∇gi (wi(k)) ,

(6)

where the weights aij(k) are nonnegative, fi(x) =
bi
2 |x|2Yi

and gi(x) =
1
2 |x|2Xi

with respective gradients ∇fi(vi(k)) =
bi(vi(k)− PYi

(vi(k))) at vi(k) and ∇gi(wi(k)) = wi(k)−
PXi

(wi(k)) at wi(k), and αk ∈ [0,min{1, 1/b0}] with b0 =
max{b1, · · · , bn} and βk ∈ [0, 1] for k = 0, 1, · · · are the
step-sizes. Clearly, our algorithm is a distributed alternating
gradient-based algorithm. In fact, wi(k) = (1− αkbi)vi(k) +
αkbiPYi

(vi(k)) is the approximate projection of point vi(k)
onto Yi, and xi(k + 1) = (1− βk)wi(k) + βkPXi

(wi(k)) is
the approximate projection of point wi(k) onto Xi. Here αk

and βk can be viewed as projection accuracies.
Remark 3.1: Note that the ring intersection computation

problem is very complicated. In the above, we made a first
attempt to derive a more accurate estimator for source localiza-
tion. In fact, its complexity can be significantly reduced if it be-
comes the widely-studied convex set intersection computation
problem [12], [16], [19], [20] by taking Yi = ∅ for i = 1, · · · , n.
In this way, the non-convex ring intersection problem can be
reduced to the following unconstrained optimization problem:

min
x∈R2

n∑
i=1

|x|2Xi
(7)

In this case, wi(k) = vi(k) in the algorithm (6). Then the
corresponding distributed algorithm of problem (7) is obtained
in the following form:{

vi(k) =
∑n

i=1 aij(k)xj(k),
xi(k + 1) = vi(k)− βk (vi(k)− PXi

(vi(k))) .
(8)

Our results obtained in the next section are directly appli-
cable to the convex optimization problem in the consistent
(
⋂n

i=1 Xi �=∅) and inconsistent (
⋂n

i=1 Xi=∅) cases discussed
in [12].

B. Preliminary Results

To prove the convergence of DAPA, we introduce two useful
lemmas obtained in [16] and [25], respectively.

Lemma 3.2: Let 0 < μ < 1 and {φk}∞k=0 be a positive scalar
sequence. If limk→∞ φk = 0, then limk→∞

∑k
s=0 μ

k−sφs = 0.
Moreover, if

∑∞
k=0 φk < ∞, then

∑∞
k=0

∑k
s=0 μ

k−sφs < ∞.
Lemma 3.3: Let {ak}∞k=0 and {āk}∞k=0 be two non-negative

sequences with
∑∞

k=0 āk < ∞. If ak+1 ≤ ak + āk, ∀k ≥ 0,
then limk→∞ ak is a finite number.
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Let Xco = co{X1, · · · , Xn} be the convex hull consisting of
all finite convex combinations of points in Xi, i = 1, · · · , n.
Due to the boundedness of Xi (1 ≤ i ≤ n), Xco is bounded and
d0 := supx,y∈Xco

‖x− y‖ < ∞. Denote di(k) = bi(vi(k)−
PYi

(vi(k))) and δi(k) = wi(k)− PXi
(wi(k)). Then we estab-

lish a lemma for the boundedness of sequences {di(k)} and
{δi(k)} obtained by our algorithm (6).

Lemma 3.4: With Assumption 1, there exists a positive
constant L such that

‖di(k)‖ ≤ L and ‖δi(k)‖ ≤ L (9)

for i = 1, · · · , n and k = 0, 1, · · ·.
Denoting ei(k) = xi(k + 1)− wi(k), it follows from (9)

that

‖ei(k)‖ ≤ Lβk. (10)

With the transition matrix Φ(k, s), we have

xi(k + 1) =
n∑

j=1

[Φ(k, 0)]ij xj(0)− αkdi(k) + ei(k)

−
k∑

r=1

⎛
⎝ n∑

j=1

[Φ(k, r)]ij αr−1dj(r − 1)

⎞
⎠

+

k∑
r=1

⎛
⎝ n∑

j=1

[Φ(k, r)]ij ej(r − 1)

⎞
⎠ .

Due to x̂(k) = 1
n

∑n
j=1 xj(k), (9), (10), and Lemma 2.2, we

obtain

‖xi(k + 1)− x̂(k + 1)‖

≤ λγk
n∑

j=1

‖xj(0)‖+ nLλ

k∑
r=1

γk−rαr−1 + 2Lαk

+ 2Lβk + nLλ

k∑
r=1

γk−rβr−1. (11)

From Lemma 3.2 and (11), we establish the following result.
Lemma 3.5: Under Assumptions 1 and 2, if the step-sizes

{αk} and {βk} satisfy
∑∞

k=0 α
2
k<∞ and

∑∞
k=0 β

2
k<∞, then,

for any i ∈ {1, · · · , n}, we have limk→∞ ‖xi(k)− x̂(k)‖ =
0,

∑∞
k=0 αk‖xi(k)− x̂(k)‖ < ∞, and

∑∞
k=0 βk‖xi(k)−

x̂(k)‖ < ∞.

IV. INTERSECTION COMPUTATION FOR LOCALIZATION

In this section, we give the proofs for the unified DAPA in
the inconsistent case and the consistent case with switching
topologies, respectively.

In the inconsistent case, we can verify that
∑n

i=1 bi|x|2Yi
+

|x|2Xi
is a convex function from Lemma 2.3 (iii). With the

boundedness of sets {Xi, Yi}ni=1, we get that
∑n

i=1 bi|x|2Yi
+

|x|2Xi
is coercive (i.e., lim||x||→∞

∑n
i=1 bi|x|2Yi

+ |x|2Xi
= ∞).

Then by Proposition 2.1.1 in [26], we obtain the optimal solu-
tion set Z∗ of problem (3) is nonempty. We have the following
convergence theorem.

Theorem 4.1: Under Assumptions 1 and 2, the sequences
{xi(k)}ni=1 generated by algorithm (6) converge to the optimal
solution of problem (3), i.e.,

lim
k→∞

xi(k) = p∗ for some p∗ ∈ Z∗ and all i,

if
∑∞

k=0αk=∞,
∑∞

k=0βk=∞,
∑∞

k=0α
2
k<∞,

∑∞
k=0β

2
k<∞,

and
∑∞

k=0 |αk − βk| < ∞.
Proof: See Appendix A. �

Theorem 4.1 shows that the algorithm (6) can achieve the
optimal point p∗ to minimize the unconstrained optimization
problem (3) in a distributed way. This subsection can also
be viewed as dealing with the convergence of the proposed
algorithm in the inconsistent case. This means that the obtained
p∗ is an estimate of the source location in the inconsistent case.
Moreover, the conditions in Theorem 4.1 can be easily satisfied
by taking αk = 1

k+2 and βk = 1
k+1 for k = 0, 1, · · ·.

In the consistent case, we need further to show that the
optimal estimate belongs to set X0 =

⋂n
i=1 Xi. In this case,

it follows from Lemma 2.3 (iii) that | · |2Yi
, i = 1, · · · , n are

convex and continuously differentiable functions. According
to the compactness of X0 and the Weierstrass’ Theorem, the
optimal solution set X∗ of problem (5) is nonempty.

By using Remark 2.4, we can obtain the following lemma
in [16].

Lemma 4.2: For any xi ∈ Xi, i = 1, · · · , n, let x̂ =
1
n

∑n
i=1 xi and x̄∈∩n

i=1X
0
i . Then s= ε

ε+δ x̄+
δ

ε+δ x̂∈X0 and

‖x̂− s‖ ≤ 1

δn

⎛
⎝ n∑

j=1

‖xj − x̄‖

⎞
⎠

⎛
⎝ n∑

j=1

|x̂|Xj

⎞
⎠ ,

where ε =
∑n

j=1 |x̂|Xj
and δ is a positive number satisfying

{y|‖y − x̄‖ ≤ δ} ⊆ X0.
In fact, when vi(k) ∈ Xi, wi(k)∈Xi and then |wi(k)|Xi

=0.
When vi(k) �∈ Xi, |wi(k)|Xi

= 0 if wi(k) ∈ Xi; otherwise, it
is not hard to get

|wi(k)|Xi
= |vi(k)|Xi

− αkbi |vi(k)|Yi
.

Next, we demonstrate how to select the sequence {αk}. For any
k ≥ 0 and i ∈ Nout := {i|vi(k) �∈ Xi}, αk must satisfy at least
one of the following two conditions:

• |vi(k)|Xi
− αkbi|vi(k)|Yi

≤ αkL̃;
• vi(k)− αkdi(k) ∈ Xi,

where L̃ is a given large enough positive constant. We term
this property as the alternative property. From the alternative
property, we have

|wi(k)|Xi
≤ αkL̃, ∀i ∈ V. (12)

Remark 4.3: Once vi(k) ∈ Xi for sensor i, the above con-
dition is not affected by αk. Hence, we only need to consider
sensor i (i ∈ Nout) to determine αk. In this case, the alternative
property means that αk should satisfy that the approximate
projection of vi(k) on its inner ring Yi is sufficiently close to Xi

or belongs to Xi. Our algorithm objective is to find a point in the
set X0 =

⋂n
i=1 Xi to minimize the sum function

∑n
i=1 bi| · |2Yi

.
It is a natural assumption that makes its state close to its own
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constrained set Xi as much as possible when sensor i optimizes
its own function bi| · |2Yi

. Therefore, the alternative property
assumption is reasonable. In other words, we first make all
the sensors’ estimates converge to the intersection set X0 with
the alternative property assumption, and then optimize the sum
function

∑n
i=1 bi| · |2Yi

to achieve a consensus point.
The next theorem presents the convergence result for the

distributed algorithm (6) in the consistent case.
Theorem 4.4: Under Assumptions 1 and 2, the sequences

{xi(k)}ni=1 produced by the algorithm (6) converge to the
optimal solution of problem (5), i.e.,

lim
k→∞

xi(k) = x∗ for some x∗ ∈ X∗ and all i,

if the sequence {αk} satisfies the alternative property along
with

∑∞
k=0 αk = ∞,

∑∞
k=0 βk = ∞,

∑∞
k=0 α

2
k < ∞, and∑∞

k=0 β
2
k < ∞.

Proof: See Appendix B. �
Remark 4.5: The condition on αk in Theorem 4.4 can be eas-

ily satisfied by setting αk = 1
k+2 and βk = 1

k+1 , for instance.
Moreover, the alternative property can also be guaranteed with
a sufficiently large constant L̃ > 0. In the next section, we can
see that the value of L̃ is not necessarily too large. In addition,
the optimal solution of constrained optimization problem (5) is
also the global optimal solution of unconstrained optimization
problem (3) if

∑∞
k=0 |αk − βk| < ∞ holds.

Remark 4.6: Note that [12], [15] focused on unconstrained
convex problem, but we consider a constrained convex problem
(in the consistent case). Clearly, the constrained convex opti-
mization is much more difficult than the optimization without
constraints, especially when each agent can only know its own
constraint. In [16], all the constraint sets are assumed to be
identical or the communication topologies are assumed to be
fixed and fully connected (aij = 1

n for all i, j). In contrast,
Theorem 4.4 gives a complete analysis for the case of different
constraints under switching topologies. Moreover, we also try
our best to provide a unified algorithm to handle two different
cases (both consistent and inconsistent cases).

V. SIMULATION AND DISCUSSION

In this section, we give simulation results for the consistent
and inconsistent cases to illustrate the convergence performance
of the distributed alternating projection algorithm proposed in
this paper. Then we give a comparative study about the esti-
mation performance of our algorithm, the distributed projection
algorithm (DPA) in [12], the grid search method for MLE in [3],
and the convex relaxation method for linear cone programming
(LCP) in [12], as well as the Cramer-Rao lower bound (CRLB)
by a series of Monte Carlo simulations.

Consider a group of five sensor nodes with the switching
interaction topologies randomly placed in a 10 m × 10 m field
for illustration. The measurement of the source energy at each
sensor is generated by (2). Suppose that the gain factors gi
equal 1 for all sensors and the power-loss factor is set as ν = 2.
The source is located at ρ = [5.5, 5.5]T and emits a signal
with P set to 20 mW. An AWGN channel is assumed with
εi ∼ N(0, σ2

i ), where 0 ≤ σi ≤ 0.3, i = 1, · · · , 5. The actual

Fig. 2. Rings determined by sensors.

receiver SNR (signal to noise ratio) at different sensors depends
on the distance to the source. For instance, if the variance of
noise is 0.01 mW, the receiver SNR of a sensor 5 m away
from the source is 10× log10

(20/52)
0.01 = 19 dB. To simplify

the simulation, here we take b1 = · · · = b5 = b considering the
inner disks have the same priority. The standard deviation of
background noise for each sensor takes the same value σ, and
then the trust parameters ξ1 = · · · = ξ5 = ξ.

The time-varying interaction topology G is periodically
switched between two graphs Gi, i = 1, 2, where G(2k) = G1

and G(2k + 1) = G2 for k = 0, 1, · · ·. The corresponding adja-
cency matrices are described by A1 = [1, 0, 0, 0, 0; 0, 0.6, 0.2,
0, 0.2; 0, 0, 0.6, 0.4, 0;0, 0.4, 0, 0.6, 0; 0, 0, 0.2, 0, 0.8] and A2=
[0.6, 0.4, 0, 0, 0; 0, 0.6, 0, 0.4, 0; 0, 0, 0.8, 0, 0.2; 0.4, 0, 0, 0.6, 0;
0, 0, 0.2, 0, 0.8].

A. Convergence Performance

In this subsection, we give a comparative study about the
estimation performance of our proposed algorithm (6), the DPA
for convex set intersection (without caring about {Yi}ni=1) in
[12], and the LCP method in [29].

At first, we take b = 1, σ = 0.1, and ξ = 1 < 3, and the
intersection problem is inconsistent most of time in our simu-
lation, which means the intersection of the corresponding rings
determined by sensors is empty, i.e., R0 =

⋂5
i=1 Ri = ∅. Fig. 2

shows a source localization scenario and the corresponding
sensing rings, determined by the sensors, with dots standing for
the sensors and � for the source.

Take the step-sizes (projection accuracies) with αk = 1
k+2

and βk = 1
k+1 , which satisfy the conditions in Theorem 4.1.

The estimation errors, expressed as the logarithm of the Eu-
clidean distance between the estimated and true source loca-
tion (i.e., log10 ‖xi − ρ‖, i = 1, · · · , 5), are shown, respectively
with our algorithm (6) and the DPA in Fig. 3. It is shown that the
corresponding average estimation value x̂ = 1

5

∑5
i=1 xi of DPA

converges to [5.518, 5.245]T (marked with � in Fig. 2) after
about 10000 iteration steps, the average estimation x̂ of our al-
gorithm converges to [5.508, 5.551]T (marked with ∗ in Fig. 2)
after 10000 iterations, which is very close to the centralized
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Fig. 3. Estimation errors by proposed algorithm (6) (left) and the DPA in [12]
(right) in the inconsistent case.

Fig. 4. Rings determined by sensors.

solution [5.512, 5.554]T . Additionally, the source estimate by
using the centralized LCP method is [5.512, 5.616]T (marked
with + in Fig. 2), and the corresponding estimation errors are
0.2558, 0.0515, 0.1166 by these three methods, which implies
that our algorithm has a better estimation performance in this
case.

Next, when ξ = 3, the intersection problem becomes consis-
tent with a high probability. Fig. 4 shows a source localization
scenario, and the corresponding sensing rings determined by
the sensors, with dots and � representing the sensors and the
source, respectively. From Fig. 4, we clearly see that the ring
intersection is nonempty (i.e., R0 �= ∅).

Take L̃ = 30 and the algorithm step-sizes αk = 1
k+2 and

βk = 1
k+1 , which satisfy the conditions in Theorem 4.4. The

estimation errors and convergence results are presented with
our algorithm (6) and DPA in [12] in Fig. 5, respectively. DPA
cannot converge to X0 after 10000 steps and the corresponding
average estimation value x̂ = 1

5

∑5
i=1 xi = [5.447, 6.216]T �∈

X0 (marked with � in Fig. 4). On the other hand, the average
estimation value x̂ = [5.123, 5.198]T ∈ X0 (marked with � in
Fig. 4) after 10000 steps with our method, which is very
close to the centralized solution [5.133, 5.187]T . Additionally,
the source estimation by using centralized LCP method in
[29] is [5.937, 5.708]T (marked with + in Fig. 4). Thus, the
corresponding estimation errors are 0.7184, 0.4830, 0.4845 for
these three methods, respectively. This simulation results show
that our algorithm has better performance than DPA and the
centralized LCP methods.

Fig. 5. Estimation errors by proposed algorithm (6) (left) and the DPA in [12]
(right) in the consistent case.

Fig. 6. Estimate error as trust parameter ξ changes.

Although the selection of trust parameter ξ determines if
the problem is consistent or inconsistent, the above simulation
results of the proposed algorithm (6) show good convergence
performance in both consistent and inconsistent cases without
knowing which case it is beforehand.

Then we investigate the convergence performance of the
proposed algorithm with an analysis on ξ. In this simulation,
sensors are randomly placed in each run with σ = 0.1, b =
1. Next, we compare the estimation accuracy between our
proposed algorithm (6), DPA and LCP methods with changing
ξ, based on the well-known localization accuracy metric, root
mean square error (RMSE),

RMSE =

√√√√ 1

Tr

Tr∑
i=1

‖ρ∗i − ρ‖2,

where Tr denotes the number of trials and ρ∗i denotes the
estimate of source location at the i-th trail for i ∈ {1, · · · , Tr}.
Fig. 6 shows the RMSE as ξ changes under 1000 trials, where
the estimation error for DPA and LCP roughly increases as ξ
increases. In fact, the possibility of the source located in Ri

increases as ξ increases, and therefore, the intersection set of
these rings becomes larger, which may yield larger estimation
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Fig. 7. Estimation errors as weighted parameter b changes.

errors. However, our proposed algorithm actually solves the
“constrained” problem

min
n∑

i=1

(
|x|2Xi

+ |x|2Yi

)
,

s.t., x ∈ R
2 (inconsistent) or x ∈ X0 (consistent)

and ξ has a less impact on this objective function
∑n

i=1(|x|2Xi
+

|x|2Yi
) than the term

∑n
i=1 |x|2Xi

, which leads to better perfor-
mance in the statistical sense.

Moreover, the stepsize conditions in Theorems 4.1 and 4.4
can be easily satisfied by setting αk = 1

k+2 and βk = 1
k+1 , for

instance. Furthermore, the alternative property in the consistent
case can also be guaranteed with a sufficiently large constant
L̃ > 0. In the above simulation example, we can see that the
value of L̃ is not necessarily too large.

Next, we discuss the effectiveness of augmentation term∑n
i=1 bi|x|2Yi

. With the noise environment σ = 0.1 and trust

parameter ξ = min
{
3,

Psi

σ , i = 1, . . . , 5
}

, Fig. 7 shows the

effect of weighted parameter b on the RMSE under the 1000
different selections of sensors’ locations and initial estimate
values by our proposed algorithm (6). In addition, in most
of our simulations, we find that, when b ≤ 1, the estimation
performance of our algorithm is better than that of the algorithm
(8), where b = 0.

B. Estimation Performance Comparison

Let us study the estimation performance of our proposed
algorithm compared with the DPA [12], the grid search method
for MLE in [3], the convex relaxation method for linear cone
programming (LCP) in [29], as well as the Cramer-Rao lower
bound (CRLB) through thousands of Monte Carlo simulations.
The CRLB is computed as follows:

CRLB =

√√√√ 1

Tr

Tr∑
i=1

CRLBi

where CRLBi denotes the CRLB at the i-th trail.
Here the grid search resolution is set to 1 m × 1 m

and the LCP method can be solved by using the SeDuMi

Fig. 8. Comparisons in accuracy as noise standard deviation changes through
5000 trails for a fixed sensor configuration.

Fig. 9. Comparisons in accuracy as noise standard deviation changes through
8000 trails for randomly placed sensors.

toolbox [33]. Note that both grid search and LCP meth-
ods are operated in a centralized way. With b = 1 and ξ =
min

{
3,

psi

σ , i = 1, . . . , 5
}

, Figs. 8 and 9 demonstrate the lo-
calization accuracy metric RMSE of these four methods as
a function of the standard deviation of the background noise
through 5000 trials for a fixed sensor configuration [7, 9;3, 5;5,
2;7, 2;9, 3] and 8000 trials for random sensor configuration in
each run, respectively. The simulation results in Figs. 8 and 9
exhibit that our algorithm outperforms the ML-grid search and
DPA methods. With the increasing standard deviation of the
background noise, the performance of our algorithm becomes
better than the centralized convex relaxation method LCP.

At last, we investigate the scalability with the number of
sensors for our algorithm. For simplicity, the communication
topology graph is switching between two different 3-regular
connected undirected graphs with Metropolis weights. With
σ = 0.1, b = 1 and ξ = min

{
3,

psi

σ , i = 1, . . . , 5
}

, Fig. 10
demonstrates the localization accuracy metric RMSE of four
different number of sensors through 1000 trials for randomly
placed sensors in each run. It can be observed from Fig. 10
that the convergence speeds for various scales of network are
about the same. Also, the result shows that the estimation error



ZHANG et al.: DISTRIBUTED PROJECTION-BASED ALGORITHMS FOR SOURCE LOCALIZATION IN WSNs 3139

Fig. 10. Estimation errors by proposed algorithm (6) for four different number
of sensors.

indeed decreases with the increasing number of sensors, but the
estimation accuracy will not be effectively improved after the
number of the sensors reaches a certain level. In addition, we
find that the estimation accuracy of our algorithm keeps almost
the same after a certain number of iterations in a large scale
sensor network: Fig. 10 shows that our localization algorithm
(6) will almost converge (that is, the estimation error keeps
almost unchanged) at 2000 iterations no matter how many
sensors are in the sensor network.

VI. CONCLUSION

In this paper, the source localization problem was considered
by cooperatively computing the intersection of the sensing rings
of the sensors. A distributed alternating projection algorithm
was proposed to deal with this complicated non-convex opti-
mization problem. With alternating computing the projection
on the inner and outer disks of each sensor, sufficient conver-
gence conditions were obtained for the distributed localization
algorithm in both the consistent and inconsistent cases. Simula-
tion results show that the performance of our algorithm perform
good in a comparison with some existing algorithms, especially
convex relaxation based on convex intersection computation,
semidefinite and cone programming. In fact, many interesting
and challenging problems still remain to be addressed, includ-
ing how to extend this distributed non-convex ring intersection
algorithm from single source to multiple sources and how to
balance the localization performance and the computational
complexity in solving the non-convex optimization.

APPENDIX A
PROOF OF THEOREM 4.1

Proof: For any q∗ ∈ Z∗, it follows from Lemma 2.3 (iii)
and (1) that

‖xi(k + 1)− q∗‖2

≤ ‖wi(k)− q∗‖2 + L2β2
k − 2βkδ

T
i (k) (wi(k)− q∗)

≤ βk

(
|q∗|2Xi

− |wi(k)|2Xi

)
+ ‖wi(k)− q∗‖2 + L2β2

k.

With the boundedness of sequences {xi(k)}, {vi(k)} and
{wi(k)}, we obtain that

M :=max
i,k

{
|wi(k)|Xi

, |vi(k)|Yi
, |q∗|Xi

, ‖x̂(k)−q∗‖, |x̂(k)|Xi

}
is a finite number. It follows from Lemma 2.3 (ii) that

βk

(
|q∗|2Xi

− |wi(k)|2Xi

)
≤ βk

(
|q∗|2Xi

− |x̂(k)|2Xi

)
+ 2Mβk ‖x̂(k)− wi(k)‖ .

Since

‖x̂(k)− wi(k)‖ ≤ ‖x̂(k)− vi(k)‖+ ‖vi(k)− wi(k)‖

≤
n∑

j=1

aij(k) ‖x̂(k)− xj(k)‖+ Lαk

we have

‖xi(k + 1)− q∗‖2

≤ ‖wi(k)− q∗‖2 + βk

(
|q∗|2Xi

− |x̂(k)|2Xi

)
+ 2MLαkβk

+ 2M

n∑
j=1

aij(k)βk ‖x̂(k)− xj(k)‖+ L2β2
k. (13)

With a similar expanding of ‖xi(k + 1)− q∗‖2 given in (13),
we have

‖wi(k)− q∗‖2

≤
n∑

j=1

aij(k) ‖xj(k)− q∗‖2 + αkbi

(
|q∗|2Yi

− |x̂(k)|2Yi

)

+ L2α2
k+b0(d0+2M)

n∑
j=1

aij(k)αk ‖x̂(k)−xj(k)‖. (14)

Since

αk

n∑
i=1

bi

(
|q∗|2Yi

− |x̂(k)|2Yi

)
+ βk

n∑
i=1

(
|q∗|2Xi

− |x̂(k)|2Xi

)

≤ αk

n∑
i=1

((
bi|q∗|2Yi

+ |q∗|2Xi

)
−
(
bi |x̂(k)|2Yi

+ |x̂(k)|2Xi

))
+ 2nM2|βk − αk|

it follows from (13) and (14) that

n∑
i=1

‖xi(k + 1)− q∗‖2

≤
n∑

i=1

‖xi(k)−q∗‖2+b0(d0+2M)

n∑
j=1

αk ‖x̂(k)− xj(k)‖

+αk

n∑
i=1

((
bi|q∗|2Yi

+|q∗|2Xi

)
−
(
bi |x̂(k)|2Yi

+ |x̂(k)|2Xi

))
+ nML

(
α2
k + β2

k

)
+ nL2β2

k + nL2α2
k

+ 2M

n∑
j=1

βk ‖x̂(k)− xj(k)‖+ 2nM2|βk − αk|. (15)
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Due to q∗ ∈ Z∗, we have

n∑
i=1

((
bi|q∗|2Yi

+ |q∗|2Xi

)
−
(
bi |x̂(k)|2Yi

+ |x̂(k)|2Xi

))
≤ 0.

With the given conditions
∑∞

k=0 α
2
k < ∞,

∑∞
k=0 β

2
k < ∞,∑∞

k=0 |αk − βk| < ∞ and Lemma 3.5, it is easy to find that the
sequence {

∑n
i=1 ‖xi(k)− q∗‖2} is convergent for every q∗ ∈

Z∗ from Lemma 3.3. Consequently, for any i, the sequence
{‖xi(k)− q∗‖} is also convergent for every q∗ ∈ Z∗. Notice
that limk→∞ ‖xi(k)− x̂(k)‖ = 0 for i ∈ V , which implies the
sequence {‖x̂(k)− q∗‖} is convergent for any q∗ ∈ Z∗.

By summing (15) over k, we have

k∑
r=0

αr

n∑
i=1

((
bi |x̂(r)|2Yi

+ |x̂(r)|2Xi

)
−
(
bi|q∗|2Yi

+ |q∗|2Xi

))

≤
n∑

i=1

‖xi(0)− q∗‖2 + (nML+ nL2)
k∑

r=0

(
α2
r + β2

r

)

+ 2nM2
k∑

r=0

|βr − αr|+ 2M

n∑
j=1

k∑
r=0

βr ‖x̂(r)− xj(r)‖

+ b0(d0 + 2M)
n∑

j=1

k∑
r=0

αr ‖x̂(r)− xj(r)‖

< ∞.

Since
∑∞

r=0 αr = ∞, we have

lim inf
r→∞

n∑
i=1

((
bi |x̂(r)|2Yi

+|x̂(r)|2Xi

)
−
(
bi|q∗|2Yi

+|q∗|2Xi

))
=0.

Hence, there exists a limit point p∗ of {x̂(k)} such that p∗ ∈ Z∗.
Similarly, we get that the sequence {‖x̂(k)− p∗‖} is conver-
gent. Therefore, limk→∞ ‖xi(k)− p∗‖ = 0 for all i; namely,

lim
k→∞

xi(k) = p∗, i = 1, · · · , n.

Thus, the conclusion follows. �

APPENDIX B
PROOF OF THEOREM 4.4

Proof: For any z∗ ∈ X∗, it follows from X∗ ⊆ X0 ⊆ Xi

and Lemma 2.3 (i) that

‖xi(k + 1)− z∗‖2

≤ (1− βk) ‖wi(k)− z∗‖2 + βk ‖PXi
(wi(k))− z∗‖2

≤(1−βk) ‖wi(k)−z∗‖2+βk ‖wi(k)−z∗‖2−βk |wi(k)|2Xi

≤ ‖vi(k)− z∗‖2 + L2α2
k + 2αkd

T
i (k) (z

∗ − vi(k))

≤
n∑

j=1

aij(k) ‖xj(k)− z∗‖2 + αkbi

(
|z∗|2Yi

− |vi(k)|2Yi

)

+ L2α2
k. (16)

From Remark 2.4, there are a vector x̄ ∈ ∩n
i=1X

0
i and a number

δ > 0 such that {y|‖y−x̄‖ ≤ δ} ⊆ X0. Define s(k)= ε
ε+δ x̄+

δ
ε+δ x̂(k), where ε =

∑n
j=1 |x̂(k)|Xj

. According to Lemma 4.2,

s(k) ∈ X0. Note that αkbi(|z∗|2Yi
− |vi(k)|2Yi

) = αkbi(|z∗|2Yi
−

|s(k)|2Yi
) + αkbi(|s(k)|Yi

+ |vi(k)|Yi
)(|s(k)|Yi

− |vi(k)|Yi
).

With the boundedness of sequences {xi(k)}, {vi(k)} and
{wi(k)}, we obtain

W := max
i,k

{
|wi(k)|Xi

, |vi(k)|Yi
, ‖z∗ − vi(k)‖

}
< ∞.

It follows from |s(k)|Yi
≤ d0 and Lemma 2.3 (ii) that

αkbi

(
|z∗|2Yi

− |vi(k)|2Yi

)

=αkbi

(
|z∗|2Yi

−|s(k)|2Yi

)
+ αkbi(d0 +W ) ‖s(k)− vi(k)‖

≤αkbi

(
|z∗|2Yi

−|s(k)|2Yi

)
+αkb0(d0 +W ) ‖s(k)−x̂(k)‖

+ αkb0(d0 +W ) ‖x̂(k)− vi(k)‖ .

From (16), we have

n∑
i=1

‖xi(k + 1)− z∗‖2

≤
n∑

i=1

‖xi(k)− z∗‖2 +
n∑

i=1

αkbi

(
|z∗|2Yi

− |s(k)|2Yi

)

+ b0(d0 +W )

n∑
j=1

αk ‖x̂(k)− xj(k)‖+ nL2α2
k

+ nb0(d0 +W )αk ‖s(k)− x̂(k)‖ . (17)

Since {xi(k)} is bounded and x̄ ∈ X0, {xi(k)− x̄} is bounded
for any i. Without loss of generality, we assume ‖xi(k)− x̄‖ ≤
W . By Lemma 4.2,

‖x̂(k)− s(k)‖ ≤ 1

δn

⎛
⎝ n∑

j=1

‖xj(k)− x̄‖

⎞
⎠

⎛
⎝ n∑

j=1

|x̂(k)|Xj

⎞
⎠

≤ W

δ

n∑
j=1

∥∥x̂(k)− PXj
(wj(k))

∥∥ .
As a result,

‖x̂(k)− s(k)‖

≤ W

δ

n∑
j=1

‖x̂(k)− xj(k)‖+
W

δ
(1− βk)

n∑
j=1

|wj(k)|Xj

+
nLW

δ
βk +

nLW

δ
αk. (18)
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Recalling (12), it follows from (18), Lemma 3.5,
∑∞

k=0 α
2
k <

∞, and
∑∞

k=0 β
2
k < ∞ that

∞∑
k=0

αk ‖x̂(k)− s(k)‖ ≤ W

δ

n∑
j=1

∞∑
k=0

αk ‖x̂(k)− xj(k)‖

+
nLW

δ

∞∑
k=0

(
2α2

k + β2
k

)

+
nW

δ
L̃

∞∑
k=0

α2
k

<∞.

Since s(k) ∈ X0 and z∗ ∈ X∗, we obtain

n∑
i=1

bi

(
|z∗|2Yi

− |s(k)|2Yi

)
≤ 0.

Then it follows from Lemma 3.3 and (17) that the sequence
{
∑n

i=1 ‖xi(k)− z∗‖2} is convergent for every z∗ ∈ X∗. Con-
sequently, the sequence {‖xi(k)− z∗‖} is also convergent for
any i and z∗ ∈ X∗.

By Lemma 3.5, we obtain limk→∞ ‖xi(k)− x̂(k)‖ = 0 for
all i. It can be verified from (12) and (18) that limk→∞ ‖x̂(k)−
s(k)‖ = 0. Therefore, limk→∞ ‖xi(k)− s(k)‖ = 0, which im-
plies that the sequence {‖s(k)− z∗‖} is convergent for every
z∗ ∈ X∗.

By summing (17) over k, we have

n∑
i=1

‖xi(k + 1)− z∗‖2 +
k∑

r=0

n∑
i=1

αrbi

(
|s(r)|2Yi

− |z∗|2Yi

)

≤
n∑

i=1

‖xi(0)− z∗‖2 + nb0(d0 +W )
k∑

r=0

αr ‖s(r)− x̂(r)‖

+ nL2
k∑

r=0

α2
r + b0(d0 +W )

n∑
j=1

k∑
r=0

αr ‖x̂(r)− xj(r)‖ .

Thus,

∞∑
r=0

αr

n∑
i=1

bi

(
|s(r)|2Yi

− |z∗|2Yi

)
< ∞.

Since
∑∞

r=0 αr = ∞, we obtain

lim inf
r→∞

n∑
i=1

bi

(
|s(r)|2Yi

− |z∗|2Yi

)
= 0.

As a result, there exists a limit point x∗ of {s(k)} such that
x∗ ∈ X∗. Then with a similar analysis we get that the sequence
{‖s(k)− x∗‖} is convergent, which leads to limk→∞ ‖s(k)−
x∗‖ = 0. Therefore, limk→∞ ‖xi(k)− x∗‖ = 0, which com-
pletes the proof. �
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