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Reaching an Optimal Consensus: Dynamical Systems
That Compute Intersections of Convex Sets
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Abstract—In this paper, multi-agent systems minimizing a sum
of objective functions, where each component is only known to a
particular node, is considered for continuous-time dynamics with
time-varying interconnection topologies. Assuming that each node
can observe a convex solution set of its optimization component,
and the intersection of all such sets is nonempty, the considered
optimization problem is converted to an intersection computation
problem. By a simple distributed control rule, the considered
multi-agent system with continuous-time dynamics achieves not
only a consensus, but also an optimal agreement within the op-
timal solution set of the overall optimization objective. Directed
and bidirectional communications are studied, respectively, and
connectivity conditions are given to ensure a global optimal con-
sensus. In this way, the corresponding intersection computation
problem is solved by the proposed decentralized continuous-time
algorithm. We establish several important properties of the dis-
tance functions with respect to the global optimal solution set and
a class of invariant sets with the help of convex and non-smooth
analysis.

Index Terms—Connectivity conditions, distributed optimiza-
tion, intersection computation, multi-agent systems, optimal
consensus.

I. INTRODUCTION

I N recent years, multi-agent dynamics has been intensively
investigated in various areas including engineering, natural

science, and social science. Cooperative control of multi-agent
systems is an active research topic, and rapid developments of
distributed control protocols via interconnected communication
have been made to achieve the collective tasks, e.g., [18], [19],
[21], [24]–[27], [29], [31], [34]. However, fundamental chal-
lenges still lie in finding suitable tools to describe and design the
dynamical behavior of these systems and thus providing insights
in their functioning principles. Different from the classical con-
trol design, themulti-agent studies aim at fully exploiting, rather
than avoiding, interconnection between agents in analysis and
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synthesis in order to deal with distributed design and large-scale
information process.
Consensus is a basic problem in the study of multi-agent co-

ordination. It requires that all the agents achieve the same state,
such as a certain relative position or velocity. To achieve con-
sensus, connectivity plays a key role, and consequently several
connectivity conditions have been established to describe suit-
able switching topologies. Jointly connected graph and similar
concepts are important in the analysis to guarantee convergence.
Uniformly jointly connected graph, i.e., the joint graph is con-
nected during all intervals which are longer than a constant, has
been employed [15], [24], [25], [28], [33]. On the other hand,

-joint connectedness, i.e., the joint graph is connected in
the time intervals , is necessary [31], [34], and therefore
the most general form to secure the global coordination.
Moreover, distributed optimization of a sum of convex

objective functions, , where each component is
known only to node , has attracted much attention in recent
years, due to its wide application in multi-agent systems and
wireless networks [38]–[42]. A class of subgradient-based
incremental methods, in which some estimate of the optimal
solution can be passed over the network via deterministic or
randomized iteration, were studied in [38], [39], and [43]. Then
a non-gradient-based algorithm was proposed in [42], where
each node starts at its own optimal solution and updates using
a pairwise equalizing protocol. In view of multi-agent systems,
the local information transmitted over the neighborhood is
usually limited to a convex combination of its neighbors [24],
[25], [34]. Combining the ideas of consensus algorithms and
subgradient methods, a number of significant results were
obtained. A subgradient method in combination with consensus
steps was given for solving coupled optimization problems
with fixed undirected topology in [40]. Then, an important
work on multi-agent optimization was [36], where a decentral-
ized algorithm was proposed as a simple sum of an averaging
(consensus) part and a subgradient part, and convergence
bounds for a distributed multi-agent model under various
connectivity conditions were shown. Constrained consensus
and optimization were further studied in [37], where each
agent was always restricted in its own convex set. A “projected
consensus algorithm” was presented to solve the constrained
consensus problem in which each agent takes averaging and
projection steps alternatively, and it was generalized to “pro-
jected subgradient algorithm” with optimization goal also took
into consideration [37].
Most of the literature on optimization and consensus algo-

rithms is in discrete time, and it is usually hard for the considered
agents to reach both consensus and optimum unless the weights
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rule of the links, the step size in the iteration and the connect-
edness of the communication graph are properly selected [36],
[37], [39]. Few researchers have considered continuous-time
agent dynamics that solves a distributed optimization problem.
However, dynamical system solution to optimization problem
is of great interest since a simple vector-field solution may pro-
vide important geometrical insights. The classical Arrow–Hur-
wicz–Uzawa flow was shown to converge to the set of saddle
points for a constrained convex optimization problem [9]. Then
in [10], a simple and elegant continuous-time protocol was pre-
sented which solves linear programming problems.
The goal of this paper is to establish a simple distributed con-

tinuous-time control law which can ensure consensus and mini-
mize asymptotically. Each optimal solution set,
of optimization objective , is assumed to be a convex set
observed only by node . Assuming that the intersection set,

, is nonempty, the optimal solution set of the group
objective becomes this intersection set, and the considered op-
timization problem is then converted to a distributed intersec-
tion computation problem. In fact, computing several convex
sets’ intersection is a classical problem, and “alternating projec-
tion algorithm” was a standard solution, in which the algorithm
is carried out by iteratively projecting onto each set [6]–[8].
The “projected consensus algorithm” presented in [37] can be
viewed as its generalized version. The intersection computation
problem is also of interest in the study of computational geom-
etry, a branch of computer science [12], [13]. Hence, an impor-
tant motivation for our work is to provide a system-theoretic in-
sight into the convergence properties of certain distributed opti-
mization problems. Similar to the continuous-time approxima-
tion of recursive algorithms [11] and constrained optimizations
[9], [10], we establish a suitable dynamical model for such anal-
ysis. Also by itself, the considered continuous-time distributed
optimization problem has many applications, e.g., wireless re-
source allocation [38], [39], formation control [18], [23], [31],
and mobile sensing [19], [46].
In this paper, we present a simple dynamical system solution

to this convex intersection computation problem, as the sum
of a consensus part and a projection part. Since this projection
part can be viewed as a special subgradient information, this
protocol is actually a continuous-time version of the algorithm
proposed in [36]. We show that an optimal consensus (i.e., con-
sensus within the global optimal solution set), can be achieved
under time-varying communications. Both directed and bidirec-
tional cases are investigated, and sharp connectivity conditions
are obtained in the sense that a general optimal consensus will
no longer hold for a general model with weaker connectedness.
Additionally, we use quite general weights rule which allow the
weight of each arc in the communication graph to depend on
time or system state.
The rest of the paper is organized as follows. In Section II,

some preliminary concepts are introduced. In Section III, we
formulate the considered optimal consensus problem, and the
main results are shown. Then, in Sections IV and V, conver-
gence to the optimal solution set and global consensus are an-
alyzed, respectively, based on which the proofs of the main re-
sults are obtained. Finally, in Section VI concluding remarks are
given.

II. PRELIMINARIES

In this section, we introduce some notations and theories on
graph theory [4], convex analysis [1], [3] and nonsmooth anal-
ysis [5].
A directed graph (digraph) consists of a finite set
of nodes and an arc set , in which an arc is an ordered pair

of distinct nodes of . An element describes an arc
which leaves and enters . Awalk in digraph is an alternating
sequence of nodes and arcs

for . A walk is called a
path if the nodes of this walk are distinct, and a path from to
is denoted as . is said to be strongly connected if it

contains path and for every pair of nodes and . A
digraph is called to be bidirectional when for any two nodes
and , if and only if . Ignoring the direction
of the arcs, the connectedness of a bidirectional digraph will be
transformed to that of the corresponding undirected graph. A
time-varying graph is defined as with

as a piecewise constant function, where is
a finite set indicating all possible graphs. Moreover, the joint
graph of in time interval with is
denoted as .
A set is said to be convex if

whenever , and . For any set ,
the intersection of all convex sets containing is called the
convex hull of , denoted by . The next lemma can be
found in [2].
Lemma 2.1: Let be a subset of . The convex hull

of is the set of elements of the form

where , with and
.

Let be a closed convex subset in and denote
as the distance between and , where

denotes the Euclidean norm. There is a unique element
satisfying associated to any

[2]. The map is called the projector onto . We also have

(1)

Moreover, has the following non-expansiveness property:

(2)

Clearly, is continuously differentiable at point , and (see
[2])

(3)

The following lemma was obtained in [31], which is useful
in what follows.
Lemma 2.2: Suppose is a convex set and ,
. Then

(4)
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Particularly, if , then

(5)

Next, the upper Dini derivative of a continuous function
at is defined as

When is continuous on , is non-increasing on if
and only if for any . The next result is
given for the calculation of Dini derivative (see [14] and [33]).
Lemma 2.3: Let

be and . If
is

the set of indices where the maximum is reached at , then
.

Finally, consider a system

(6)

where is piecewise continuous in and
continuous in . Let be a solution of (6)
with initial condition . Then is called a
positively invariant set of (6) if, for any and any
, when .

III. PROBLEM FORMULATION AND MAIN RESULTS

In this section, we first define the considered optimal con-
sensus problem. We propose a multi-agent optimization model
and a distributed control law to solve this optimization problem.
Then the main results are presented on connectivity conditions
which can ensure an optimal consensus globally.

A. Multi-Agent Model

Consider a multi-agent system with agent set
, for which the dynamics of each agent is a

first-order integrator:

(7)

where represents the state of agent , and is the
control input.
The communication in the multi-agent network is modeled

as a time-varying graph . Moreover, node is
said to be a neighbor of at time when there is an arc

, and represents the set of agent ’s neighbors at
time . As usual in the literature [24], [31], [33], an assumption
is given to the variation of .
A1 (Dwell Time) There is a lower bound constant

between two consecutive switching time instants of .
We have the following definition.
Definition 3.1:
a) is said to be uniformly jointly strongly connected
(UJSC) if there exists a constant such that

is strongly connected for any .

b) Assume that , is bidirectional. is said
to be infinitely jointly connected (IJC) if is
connected for all .

Remark 3.1: -joint connectedness for all is
equivalent to that there exists an unbounded time sequence

such that is con-
nected for all . Note that it does not require an upper
bound for in the definition.
The objective for this group of autonomous agents is to

reach a consensus, and meanwhile to cooperatively solve the
following optimization problem:

(8)

where represents the cost function of agent ,
observed by agent only, and is a decision vector. We suppose
the optimal solution set of each component exists, denoted

.

We impose the following assumptions.
A2 (Convexity) , are closed convex sets.

A3 (Nonempty Intersection) is nonempty and

bounded.
Remark 3.2: The assumption that each is a convex set is

quite general, and it is not hard to see that this assumption will
be satisfied as long as each is a convex function. Moreover,
since the intersection of convex sets is a convex set itself, is
a convex set with the convexity of each . Additionally, with
A3, it is obvious to see that is compact, and it is the optimal
solution set of (8).

B. Distributed Control

Denote and let the continuous
function be the weight of arc , for , .
Then we present the following distributed control law:

(9)

Remark 3.3: We write the arc weight in a quite gen-
eral form showing that this weight function can be time-varying
and may depend nonlinearly on the state. Note that this does not
mean global information is required for the control design.
Remark 3.4: When can be observed by node ,

can be easily obtained. For instance,
node may first establish a local coordinate system,
and then construct a function to compute

within this coordinate system. Then by (3), we have
.

Another assumption is made on each , ,
.

A4 (Weights Rule) There are and such that
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Fig. 1. The goal of the agents is to achieve a consensus in .

In this paper, we assume that Assumptions A1-A4 always
hold. With (7) and (9), the closed loop system is expressed by

(10)

Remark 3.5: By the non-expansiveness property (2), the
convex projection is continuous for all for
any closed convex set . Therefore, a Caratheodory
solution of (10) exists at least over a finite interval for any
initial condition based on assumption A1 (see [16], [17]).
Note that the solution is not necessarily unique. As will be
shown in Remark 4.1, it also exists in .
Remark 3.6: Since the projection term can be viewed as a

subgradient for the special case , (10) is actu-
ally a continuous-time version of the algorithm proposed in [36],
which has the form of the sum of a consensus term and a subgra-
dient term. On the other hand, in [37], a “projected consensus
algorithm” was presented to solve the same intersection com-
putation problem in which each agent takes consensus and pro-
jection steps alternatively. Note that there is some essential dif-
ference between (10) and the “projected consensus algorithm”
in [37], because (10) takes advantage of the consensus and pro-
jection information at the same time instant. It is not hard to
construct examples in which each node would never enter its
own set along the trajectories of (10).
Let be the trajectory of (10) with initial condition

. Then the considered
optimal consensus is defined as following (see Fig. 1).
Definition 3.2:
i) A global optimal set convergence of (10) is achieved if
for all , we have

(11)

ii) A global consensus of (10) is achieved if for all
, we have

(12)

iii) A global optimal consensus is achieved of (10) if both i)
and ii) hold.

Remark 3.7: It is easy to find that, based on the analysis
methods we provide, all the results obtained in this paper will
still hold if the control law (10) is replaced by

for and some scalar functions ,
with being a constant. Here we just choose

the form of (10) to make the statements and proofs simplified.

C. Main Results

In this subsection, we present the main results on optimal
consensus.
First the following conclusion is our main result for directed

graphs.
Theorem 3.1: System (10) achieves a global optimal con-

sensus if is UJSC.
We say the communications over the considered multi-agent

network are bidirectional if is a bidirectional graph for
all . Note that, this does not imply that the arc weights,

, , , are symmetric. Then we have the
following main result on optimal consensus for the bidirectional
case.
Theorem 3.2: System (10) with bidirectional communica-

tions achieves a global optimal consensus if (and in general only
if) is IJC.
Theorem 3.2 shows that the connectedness conditions to

reach an optimal consensus can be relaxed for bidirectional
communications without requiring a uniform bound of the
length of intervals in the definition of connectivities.
Remark 3.8: Let us explain what “in general only if” means

in Theorems 3.2. Clearly, the connectivity condition proposed in
Theorem 3.2 is not a necessary condition to ensure a global op-
timal consensus for a particular optimization problem (8). How-
ever, in regard to a global optimal consensus for all possibilities
of , simple examples could show that this IJC as-
sumption is also necessary using the same idea studying state
agreement problem in [31], [34]. In fact, as long as
is not a singleton, it can be easily shown that consensus cannot
be guaranteed for all initial conditions. Therefore, from this per-
spective, Theorem 3.2 gives “sharp” connectivity conditions for
a global optimal consensus of system (10).
Remark 3.9: If A3, the nonempty intersection assumption,

is removed, control law (10) becomes a special case of the
target aggregation controller studied in [31] with respect to

. In this case, under proper connectivity assump-
tions (even each node cannot always obtain the information of
), it can be shown that (10) will lead the network to converge

into [31]. The dynamics within
can be complicated, and the optimal consensus will fail since
there is no longer a simple expression of , the real optimal
solution set of (8). However, we guess that in this case the
control law (10) still implies a suboptimal convergence such
that there will be a constant , which does not depend on the
initial condition, satisfying under
UJSC connectivity conditions.
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In order to prove Theorems 3.1 and 3.2, on one hand, we have
to prove all the agents converge to the global optimal solution
set, i.e., ; and, on the other hand, we have to verify that a con-
sensus is also achieved. In fact, the convergence analysis is quite
challenging, due to the nonlinearity nature of each weight func-
tion and the convex projection part in the control law.
In the following two sections, we will focus on the optimal so-
lution set convergence and the consensus analysis, respectively,
by which complete the proofs for Theorems 3.1 and 3.2.

IV. OPTIMAL SET CONVERGENCE

In this section, we prove the optimal solution set convergence
for system (10). We first establish a method to analyze the dis-
tance between the agents and the global optimal set with the help
of convex analysis, and then the convergence to for all the
agents is proposed under directed and bidirectional communi-
cations, respectively.

A. Distance Function

Define and let

be the maximum among all the agents. Although may not
be continuously differentiable, it is still continuous. Thus, we
can analyze the Dini derivative of to study its convergence
property. Moreover, it is easy to see that is locally Lips-
chitz. Then the Dini derivative of is finite for any .
We prove several elementary lemmas for the following anal-

ysis. At first, the following lemma indicates that is nonin-
creasing.
Lemma 4.1: for all .
Proof: According to (3), one has

(13)

Then, based on Lemma 2.3 and denoting as the set con-
taining all the agents that reach the maximum in the definition
of at time , we obtain

(14)

Furthermore, for any , according to (5) of Lemma
2.2, one has

(15)

for any since it always holds that .

Moreover, in light of (1), we obtain

(16)

since we always have for all .
Therefore, it is easy to see that for any ,

(17)

Thus, with (14), (15) and (17), one has

(18)

Then the proof is completed.
Remark 4.1: According to Lemma 4.1,

is a positively invariant set for system (10). Since is com-
pact, is also compact. This leads to that
each solution of (10) exists in . Moreover, if the weight
functions , , , are only state-dependent, the
continuity implies that there will be such that

(19)

along trajectory of system (10). In this case, A4 follows
automatically, and then needs not to be assumed.
With Lemma 4.1, for any initial condition, there exists a con-

stant such that . Clearly, the optimal
solution set convergence will be achieved for system (10) if and
only if . Furthermore, since it always holds that

, there exist constants ,
such that

To establish the optimal set convergence, we also need
the following lemmas, whose proofs can be found in the
appendices.
Lemma 4.2: Assume that , . Then

we have for all .
Lemma 4.3: Assume that either being UJSC or

being IJC with bidirectional communications. Then
for all .
Remark 4.2: If the network communication graph is undi-

rected, i.e., if and only if with
, , , then according to (13)

and (17), we have
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Furthermore, based on (1) and (2), we obtain

for all , . Therefore, we have

which implies

(20)

immediately based on Lemma 4.1.
As a result, with (20), we can apply Barbalat’s

lemma on , and then it follows immediately that
, without the assumptions

of Lemma 4.2.
Remark 4.3: Note that, Lemmas 4.1 and 4.2 hold without

requiring any connectivity of the system communication graph.

B. Directed Graphs

The following conclusion is for optimal set convergence with
directed communications.
Proposition 4.1: System (10) achieves the global optimal so-

lution set convergence if is UJSC.
Proof: According to Lemmas 4.2 and 4.3, we have

, . As a result, for any
, there exists such that when

(21)

Take and . Defining

similarly to the analysis of (14), we have that for all

which implies , . Thus,
, .

Since is UJSC, we can find a node such that
for , where

. In light of Lemma 2.2 and (21), we have

(22)

from which we obtain that for any

Therefore, noticing that
and denoting , one has

(23)

where

(24)

and

(25)

Proceeding the estimation in time interval
will lead to

for all . This implies

(26)
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for , where

(27)
Further, continuing the analysis on time interval

, can be found with a neighbor in
during . An upper bound for

can be similarly obtained as

(28)

where
Next, respectively, we repeat the analysis on time intervals

for
, and we finally reach

(29)

for , which implies

(30)

where and
.

Denoting and for
, and by the same analysis on time intervals ,
, one has

(31)

Since in (31) can be arbitrarily small, we see that
for all , , which

immediately implies . The proof is
completed.

C. Bidirectional Graphs

The following conclusion is for optimal set convergence
under bidirectional graphs.
Proposition 4.2: System (10) achieves the optimal solution

set convergence with bidirectional communications if is
IJC.

Proof: Suppose . According to Lemmas 4.2 and
4.3, we have that for all

(32)

This implies, for any , we have that
for sufficiently large , where

and , .

Thenwe see from (13) that the derivative of is globally
Lipschitz. Therefore, based on Barbalat’s lemma, we know

(33)

Define for infinitely long time .
Then is connected since is con-
nected for all .
Let be the neighbor set of node in graph . With

Lemma 2.2, (32) and (33) yield that for any and

(34)

Taking , we define two hyperplanes:

Then , (34) implies that

which leads to

(35)

Because is connected, we can repeat the analysis over the
network, then arrive that (35) holds for all .
Let

Then , .
Therefore, with (32) and (35) and according to the structure of

and , there will be a point
for sufficiently large such that

which contradicts (1). Therefore, does not hold, and then
the optimal set convergence follows.

V. GLOBAL CONSENSUS

In this section, we present the consensus analysis. In order
to show the consensus, we have to present a clear estimation of
the influence on state agreement by terms ,

.
We first introduce a class of positively invariant set for

system (10) which characterizes the agreement property in
Section V–A. Then the consensus analysis is investigated for
directed and bidirectional communication cases, respectively
in Section V–B.
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Fig. 2. Constructing an invariant set from .

A. Invariant Set

We define a multi-projection function:
with , , by

Particularly, is denoted by as the case for .
Let

be the set which contains all the multi-projection functions we
define.
Furthermore, let be a convex set in , and de-

fine as . Denoting
, based on a similar analysis as the

proof of Lemma 4.1, it is not hard to find that

This implies, for all once we have
, which leads to the following conclusion immediately (see
Fig. 2).
Lemma 5.1: Let be a convex set in . Then

is positively invariant for system (10).
We next establish an important property of the constructed

invariant set .
Lemma 5.2: .
Proof: With Lemma 2.1, any has the following

form

where with , and ,
. Then, by the non-expansiveness property (2),

we have that for any and

This leads to

which implies the conclusion because .
Now we are ready to reach the global consensus for system

(10). Let us focus on each coordinate, and denote as the
th coordinate of . Moreover, let

be the minimum and the maximumwithin all the agents. Denote
. Then a consensus is achieved for system

(10) if and only if .
In Section V-B, wewill prove the global consensus for system

(10) with directed and bidirectional communications, respec-
tively by showing that .

B. Consensus Analysis

In this subsection, we propose the consensus analysis. First
we study the directed case.
Proposition 5.1: System (10) achieves a global consensus if
is UJSC.
Proof: Based on Proposition 4.1, we have that

for all . Therefore,
for any , there exists such that, when

(36)

As a result, according to Lemma 5.2, for any
with , we have

Moreover, by Lemma 5.1, we see that
, for all ,

which implies that for all , we have

(37)

We divide the following proof into three steps.
Step 1) Take with and denote

. In this step, we give bound to
during .
Based on (37), we see that for all

(38)

Noting the fact that

(39)
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for all , we obtain

(40)
where .

Step 2) Since is UJSC, we can find and
such that for

. In this step, we give bound to
during .
Similarly to the analysis of (22), when

, one has

which yields

(41)

after some simple manipulations by combining (40)
and (41), where
.

Then, applying (39) on node during
will lead to

(42)

for all , where
and .

Step 3) We proceed the analysis for with
, . Denoting
, we obtain

(43)

for , which implies

(44)

Equation (38) and (44) lead to

(45)

Define a time sequence with
. Applying the same analysis on each interval

will lead to

(46)

for all . As a result, we obtain

(47)

for all . Therefore, noting the fact that
, (38) and (47) yield

Then since can be arbitrarily small. This
completes the proof.
Then the global consensus for bidirectional case is proved by

the following conclusion.
Proposition 5.2: System (10) achieves a global consensus

with bidirectional communications if is IJC.
Proof: Take with as the proof of

Proposition 5.1. Then (37) and (38) still hold.
Denote the first time when has at least one neighbor during

as , and denote the neighbor set of for
as . Next, we show the bound for and during

.
Note that when has no neighbor during for

, one has that for any

(48)

Then, we see that

for all , where
By similar analysis with (41), we have that for any

(49)

with .
When there is no link between and for

, applying Lemma 5.1 on the subsystem formed
by nodes in , (37) leads to

(50)

Therefore, defining as the first moment during
when there is an edge between and

, we have

(51)

for .
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Denoting
and at ,

bounds for , can be similarly given by

(52)

where .
Next, can be defined until
since is IJC. Moreover, with ,

we have

for all .
Therefore, denoting , we obtain

(53)

which implies

(54)

Then similar to the analysis in the proof of Proposition 5.1,
we have . This completes the proof.
With Propositions 4.1, 4.2, 5.1, and 5.2, it is straightforward

to see that the main results of the paper, Theorems 3.1 and 3.2
hold.

VI. CONCLUSION

This paper addressed an optimal consensus problem for
multi-agent systems. With jointly connected graphs, the consid-
ered multi-agent system achieved not only consensus, but also
optimum by agreeing within the global solution set of a sum
of objective functions. Assuming that each agent can observe
the projection information onto the solution set of its own
optimization component and the intersection of all solution sets
is nonempty, the original unconstrained optimization problem
was converted to an intersection computation problem. Control
laws applied to the agents were simple and distributed. The
results showed that a global optimization problem can be
solved over a multi-agent network under time-varying com-
munications and limited interactions. Future work includes
randomization in the nodes’ decision-making and event-based
methods in the optimization algorithm design.

APPENDIX A
PROOF OF LEMMA 4.2

Based on the definitions of and , when
holds for all , one has

Thus, for any , there exists such that, when

(55)

When , then it is easy to see that the conclusion holds
because for all . Therefore, we just
assume in the following.
According to (13) and (17), it is not hard to find that

(56)

Furthermore, based on (55) and Lemmas 2.2 and 4.1, one has
that when ,

(57)

for all and .
If the conclusion does not hold, there exist a node and a

constant such that

(58)

for a time serial with
. Noting the fact that there is a constant

such that for all ,
since is compact, we have that for all for all

(59)

Denoting and
according to (58) and (59), we obtain

(60)

which leads to

(61)

for all and . As a result, we have

(62)

Therefore, (62) contradicts (55) when , which
completes the proof.
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APPENDIX B
PROOF OF LEMMA 4.3

We prove the conclusion by contradiction. Suppose there ex-
ists a node such that . Then for any

, there exists such that, when

(63)

Take . Then there exists a time serial

with such that for all
.

According to (63) and Lemma 2.2, we have that for all

which will lead to

(64)
As a result, for with , we have

(65)

We divide the following proof into two cases: directed commu-
nications and bidirectional communications.

Directed Case: Denote . Since is
UJSC, it is not hard to find that there exist and such
that for . Then
based on (65), we obtain

(66)

for , where . Thus,
for , one has

(67)

which leads to

(68)

Therefore, we obtain

for , which implies

(69)

where is defined in (24). Furthermore, applying the same
analysis of (65) on node , one has that when

(70)

Combing (66), (69) and (70), we obtain

(71)

for all , where .
Equation (71) also holds for since .
We can proceed to find a node such that there is an arc

leaving from entering in be-
cause is uniformly jointly strongly connected. Meanwhile,
similar analysis will result in estimations for agent with the
form (71) by .
Repeating similar analysis on time intervals

, respectively, and
finally, by , we obtain

(72)

for all , which yields

(73)

Note that, (73) contradicts the definition of since
for sufficiently small

. The conclusion holds.
Bidirectional Case: When has no neighbor for

, by (17) we see that

(74)

Denote the first moment when has at least one neighbor
during as , and denote the neighbor set of for

as . Then, by a similar analysis as (66), one
has

(75)
with . Thus, according to the same process
by which we obtain (69), one also obtains

(76)

where .
Similarly, we can define as the first moment when there is

another node connected to during . Let
be the node set which connect to at . Since we

have the dwell time for , without loss of generality, we can
always assume that all the links between and last for
at least time starting from . Moreover, similar estimations
will lead to

for all , where .
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Furthermore, since is IJC, we can always proceed the
upper process until , and then we
obtain

with , which contradicts the definition of
. Then the conclusion holds for bidirectional case.
The proof is completed.
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