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given structural restrictions. All computations have performed using
Matlab LMI Control Toolbox [23].

V. CONCLUSION

The main contribution of the note is a set of conditions which ex-
tend the Inclusion Principle to solve overlapping guaranteed cost con-
trol problems using static output controllers for a class of linear norm
bounded uncertain state-delayed discrete-time systems. These condi-
tions ensure the expansion-contraction of the closed loop systems and
the equality of the guaranteed cost bounds. The controller design is per-
formed for the expanded system using a delay independent LMI, which
is adapted to this class of problems. In this context, the LMI is used as
a tool that allows a computable control, which is further contracted to
be implemented in the original system. Other design tools could also
be possible within the same framework. The results are specialized for
the overlapping output feedback control design under decentralized in-
formation structure constraints. It leads to a block tridiagonal structure
of controllers. A numerical illustrative example is supplied.
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[2] D.Šiljak, Decentralized Control of Complex Systems. New York:
Academic, 1991.

[3] L. Bakule, J. Rodellar, and J. Rossell, “Generalized selection of com-
plementary matrices in the inclusion principle,” IEEE Trans. Autom.
Control, vol. 45, no. 6, pp. 1237–1243, Jun. 2000.

[4] ——, “Structure of expansion-contraction matrices in the inclusion
principle for dynamic systems,” SIAM J. Matrix Anal. Appl., vol. 21,
no. 4, pp. 1136–1155, 2000.
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Finite-Time Stabilization of Nonlinear Systems With
Parametric and Dynamic Uncertainties

Yiguang Hong and Zhong-Ping Jiang

Abstract—In this note, non-smooth finite-time stabilization of nonlinear
systems with parametric and dynamic uncertainties is investigated. To
solve this problem, the input-to-state stability property is used to char-
acterize unmeasured dynamic uncertainties. A constructive partial-state
control design is proposed on the basis of involved combined use of
Lyapunov, backstepping and input-to-state stability techniques. Under
small-gain type local conditions, a solution for the finite-time regulation of
a class of uncertain nonlinear systems is obtained.

Index Terms—Dynamic uncertainties, finite-time convergence, input-to-
state stability (ISS), nonsmooth feedback, parametric uncertainties.

I. INTRODUCTION

The control synthesis to deal with uncertain nonlinear systems be-
comes more and more important following various practical demands.
Many (robust and/or adaptive) nonlinear control approaches were pro-
posed in the last decade [5], [6], [14], [16], [17]. The design for non-
linear control systems with dynamic uncertainty has also been studied
widely, partially because dynamic uncertainty often arises from many
different control engineering applications; see [10], [12], [13], [26] and
references therein.

Meanwhile, non-smooth control has drawn increasing attention in
nonlinear control system design. One of the main benefits of the non-
smooth finite-time control strategy is that it can force a control system
to reach a desirable target in finite time. This approach was first studied
in the literature of optimal control. Despite its potential application to
practical problems, the study of finite-time stabilization is quite under-
developed, partially because of the lack of effective and constructive
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tools in non-smooth analysis. In recent years, finite-time stabilizing
controllers were constructed for some classes of nonlinear systems [2],
[3], [7]–[9], [11]. Moreover, finite-time stabilization of discontinuous
systems has recently been studied in light of differential inclusions in
[19]. These finite-time stabilizing controllers can also yield, in some
sense, fast response and high tracking precision as well as disturbance-
rejection properties because of their non-smoothness [2].

The purpose of this note is to propose a global robust finite-time con-
trol design for a class of nonlinear systems with dynamic uncertainty,
leading to an extension of the existing results on (adaptive) finite-time
stabilization. The crucial idea behind our study on finite-time stabi-
lization is to use Sontag’s concept of input-to-state stability (ISS) [23]
and its Lyapunov characterization [25] to characterize unmeasured dy-
namic uncertainties as in [12]. A novel controller design is presented
through a rather involved combined application of Lyapunov, backstep-
ping and ISS techniques; see [23], [24], [16], [14], [18] for related ap-
plications.

The rest of the note is organized as follows. In Section II, prelimi-
nary knowledge and the problem formulation are given. Section III han-
dles the construction of robust finite-time controllers in the presence of
parametric and dynamic uncertainties, while Section IV provides the
analysis for finite-time convergence. Finally, concluding remarks are
proposed in Section V.

II. PRELIMINARIES

We will consider the finite-time stabilization for uncertain nonlinear
systems of the strict-feedback form

_z =  (z; �1)
_�1 = �2 + �1(�1; z; t)
_�2 = �3 + �2(�1; �2; z; t)
...
_�n = u+ �n(�1; . . . ; �n; z; t)

(1)

where u 2 R is the control input; � := (�1; . . . ; �n)
T 2 Rn is the

measured portion of the state; z 2 Rn is the remaining unmeasured
state, which we refer to as [12]. For each i = 1; 2; . . . ; n; �i is an un-
known and Lipschitz continuous function, and  is piecewise contin-
uous with respect to z and Lipschitz continuous with respect to �1. For
simplicity, we assume  (0; 0) = 0. Nonlinear systems transformable
into (1) have been studied extensively over the last 15 years from both
theoretical and practical viewpoints; see, e.g., [15]–[17].

For convenience, for any given �1, we rewrite  (z; �1) =  � (z);
that is,

_z =  (z; �1) =  � (z) (2)

where  � (z) is a piecewise continuous vector field. The set of all the
discontinuous points of  � (z), denoted by @G, is of measure zero,
and let F� (z) be the smallest convex closed set containing all the limit
values of  � (ẑ) for all ẑ 62 @G with ẑ ! z. A solution z(t) of (2)
is called a solution of the differential inclusion _z 2 F� (z) (referring
to [4], [19]). If V0(z) is C1 with respect to z, then for convenience, in
what follows, we denote

_V0j(2) := sup
�z2F (z)

@V0
@z

�z : (3)

If  � (z) is continuous, then F� (z) = ff� (z)g, and _V0 can be un-
derstood in the conventional sense.

Throughout the note, the following assumptions are made regarding
system (1):

(A1) For each i = 1; . . . ; n, there are C1 known functions �1; �i2
vanishing at the origin such that,

j�i(�1; . . . ; �i; z; t)j � �1(kzk) + p�i2(k�1; . . . ; �ik) (4)

(for all �1; . . . ; �i; z; t) where p > 0 is an unknown constant. In other
words, the functions �i(i = 1; . . . ; n) are allowed to be dependent on
unknown parameters, as in [12], [13].

(A2) System (2), that is, _z =  (z; �1), has an ISS-Lyapunov func-
tion V0(z) (see [23], [25] for the definition and implications of an
input-to-state stable (ISS) system). Namely, V0 is a positive-definite
and proper function that satisfies

_V0j(2) := sup
�z2F (z)

@V0
@z

�z � �c0V �
0 + 
0(j�1j) (5)

where c0; �0 are positive constants with �0 < 1, and 
0 is a class-K1
function. Moreover, � and � are class-K1 functions such that

�(kzk) � V0(z) � �(kzk):

(A3) It is assumed that lim sups!0 (
0(s)=s
2) < +1 and

lim sups!0 (�1(s)
2=�(s)) < +1.

Note that the inequalities in (A3) are the well-known (small-gain
type) conditions for small signals; see [12], [13] for more details.

Remark 1: Obviously, condition (5) implies that the z-subsystem
is globally finite time stable when �1 = 0. The converse Lyapunov-
like conditions for finite-time stable systems are discussed under the
assumption that the settling time T is continuous at the origin in [3].
However, converse Lyapunov conditions may not be extendible directly
to ISS. In fact, a 0-input finite-time stable system, _z =  (z; 0), may
not lead to (5) with �1 6= 0. Here we give an example for illustrating
ISS inequality (5). Consider

_z = �sgn(z)� z3 + �21

where sgn( � ) is the sign function. TakeV0 = z

2
(with�(s) = �(s) =

s

2
). As it can be directly checked,

_V0 = �jzj � z4 + z�21 � � 1p
2
V0 + 
0(�1)

with 
0(�1) = �41=2 and �0 = 1=2.
Let 0 < � < 1 be a real number in the form of 1 � p

q
, where

0 < p0 < q0 are two odd integers. Moreover, when n > 1, take � > 0
so that

� <
1� �0

1 + (n� 3)�0
; r1 = 1 > . . . > ri := ri�1 � � > 0 (6)

and

�0 = 1� �; (�i�1 + 1)ri = (�i�2 + 1)ri�1 > 0 (7)

for i = 2; . . . ; n. Note that (6) can be satisfied as � is sufficiently
small. It is easy to see that 1� � � ri�i�1 < ri+1�i and �i�1 < �i
(i = 1; . . . ; n � 1).
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The next lemma is useful in the following finite-time convergence
analysis.

Lemma 1: Define

�̂1(s) =

n

i=1

�1(s) +

n

i=2

�1(s) : (8)

Then we have

lim sup
s!0

�̂1(s)

�(s)�
< +1: (9)

Proof: Note that �1(s) is C1; 2�2�
2�2���

= 2, and

2� 2�

2� 2� � ri�i�1
> 2;

2� 2�

2� 2� � ri
> 2�0;

i = 2; . . . ; n;

according to (6). Then, (9) follows straightforwardly from (A3).
The control objective is to find a continuous dynamic partial-state

feedback law of the form

u = u(�; �̂)
_̂
� = '(�; �̂) (10)

such that the state x = (zT ; �T )T of system (1) is globally finite-time
convergent to the origin. Namely, for any initial conditions x(t0) =
x0; �̂(t0) = �0, there is a finite settling time T � t0 such that the
solution x(t; t0; x0; �0) of system (1) under control law (10) satisfies

lim
t!T

x(t; t0; x0; �0) = 0 x(t; t0; x0; �0) = 0 8t > T:

Note that �̂(t) needs not converge to �.
For the need of the analysis later, we introduce some useful inequal-

ities [1].
Lemma 2: (Jensen’s inequality):

n

i=1

xai

1=a

�

n

i=1

xai

1=a

; 0 < a1 < a2 (11)

with xi � 0; 1 � i � n.
Lemma 3: (Young’s inequality):

ab �
a1+c

1 + c
+

c b1+

1 + c
; a � 0; b � 0; c > 0: (12)

III. CONTROL DESIGN

This section is to develop a constructive procedure for robust finite
time stabilization by partial-state feedback. In what follows, we denote

� = maxf1; p g, which is unknown since p is unknown. Denote
�̂(t) as a time-varying function to estimate the unknown constant �,
and ~� = � � �̂.

Define

v0 := 0

wj := �
�

j � vj�1(�1; . . . ; �j�1; �̂)
�

vj := �wj �j(�1; . . . ; �j ; �̂); 1 � j � n

(13)

where, for each 1 � j � n;�j is a C1 positive function to be deter-
mined later.

Remark 2: It is not hard to show that j�j � vj�1j � 2jwj j for
�j�1 � 1(j � 2).

Set

Wj :=
�

v

s� � v
�

j�1 ds; 1 � j � n (14)

and

�j := �

j

l=1

@Wl

@�̂
; 1 � j � n: (15)

It is easy to see that �1 = 0 and wj = (@Wj=@�j); 1 � j � n.
Furthermore, we define

Vj =

j

i=1

Wi; j = 1; . . . ; n; (16)

Qj(x) = (jw1j
2 + jw2j

2�2� + � � �+ jwj j ) (17)

for j = 1; . . . ; n.
Then, a constructive design procedure can be developed, which

is quite complicated since it combines the scheme given in [8], [9]
with that given in [13]. Here, due to space limitation, some details are
omitted and the ideas for the detailed backstepping-like procedure can
be found in [8], [13], or the references therein. In fact, this type of
Lyapunov function candidates (14) is originally used in [20]–[22].

Step 1: Consider

_�1 = �2 + �1(�1; z; t): (18)

Take V1 = W1 = (�2��
1 =2� �). By (A2) and � � 1

�1��
1 �1 � j�1��

1 j�1(kzk) + j�1��
1 jp�12(j�1j)

�
�2�2�1

4
+ �1(kzk)

2 + p�2�2�1 ��1

1

0

�012(�j�1j)d�

� ��2�2�1 b̂1(�1) + �1(kzk)
2

where b̂1(�1) is a C1 nonnegative function dominating 1

4
+

j��1
1

0
�012(�j�1j)d�j. Take v1(�1; �̂) = ��1��

1 �1(�1; �̂) with
�1(�1) a C1 positive function that dominates the following function:

�0

1 = L1 +

0(j�1j)

j�1j2�2�
[�(�1) + 1] + �̂b̂1(�1) (19)

where � is a C1 function. �0
1 is continuous due to � > 0 and (A3).
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Consider the derivative of V1, that is

_V1j(18) = �1��
1 (�2 + �1)

� �1��
1 (�2 � v1 + v1 + �1��

1 �b̂1) + �21

� �
0(j�1j)[�(�1) + 1]� L1�
2�2�
1

+ j�1��
1 jj�2 � v1j+ �1(kzk)

2

+ (~� + �1)'1(�1)� �1
_̂
�;

where �1 = 0 defined in (15), '1 = �2�2�1 b̂1 � 0 and _̂
� will be

determined later.
After Step j � 1(2 � j � n): For system

_�1 = �2 + �1(�1; z; t)
...
_�j�1 = �j + �j�1(�1; . . . ; �j�1; z; t)

(20)

we assume that, with Vj�1 = j�1
i=1 Wi, we have

_Vj�1j(20) � �
0(j�1j)[�(�1) + 1]� Lj�1Q
2�2�
j�1

+ jwj�1k�j � vj�1j+ (~� + �j�1)'j�1(�; �̂)� �j�1
_̂
�

+

j�1

i=1

�1 +

j�1

i=2

�1 ; Lj�1 > 0 (21)

where �j�1 was defined in (15) and the function 'j�1 � 0 is
C1. The construction of vj�1; wj�1; 'j�1, and Vj�1, based on
vj�2; wj�2; 'j�2, and Vj�2, will be introduced in detail in Step j.
We give the assumptions which will be verified later in Step j.

i) For 1 � i � j � 1(j � n); v�i with vi defined in (13) is C1, and
therefore, Wi+1, defined in (14), is C1.

ii) There are C1 functions �i;l(�; �̂) � 0 and v̂i(�; �̂) � 0 (for
1 � i � l � j � 1) such that j(@v�l =@�i)j � Q

r � �r

l �i;l and
j(@v�i =@�̂)j � v̂i.

When j = 2, Assumptions i) and ii) can be easily proved using (12).
Step j: Consider system

_�1 = �2 + �1(�1; z; t)
...
_�j�1 = �j + �j�1(�1; . . . ; �j�1; z; t)
_�j = �j+1 + �j(�1; . . . ; �j ; z; t):

(22)

Clearly,Wj is nonnegative and even positive when �j 6= vj�1, andWj

is C1 owing to Assumption i) in Step j � 1. Then, with (16), Vj(�) is
C1 and positive definite with respect to �1; . . . ; �j . Consider

_Vj j(22) � �
0(j�1j)[�(�1) + 1]� Lj�1Q
2�2�
j�1

+ jwj�1k�j � vj�1j

+ (~� + �j�1)'j�1 � �j�1
_̂
� +

j

i=1

@Wj

@�i
(�i+1 + �i)

+
@Wj

@�̂

_̂
� +

j�1

i=1

�1 +

j�1

i=2

�1 : (23)

Then, we analyze each term on the right hand side of inequality (23).

i) With (12) and Remark 2, we first obtain

jwj�1jj�j � vj�1j � 2jwj�1j jwj j

�
Lj�1

4n
Q2�2�

j�1 + lj jwj j (24)

where lj is a positive constant depending on � and Lj�1.
ii) By Assumption ii) in Step j � 1 and Remark 2, we have

@Wj

@�i
= jvj�1 � �j j

@v
�

j�1

@�i

� 2jwj j Q
r � �r

j�1 �i;j�1

i � j � 1

where �i;j�1 areC1 nonnegative functions for i � j�1. More-
over, a repeated application of Young’s inequality (12) along
with Remark 2 gives

j�i+1 + �ij

� j�i+1 � vij+ jvij+ j�ij

� 2jwi+1j + jwij �i + j�ij

� (2 + �i)Q
r ��
i+1 + �1 + p�i2

where, for simplicity, we dropped the arguments. Then, due to
(12) and (2� 2�=rj) � (2� 2�=rn), we have

j�1

i=1

@Wj

@�i
(�i+1 + �i)

� 2jwj j [Q
r � ��

j

j�1

i=1

�i;j�1(2 + �i)

+

j�1

i=1

Q
r � �r

j �i;j�1(�1 + p�i2)]

�
Lj�1

4n
Q2�2�

j + jwj j ( ~ j + �~bj)

+ �1 (25)

where ~ j(�; �̂) and ~bj(�; �̂) are C1 nonnegative functions with
~bj(0; �̂) = 0.
Similar to the analysis given for (25), with the help of (12), we
have

@Wj

@�j
(�j+1 + �j)

� jwj�j+1j + jwj j(�1 + p�j2)

� jwj j j�j+1 � vj j+ wjvj +
Lj�1

4n
Q2�2�

j

+ jwj j [ ~ 0j (�; �̂) + �~b0j (�; �̂)]

+ �1

where ~ 0j ;~b
0
j are C1 nonnegative functions with ~b0j (0; �̂) = 0,

and wjvj � 0 with vj to be determined.
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Thus

j

i=1

@Wj

@�i
(�i+1 + �i)

� jwjk�j+1 � vj j+
Lj�1

2n
Q2�2�
j + wjvj

+ jwj j ( j + �b̂j) + �1

+ �1 (26)

where  j = ~ j + ~ 0j and b̂j = ~bj + ~b0j .
iii) Similar to the analysis given in ii), for the other terms of (23),

by Assumption ii) in Step j � 1, (12) and (15), we can obtain
(referring to [8, Lemma 5])

(~� + �j�1)'j�1 � �j�1
_̂
� +

@Wj

@�̂

_̂
�

= (~� + �j�1)'j�1 � �j
_̂
�

�
Lj�1

4n
Q2�2�
j + jwj j (�̂j � ~�b̂j)

+ (~� + �j)'j � �j
_̂
� (27)

where 'j = 'j�1 + jwj j
(2�2�=r � )b̂j .

Construct

vj = �wj �j (28)

where �j = (n� 1=n)Lj�1 + lj +  j + �̂j + (1 + �̂2)b̂j ; (j � 2)
is C1 and positive. Then

wjvj+jwj j
(2�2�=r � )(lj+ j+�̂j+�̂b̂j) � �Lj jwj j

(2�2�=r � )

for Lj =
n�1
n
Lj�1. Therefore, based on (24) and (26)–(28), we have

_Vj j(22)

� �
0(j�1j)[�(�1) + 1]� LjQ
2�2�
j + jwjk�j+1 � vj j

+

j

i=1

�1

+

j

i=2

�1 + (~� + �j)'j � �j
_̂
�: (29)

Moreover, because �j and wj are C1; v
�

j is C1 by (rj � �)�j �
rj�j�1. Therefore, Assumption i) given in Step j � 1 is still valid in
Step j. In addition, Assumption ii) can also be verified for Step j by
induction with the help of (12).

Step n: Take Vn defined in 16. According to the previous inductive
arguments, the control law can be constructed as

u = vn = �wn �n (30)

Furthermore, according to (�i � vi�1)wi � 0 and Remark 2, we have

Vn =

n

j=1

�

v

s� � v
�

j�1 d s �

n

j=1

2jwj j :

With (11), we have V (2�2�=2��)
n � 2Q2�2�

n . Therefore, it holds

_Vnj(1) � �LnQ
2�2�
n � 
0(j�1j)[�(�1) + 1]

+

n

i=1

�1 +

n

i=2

�1

+ (~� + �n)'n � �n
_̂
�

� �
Ln

2
Vn � 
0(�+ 1) + �̂1

+ (~� + �n)'n � �n
_̂
� (31)

with �̂1(kzk) given in (8).

IV. FINITE-TIME CONVERGENCE ANALYSIS

In the previous section, we constructed a feedback control law via
partial-state variables �. Now, we consider the finite-time convergence
of the closed-loop trajectories under the proposed control law (30)
along with an update law

_̂
� = �

_~� = 'n: (32)

Clearly, we have the following.
Lemma 4: The trajectories z(t); �(t) and �̂(t) are bounded for the

closed-loop system (1) with (30) and (32).
Proof: Consider the following (positive–definite) Lyapunov func-

tion:

Vc = Vn(�) + V�(z) +
1

2
~�2 V�(z) =

V (z)

0

�(s)ds

where � : R+ ! R+ is a continuous nondecreasing function with
�(s) > 0 for every s � 0.

Therefore, according to (31)

_Vc � �
Ln

2
Vn � 
0(j�1j)[�(�1) + 1] + �̂1(kzk)

� �(V0(z))V0(z)
� + �(V0(z))
0(j�1j):

According to (9), we can find a desired function � and then a C1 func-
tion � (see [12] and [13] for the details) such that

(1� �)�(�(kzk))V �
0 � 2�̂1(kzk)

�(�1) + 1 � �( 
 (j� j)
�

); 0 < � < 1:

Therefore, we have

_Vc � �
Ln

2
Vn �

1

2
�(V0(z))V0(z)

� � 0 (33)

which implies the boundedness of z; � and �̂. 4



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 12, DECEMBER 2006 1955

We are in a position to state our main result.
Theorem 1: The solutions of system (1) in closed-loop with feed-

back law (30) are bounded. In particular, each trajectory (z(t); �(t)) is
finite-time convergent to the origin 0 2 Rn+n .

Proof: Consider �Vc = Vn(�) + V�(z), which is positive definite
with respect to (z; �). According to (33), we have

_�V c � �
Ln

2
Vn �

1

2
�(V0(z))V0(z)

� + ~��n: (34)

At first, we consider local finite-time convergence in a small neighbor-
hood around (z; �) = (0; 0).

It is not hard to see that, locally around z = 0

lim
kzk!0

V0(z)
�

�(V0)V0(z)�
= lim

kzk!0

1

�(V0(z))
=

1

�(0)
<1

which implies

V0(z)
� = O(�(V0)V0(z)

� ): (35)

On the other hand, by definition of V�(z)

lim
kzk!0

V�(z)

V0(z)
= lim

kzk!0
�(V0(z)) <1

which implies V�(z) = O(V0). Thus

V�(z)
� = O(V0(z)

� ) = O(�(V0)V0(z)
� ) (36)

when kzk is near 0. Therefore, when kzk is sufficiently small, there
is a constant c� such that V �

� � 1
c
�(V0)V

�
0 or, equivalently

��(V0)V
�
0 � �c�V

�
� .

For convenience, denote �1 := 2�2�
2��

< 1. Then, based on (34),
(35), and (36), we have, locally around (�; z) = (0; 0),

_�V c � �
Ln

2
V �
n �

c�
2
V �
� + ~�'n:

Note that

'n(�; �̂) = '1 +

n

j=2

jwj j b̂j � Q2�2�'0(�; �̂)

where '0 = n

j=1 b̂j is continuous with '0(0; �̂) = 0 because

b̂j(0; �̂) = 0(j = 1; . . . ; n) and �̂ is bounded. In other words,
'n = o(V �

n ) with respect to �. Therefore, in a small neighborhood
of (z; �) = (0; 0); 'n = Vn(�; �̂)

� ~V (�; �̂) with ~V (0; �̂) = 0, and
then we have

_�V c � �
Ln

4
V �
n �

c�
2
V �
� �

Ln

4
V �
n (1� ~V ):

In fact, due to the boundedness of �̂ (from Lemma 4) and ~V (0; �̂) =
o(1) with respect to (z; �) around (z; �) = (0; 0), we can prove that
there is a constant 0 < % � 1 such that ~V (x; �̂) � 1 if �Vc � %. Note
that when �Vc � 1, there is c0 > 0 such that L

4
V �
n + c

2
V �
� �

c0(Vn + V�)
� with � := maxf�1; �0g and c0 := minfL

4
; c
2
g, by

inequality (11). Thus, in a neighborhood 
 = f(z; �; �̂) : �Vc � %g,
we have

_�V c � �c0 �V
�
c (37)

which implies �V ! 0 in finite time or, equivalently, the local finite time
convergence in
 (noting that (37) guarantees that
 is an invariant set).

Next, we consider the global finite-time convergence. The fi-
nite-time convergence in 
 has been proved. Now, we study the
situation outside 
. It is not hard to see that there is �c0 such that
(Ln=2)V

�
n + (c�=2)V

�
� � �c0%

�. Note that when the initial con-
dition (z(0); �(0); �̂(0)) 62 
, we have �Vc � %. Therefore, based on
(33) and the aforementioned discussion

Vc(0) � Vc(0)� Vc(� ) =
�

0

� _Vc(s)ds

=
�

0

(� _�V c + ~�'n)ds

�
�

0

(
Ln

2
V �
n +

c�
2
V �
� )ds � c0 %

��: (38)

If (z(t); �(t); �̂(t)) do not reach 
 in finite time, (38) will lead to a
contradiction. Therefore, (z(t); �(t); �̂(t)) will enter 
 in finite time.
Thus, the conclusion follows. 4

Remark 3: If there is no dynamic uncertainty, then the feedback
law becomes full-state, which is consistent with the adaptive finite-time
control given in [8]. On the other hand, if we take � = 0, then following
the proposed design procedure, we will obtain an asymptotically stabi-
lizing partial-state control, which is consistent with the result given in
[13].

The settling time analysis is often helpful for predicting when the
target is reached. In practice, although we do not have the exact knowl-
edge about � (or p), we usually know its range. Without loss of gener-
ality, we assume that 0 < � � � for some constant � > 0.

From (33), ~�(t)2 � 2Vc(t) � 2Vc(0) and _Vc(t) � 0, which im-
plies that, for any given initial conditions x(0); �̂(0), we have j~�(t)j �

2Vc(0) � 2�Vc(0) + (j�̂(0)j+�)2, only depending on the initial

condition (x(0); �̂(0)) and S. Therefore

Vc(0) � �Vc(0) +
1

2
~�(0)2 � 2�Vc(0) +

1

2
(j�̂(0)j+�)2:

Based on the proof of Theorem 1 [especially, (37) and (38)], the settling
time can be estimated as follows:

T �

( �V (z(0);�(0);�̂(0)))
c (1�maxf� ;� g)

; if (z; �; �̂) 2 


%

c (1�maxf� ;� g)

+ 4 �V (z(0);�(0);�̂(0))+(j�̂(0)j+�)

c %
; otherwise

V. CONCLUSION

In this note, the finite-time stabilization problem for a class of non-
linear systems with parametric and dynamic uncertainties is investi-
gated. Due to unmeasured zero dynamics, a (dynamic) partial-state
control strategy is used for solving the finite-time regulation problem.
Under the assumptions related to ISS, the proposed partial-state feed-
back controller renders the system state variables finite-time conver-
gent. It is under current investigation to propose a robustification tool
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for a larger class of systems with possibly nonvanishing disturbances
and more general dynamic uncertainties. Our findings along this direc-
tion will be reported elsewhere.
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On a New Method for -Based Decomposition

Amin Nobakhti and Hong Wang

Abstract—This note proposes a simple linear matrix inequality (LMI)
system for the design of static precompensators to reduce the interactions of
a multivariable system. The approach is based on minimizing the norm
of a modified system and the LMIs are derived from the well known tech-
nique of pseudodiagonalisation. The approach is applied to two complex
real-life benchmark problems with high levels of interaction. It is shown
that its performance is significantly better than previously proposed LMI
optimization techniques for designing static precompensators.

Index Terms—Decentralized control, optimization, large-scale sys-
tems, linear matrix inequality (LMI), pseudodiagonalisation.

I. INTRODUCTION

Despite much recent effort in developing advanced techniques for
the design of multivariable controllers, it is fair to say the serious dif-
ficulties which arise in their application have halted their widespread
use. These relate to the complexity of design procedure and the com-
plexity of the resulting controller. In addition, many of these techniques
are effectively only applicable to low dimensional multivariable sys-
tems because the methodologies breakdown on a large-scale platform.
Under these circumstances, it is not surprising that for larger multivari-
able systems, decentralized control remains the quintessential method-
ology.

Decentralized control design techniques can be categorized into
those which are based on the extension of single-input–single-output
(SISO) techniques to multiple-input–multiple-output (MIMO) system
(such as sequential loop closing techniques [1]) and those which
design the decentralized controller as a single transfer function [2].
While from the application point of view decentralized control is more
practical, the added structural constraints means that from a design
and analysis perspective it is less tractable. These issues range from
difficulties in the parameterization of all stabilizing decentralized
controllers [3], [4], to the fact that often their use is limited to so called
open-loop “weakly coupled” systems [5].

Unfortunately, many systems cannot satisfy the weakly-coupled re-
quirement and therefore do not yield to decentralized control. A con-
venient remedy in these cases is to employ a precompensator K such
ifG(s) is the original system, then the open-loop gainQ(s) = G(s)K
satisfies the weakly coupled requirements.Q(s)may then be treated as
a new system and any number of available closed-loop decentralized
methods (e.g., PI) be used to obtain the overall desired responses. The
implications of this are that the design of K is independent of the de-
centralized controller, and also that K is the solution to an open-loop
problem whereas the decentralized controller is designed in closed-
loop. In order to ensure that the structure of the final overall resulting
controller is as simple as possible, K is typically required to be con-
stant. A tradeoff of this structural constraint is that the performance
is in general substantially less than those achieved by decoupling con-
trollers which are not static, and whose order is often at least the same as
the system’s. Indeed, previously proposed methods provide state–space
formulations for both theH1 [6], [7], andH2 [7] based decomposition
problems using dynamic controllers. In particular, the powerful method
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