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from the regime marked by 0 of R5 (which is very small), say, as
x1 = 0:2 and x2 = 0:02. Thus, the stabilizing PI controller is given
by

C(z) =
0:2z + 0:02

z � 1:3
(16)

and the characteristic polynomial of the controlled system is obtained
as

�(z) = 76z7 � 52z6 + 16:28z5 � 8:56z4

�36:12z3 � 11:78z2 + 34:38z � 17:6 (17)

which has seven eigenvalues, with the modulars: 0.5794, 0.8400,
0.9905, and 0.9964. They are indeed all less than 1, satisfying the
requirement.

IV. CONCLUSION

In this note, from the geometrical view of point, a new method is
developed for the design of stabilization of discrete systems using
first-order controllers. The method combines analytical, numerical and
graphical approaches to generate an effective procedure, which can
be used to exactly determine the complete set of parameter values of
x1; x2, and x3 for first-order controllers. Explicit algebraic conditions
are given for seven critical cases. An example is presented to show
the exact critical boundaries, which was not obtained in the existing
literature.
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Stabilization of Uncertain Chained Form Systems Within
Finite Settling Time

Yiguang Hong, Jiankui Wang, and Zairong Xi

Abstract—This note considers finite time stabilization of uncertain
chained form systems. The objective is to design a nonsmooth state
feedback law such that the controlled chained form system is both Lya-
punov stable and finite-time convergent within any given settling time.
We propose a novel switching control strategy with help of homogeneity,
time-rescaling, and Lyapunov-based method. Also, the simulation results
show the effectiveness of the proposed control design approach.

Index Terms—Chained form systems, finite time convergence, Lyapunov
stability, time-rescaling, uncertainty.

I. INTRODUCTION

The last several decades have witnessed the increasing interest in
the control of nonholonomic systems (see, for example, [3], [4], and
[8]–[12]). In the literature on nonholonomic control systems, smooth
time-varying or nonsmooth state-feedback laws can be applied to
achieve asymptotic stabilization. In recent years, important steps in
feedback design have been made for the exponential regulation of
chained form systems [10], [11], [1], [8].
On the other hand, nonsmooth finite time control, which makes the

controlled system reach the target in a finite time, provides fast response
and high tracking precision, and moreover, shows disturbance-rejec-
tion properties because of its nonsmoothness [2]. This provides the
motivation for us to apply the finite time control technique to achieve
the control target for nonholonomic systems. To date, finite-time stabi-
lizing control has been studied and several explicitly-constructed con-
tinuous (but nonsmooth) finite-time controllers for some nonlinear sys-
tems (with single input) have been obtained in the references such as
[2], [6], and [7].
The purpose of this note is to study finite-time stabilization for a class

of uncertain chained form systems. We propose a novel control design
procedure to construct a switching nonlinear control scheme that solves
the problem of finite time convergence and Lyapunov stability for these
nonholonomic systems, where a time-rescaling technique is employed
in stabilizing these controlled systems within any given settling time.

II. PROBLEM FORMULATION

Consider a class of uncertain chained form system in the following
form:

_x0 = q0u0

_x1 = q1x2u0
...
_xn�1 = qn�1xnu0

_xn = qnu+  n(x)

(1)
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where x = (x1; . . . ; xn)
T 2 Rn; qi > 0; i = 0; . . . ; n are uncertain

parameters but they are located in known intervals (i.e., 0 < qi 2
[qmin
i ; qmax

i ]; i = 0; . . . ; n); u0; u are control inputs; and  n is an
uncertain function satisfying

j n(x)j �M

n

i=1

jxij; M > 0: (2)

Before the analysis of (1), we first introduce the concept of finite
time stability.
Definition 1: Consider a system

_x = f(x) f(0) = 0; x 2 Rn (3)

where f : U0 ! Rn is continuous with respect to x on an open neigh-
borhood U0 of the origin x = 0. The equilibrium x = 0 of the system
is finite-time stable if it is Lyapunov stable and finite-time convergent
in a neighborhoodU � U0 of the origin. By “finite-time convergence,”
we mean: If, for any initial condition x(0) 2 U , there is a settling time
T > 0, such that every solution x(t) with x(0) as its initial condi-
tion of (3) is defined with x(t) 2 U=f0g for t 2 [0; T ) and satisfies
limt!T x(t) = 0 and x(t) = 0 for any t � T .

The following result can be found in [2].
Lemma 1: Consider the nonlinear system described in (3). Suppose

there is a C1 function V (x) defined in a neighborhood Û � Rn of
the origin, real numbers c > 0 and 0 < a < 1, such that V (x) is
positive definite on Û and _V (x) + cV a(x) is negative semidefinite
(along the trajectory) on Û . Then, the origin of (3) is finite-time stable
with T � (V (x(0))1�a)=(c(1� a)) for initial condition x(0) in some
open neighborhood U � Û of the origin.

This note aims to find controllers for (1) with any initial condition
(x0(0); x(0))

u0 = u0(x0; x) u = u(x0; x) (4)

such that the closed-loop system (1) with (4) is finite time stable within
a given settling time T .

In the following analysis, the concept of homogeneity is used, though
the system under consideration is not necessarily homogeneous.
Definition 2: r1; . . . ; rn are positive real numbers. A function

V (x1; x2; . . . ; xn) is homogeneous of degree � > 0 with respect to
(r1; . . . ; rn) if V (�r x1; �

r x2; . . . ; �
r xn) = ��V (x1; x2; . . . ; xn).

Remark 1: Homogeneity facilitates some analysis because it some-
times can limit the discussion to a compact set (for example, a unit
sphere defined as Sj = fy 2 Rj : k(y1; . . . ; yj)k = 1g inRj ). To be
specific, consider a homogeneous function ~V (x1; . . . ; xj) of degree �
with respect to (r1; . . . ; rj). If ~V (y) < 0 holds for any y 2 Sj , then
~V (x) < 0 for any 0 6= x 2 Rj , because there are � > 0 and y 2 Sj

such that xi = �r yi; i = 1; . . . ; j and, therefore, ~V (x) = �� ~V (y).
The terms with fractional powers are widely used in the sequel. It

is known that, for any b 2 R; ni > 0; i = 1; 2; 3 with n1; n3 odd
integers and n2 even integers

jbj sgn(b) = b jbj = b (5)

where sgn( � ) is the sign function. In fact, taking notice of (5) simplifies
the expression in the following analysis.

III. FINITE-TIME STABILIZATION

In this section, we give a constructive procedure for the finite-time
stabilizing control of system (1) within any given settling time T . As
usual, we first discuss the problem in a special case when x0(0) 6= 0,
and then we extend our result to the case for any x0(0).

A. Analysis When x0(0) 6= 0

For x0-subsystem, we take the following control law:

u0 = �K0x
�
0 0 < � =

a1
a2

< 1 (6)

where K0 is a positive design parameter and ai; i = 1; 2 are positive
odd numbers. Take its Lyapunov function V0 = x20 and then we have
_V0 + 2q0K0V

(1+�)=(2)
0 = 0. By Lemma 1, the x0-subsystem is finite

time stable and the settling time Ts is

Ts =
V (x0(0))

q0K0(1� �)
=

jx0(0)j
1��

q0K0(1� �)
�

jx0(0)j
1��

qmin
0 K0(1� �)

4

=T0:

(7)

It is easy to see that when t < Ts; x0(t) 6= 0 and therefore,
x0(t) 2 R does not change its sign. To secure finite time convergence
within T for any q0 2 [qmin

0 ; qmax
0 ], we need to keep T0 � T ,

or equivalently, (jx0(0)j1��)=(qmin
0 T (1� �)) � K0. If we take

T� = (T0q
min
0 )=(2qmax

0 ), then we obtain jx0(0)j � jx0(t)j �
(jx0(0)j)=(2

1=(1��)) during [0; T�] without changing the sign of
x0(t). Hence, when t 2 [0; T�]

̂
4

=K0jx0(0)j
� � ju0j �

K0jx0(0)j
�

2

4

= > 0: (8)

Then, we only need to stabilize the time-varying x-subsystem

_x1 = q1x2u0
...
_xn�1 = qn�1xnu0;

_xn = qnu+  n(x)

(9)

within the given settling time T�. This can be carried out as follows.
We first find finite-time stabilizing feedback for (9) with assuming that
(8) holds for any t � 0 (see Theorem 1). Then, we easily find that it
is sufficient to assume (8) for t 2 [0; Tx] with Tx denoted as its actual
settling time. After that, we reconstruct the controller via time-rescaling
to make Tx � T� and, therefore, remove this assumption because (8)
naturally holds for t 2 [0; T�] (see Theorem 2).
To solve the finite time stabilization problemwith (8) holding for any

t � 0, here we can extend the design idea given in [6] to this uncertain
time-varying system (9).
Theorem 1: Let ri > 0; �i�1 > 0; i = 1; . . . ; n and k = p=q�1 <

0 (with q > 0 and p > 0 odd integers) be real numbers satisfying

r1 = 1; . . . ; ri = ri�1 + k; ri > �k > 0

i = 1; . . . ; n (10)

and

�0 = r2 (�i + 1)ri+1 = (�i�1 + 1)ri > 0;

i = 1; . . . ; n� 1: (11)

Then, finite-time stabilizing control law of (9), with (8) holding for any
t � 0, can be constructed in the form of

u = vn = �lnwn �
M

qmin
n

n

i=1

jxij sgn(wn) (12)

where wn is defined by (13), as shown at the bottom of the next page.
sgn( � ) denotes the sign function, and li > 0; i = 1; . . . ; n are suitable
constants.
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Proof: Define

Wj(x)
4
=

x

v

wj(x1; . . . ; xj�1; s)d s

=
x
� +1

j + �j�1jvj�1j� +1

�j�1 + 1
� xj(vj�1)

� (14)

which is nonnegative and even positive when xj 6=

vj�1(x1; . . . ; xj�1). It is easy to see that Wj is C1 if v
�

j�1

is C1. Since sgn(u0) in vj ; j = 1; . . .n � 1 is either 1 or �1 and
keeps unchanged due to (8), it does not influence the C1 smoothness
of v

�

j ; j = 1; . . .n � 1 with respect to x.
Then, the proof can be given step-by-step.
Step 1: Take a homogeneous function V1(x) = (x1+r1 )=(1 + r2)

for the first equation _x1 = q1x2u0 and, therefore, for any given
l1 > 0; _V1 = xr1 q1x2u0 � �(=2)qmin

1 l1w
(1+k+r )=(r � )
1 +

q1u0w1(x2�v1). Obviously, v
�
1 isC1 since �1 = 1=r2 = 1=(1 + k)

by (11).
After Step j � 1: For system

_x1 = q1x2u0
� � �

_xj�1 = qj�1xju0

(15)

we already have that v�i is C1 of homogeneity degree (ri+ k)�i > 0
for i = 1; . . . ; j� 1; Vj�1 = j�1

i=1 Wi is a homogeneous function of
degree 1+r2 with respect to (r1; . . . ; rj�1) and isC1 positive definite
with respect to x1; . . . ; xj�1, with its derivative as

_Vj�1j(15) � �

j�1

i=1



2
qmin
i liwi + qj�1u0wj�1(xj � vj�1)

(16)

for some suitable constants li > 0; i = 1; . . . ; j � 1.
Step j(< n): Consider system

_x1 = q1x2u0
� � �

_xj�1 = qj�1xju0
_xj = qjxj+1u0:

(17)

Note that the function Vj(x) = Wj(x) + Vj�1(x) = j
i=1Wi is

positive definite with respect to x1; . . . ; xj inRj , and it is alsoC1 and
homogeneous of degree 1 + r2 with respect to (r1; . . . ; rj) because
Wj and Vj�1 are so.

Take vj as given in (13), where lj will be determined later.u0wjvj �
0 implies qju0wjvj � �qmin

j wjvj . Then, we have

_Vj j(17) � V 0
j (x) + qju0wj(xj+1 � vj) + qju0wjvj

� ~Vj + qju0wj(xj+1 � vj) (18)

with

V 0
j (x)

4
=̂

j�1

i=1

@Wj

@xi
qmax
i xi+1 �

j�1

i=1



2
qmin
i liwi

+ ̂qmax
j�1 jwj�1(xj � vj�1)j

and ~Vj
4
=V 0

j � q
min
j ljw

(1+k+r )=(r � )

j , where only lj > 0 should
be determined to make ~Vj negative definite. Clearly, both V 0

j and ~Vj

are homogeneous (for any constant lj ) of degree 1 + k + r2 > 0 with
respect to (r1; . . . ; rj).
It is obvious that, when wj = 0 (that is, xj = vj�1), we have

Wj = 0 according to (14), which implies

~Vj = V 0
j = �

j�1

i=1



2
qmin
i liwi < 0

if (x1; . . . ; xj) 6= 0: (19)

Sj is the unit sphere of Rj as defined in Remark 1. Define Sj+ =

fx 2 Sj : V 0
j (x) � 0g and Sj� = fx 2 Sj : V 0

j (x) < 0g. Sj� is not
empty due to (19). If Sj+ is empty, then ~Vj is negative definite. Here,
suppose Sj+ is nonempty. Then, since Sj+ is closed and compact, we
can take

M1
4
= max

x2S

V 0
j (x) � 0 and M2

4
= min

x2S



2
qmin
j wj(x) � 0:

M2 > 0 because M2 = 0 implies wj = 0 [noting that fx 2 Sj :
wj = 0g � Sj� from (19)]. Hence, if we take lj > M1=M2 � 0, we
have, along with (19)

~Vj(x) � �

j

i=1



2
qmin
i liwi < 0 8x 2 Sj : (20)

Recalling Remark 1, (20) holds for any x 6= 0 with the selected lj .
Thus, we have

_Vj � ~Vj + qju0wj(xj+1 � vj)

� �

j

i=1



2
qmin
i liwi + qju0wj(xj+1 � vj)

which is consistent with (16).
In addition, v

�

j = �l
�

j [x
�

j � v
�

j�1 ](r � )=(r � ) is C1

because v
�

j�1 is C1 and �j(rj + k) = �jrj+1 > �j�1rj from (11)
and rj > rj+1 > 0.
Up to Step n: By induction, we have Vn = n

i=1Wi and then

_Vn �

n�1

i=1

@Wn

@xi
qixi+1u0 + wn(qnu+  n(x))

�

n�1

i=1



2
qmin
i liwi + qn�1u0wn�1(xn� vn�1):

Take u of form (12). Still using the analysis given in Step j, we obtain
ln > 0 such that

_Vn � ~Vn
4
=V 0

n � qmin
n lnwn � �



2

n

i=1

qmin
i liwi :

(21)

Because (xi � vi�1)wi(x1; . . . ; xi) � 0, it is not hard to get that

Vn =

n

i=1

x

u

wi(x1; . . . ; xi�1; s)d s

� 2

n

i=1

wi : (22)

w1
4
=x1+k1

wi(x1; . . . ; xi)
4
=x

�
i � v

�
i�1 vi�1 = �li�1wi�1 sgn(u0); i = 2; . . . ; n

(13)
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Then, putting (22) back to (21) gives

_Vn � �
l

2

Vn l = minfli; i = 1; . . . ; ng: (23)

By Lemma 1 and k < 0, system (9) under control law (12) is finite
time stable with its settling time denoted as Tx

Tx � �
2 (1 + r2)

lk
Vn(x(0)) : (24)

4
Remark 2: From the proof of Theorem 1, we can find that the as-

sumption that (8) holds for any t can be replaced by that (8) holds for
t 2 [0; Tx] with Tx as its settling time, because we need not care about
(8) after x = 0 when t � Tx.

Then, we render the system finite time stable within any given set-
tling time via time-rescaling, and remove the assumption in Theorem
1 (i.e., (8) for any t 2 [0; Tx]) by making Tx � T�.
Theorem 2: If x0(0) 6= 0, system (1) is finite-time stable within any

given settling time T under the feedback law in the form of

u = u� = Knvn x1;
x2
K
; . . . ;

xn
Kn�1

(25)

with vn defined in (12) and suitable K � 1.
Proof: First of all, it is easy to see that we can choose suitable

K0 such that the system converges within T0 � T for the system _x0 =
q0u0. Then, we should construct a controller u(x) for system (9) to
make its settling time Tx � T� = (T0q

min
0 )=(2qmax

0 ).
If Tx given in (24) satisfies Tx � T�, then we can take u� = vn or,

equivalently, in the form of (25) with K = 1.
If Tx > T�, we will employ a time-rescaling technique to recon-

struct a finite-time controller to make the closed-loop system with a
“modified” settling time TKx � T�.

Take �t = Kt and �xi = K1�ixi withK � 1, then we get equations
from (9)

d�x
d�t

= q1�x2u0
...
d�x

d�t
= q2�xnu0

d�x
d�t

= qn
u

K
+  (x)

K

4
=qn�u+ � n(�x)

(26)

where �x = (�x1; . . . ; �xn)
T . Note that j � nj � M n

i=1 jxij=K
n �

M n

i=1 j�xij still satisfying (2). Therefore, (26) is still in the form of
(9), and then control �u = vn(�x) given in (12) with the same li; i =
1; . . . ; n, can finite-time stabilize (26). Here, we only need that (8)
should hold when �t 2 [0; �Tx], or equivalently t 2 [0; �Tx=K], as dis-
cussed in Remark 2, where �Tx(�x) is its settling time in the time scale �t

�Tx � �
2 (1 + r2)

lk
Vn(�x(0)) : (27)

Next, we only need to prove that there is a suitable K such that
the “modified” settling time TKx = �Tx=K � T� of the system with
(25) in time scale t, or in other words, �t 2 [0; �Tx] (or equivalently,
t 2 [0; TKx ]) implies t 2 [0; T�]. If so, (8) for any t 2 [0; TKx ] is not
an assumption any longer since (8) is certainly true for any t 2 [0; T�]
and TKx � T�.

Note that, because of the continuity of Vn, for any fixed x(0) and
K � 1, we will have

sup
K�1

Vn x1(0);
x2(0)

K
; . . . ;

xn(0)

Kn�1

and, therefore, �Tx in (27) is bounded. Hence, limK!1 TKx = 0. Then,
with a suitable constantK � 1, we can make the settling time TKx �
T�. Thus, the conclusion follows. 4

B. Control Scheme

In the last subsection, we gave the controller expressions (6) and (12)
for u0 and u of system (9) in the case of x0(0) 6= 0. Now, we consider
finite-time control laws for any x0(0).
Theorem 3: Let� = f(0; x) : kxk 6= 0g and let� > 0 be a suitably

selected real constant. Then, the following feedback law globally finite-
time stabilizes the system (9) within any given finite time T .

i) When (x0(0); x(0)) = (0; x(0)) 2 �

u0(t) =
�; if t < ts(kx(0)k)

�K0x
�
0 ; if t � ts(kx(0)k)

(28)

u(t) =
0; if t < ts(kx(0)k)

u�(x; u0); if t � ts(kx(0)k)
(29)

where � is given in (6), ts = minf(T=4); kx(0)kg

K0 �
4(�ts)

1��

3qmin
0 T (1� �)

T0 =
(�ts)

1��

qmin
0 K0(1� �)

�
3T

4
(30)

and u = u� is taken in the form of (25) to stabilize x-sub-
system within finite time T� = (qmin

0 T0)=(2q
max
0 ).

ii) When (x0(0); x(0)) = (0; 0)

u0 = 0

u = 0
: (31)

iii) When (x0(0); x(0)) =2 � [ f(0; 0)g; u0 is given in the form
of (6) withK0 � (x0(0)

1��)=(qmin
0 T (1� �)) and

u = u�(x; u0) (32)

in the form of (25) to stabilize x-subsystem in finite time
T� = (qmin

0 T0)=(2q
max
0 ) with T0 given in (7).

Proof: If (x0(0); x(0)) = (0; 0) and (x0(0); x(0)) =2
� [ f(0; 0)g, Theorem 3 is a direct consequence of Theorem 2
with the controller given in (25). Therefore, we only need to consider
the case when (x0(0); x(0)) 2 �.
When t 2 [0; ts], we have

jx0(t)j = �t; ts � t � 0 (33)

and

kx(t)k � 0kx(0)k 8t 2 [0; ts] (34)

for some constant 0 > 0 because u0 is a constant and the x-subsystem
becomes linear. Then, in light of Theorem 2, it is not hard to get the
finite-time convergence of the closed-loop system within T0 � 3T=4
by taking � as in (6) and K0 as in (30).
The remaining task is to consider the Lyapunov stability. When

t 2 [0; ts]; jx0(t)j = �t � �ts � �kx(0)k according to (33);
when t � ts, we take V0(x0) = x20 with _V0 � 0, which im-
plies that V0 is decreasing with t when t � ts and, therefore,
jx0(t)j � �k(x0(0); x(0))k;8t � 0. Moreover, with (34) and the
Lyapunov stability of x-subsystem under u = u� when t � ts (from
Theorem 2), it is quite obvious to see that there is a constant � > 0
such that

kx(t)k � �kx(ts)k � �0kx(0)k: (35)

Inequality (35) along with inequality jx0(t)j � �k(x0(0); x(0))k se-
cures the Lyapunov stability of the closed-loop system. 4
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Fig. 1. Trajectories of x (solid line), x (dot line), and x (dash line) of system (37).

Remark 3: Different from most existing results about finite time
control, we have to finite-time stabilize the two interconnected subsys-
tems of the considered nonholonomic system. To do this, we finite-time
stabilize one subsystemwithin given settling time at first, and then, with
this control input kept at a nonzero value, we make the other subsystem
finite time convergent.
Remark 4: Taking u = 0 for t 2 [0; ts] in (26) is not necessary. In

fact, many choices can be given (but the selected controllers should not
yield finte time escape). Here, we take u = 0, partially to simplify the
proof of Lyapunov stability of the closed-loop system.

IV. EXAMPLE

A mobile robot with nonholonomic constraints has often been used
as a benchmark example in the literature [5], [8]. In [5], the parking
problem for a mobile robot with parametric uncertainties is given as
follows:

_x = p1u cos 

_y = p1u sin 
_ = p2u0

(36)

where (x; y) denotes the position of the center of mass of the robot,
 is the heading angle of the robot, v is the forward velocity, ! is the
angular velocity of the robot, p1 > 0 and p2 > 0 are uncertain positive

parameters determined by the radius of the rear wheels and the distance
between them. Using the following change of coordinates and feedback
[8]:

x0 =  

x1 = x sin � y cos 

x2 = x cos + y sin 

system (36) was transformed into the following system, of form (1):

_x0 = p2u0
_x1 = p2x2u0
_x2 = p1u� p2x1u0:

(37)

As in [12], pmin

1 = pmin

2 = 1; pmax

1 = pmax

2 = 2, which are known
for us in contructing control laws to make (36) finite-time stable, and
parameters p1 = p2 = 1:5 are unknown. Then, based on Theorem
3, the following controllers can be obtained for a given settling time
T = 8.
With x0(0) = 0; (x1(0); x2(0)) = (�1; 1) 6= (0; 0), the con-

trollers are shown in (38) and (39) at the bottom of the page.
The simulation results in Fig. 1 show that the effectiveness of the

controller.

u0(t) = 1=2

u(t) = 0
if t < 2 (38)

u0(t) = �x
0

u(t) = �4(x
2

� 3:5x1)
9=11 � 4jx1jsgn(x2 � 3:5x1)�

3x u
2

if t � 2 (39)
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V. CONCLUSION

In this note, the problem of finite time stabilization is considered for a
class of uncertain chained systems. Using homogeneity, time-rescaling
and Lyapunov function techniques, a finite-time stabilizing feedback
law is designed in order to guarantee both Lyapunov stability and finite
time convergence in any given settling time for the closed-loop system.
The numerical results in a wheeled mobile robot demonstrate the effec-
tiveness of the proposed control design.
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Is Normalization Necessary for Stable Model Reference
Adaptive Control?

Nikita Barabanov, Romeo Ortega, and Alessandro Astolfi

Abstract—One of the longest standing open questions in adaptive control
concerns the correctness of the stability claim of the un-normalized model
reference scheme proposed by Monopoli in 1974. Although provably cor-
rect solutions to the problem now abound, in particular, it is well known
that adding a normalization to Monopoli’s original scheme ensures global
convergence, it is interesting to know whether this technique-driven modi-
fication is really necessary or only required to complete the stability proof
in the absence of more elaborate arguments. In this note, we construct a
counterexample that provides a definite-unfortunately, negative-answer to
the claim. Instrumental for the establishment of this result is a technical
lemma that shows that, under some conditions on the regressor that may
appear in Monopoli’s scheme, the parameter error freezes as the adapta-
tion gain goes to infinity. On the lighter side, we also prove that Monopoli’s
scheme is semiglobally stable, underscoring the relevance of this important
contribution.

Index Terms—Adaptive control, model reference control, nonlinear con-
trol, stability of adaptive systems.

I. INTRODUCTION

Model reference adaptive control (MRAC) is unquestionably the
most widely studied problem in the adaptive literature that has a very
long history going back to the 1950s and extending to the present time.1

The earliest attempts to solve theMRACproblem followed the classical
path of designing an observer, that had to be made adaptive because of
the unknown plant parameters, and then feeding back the observed state
[10]. A first major breakthrough, essentially due to [3] and [13], was
the introduction of the so-called direct control parameterization which
revealed that the estimation of the plant state could be obviated and
only a “good” estimation of the controller parameters was needed to
achieve the asymptotic model matching objective.
A second fundamental development, also reported in [13], was the

derivation of a suitable error signal, called the augmented error, that
can be used to identify the controller parameters with a quality that,
as time evolves, is nondegrading. (More precisely, the norm of the pa-
rameter estimation error is a nonincreasing function.) Motivated by this
important property Monopoli also presented some arguments intended
to establish global convergence of his scheme, that in the sequel we
will call M-MRAC. A flaw in the proof of M-MRAC was indicated in
[7]. As pointed out in that paper, the authors do not provide a coun-
terexample to the claim of stability but only question the correctness
of the proof, and the problem of deciding whether or not M-MRAC
is globally convergent remained unsolved for 30 years (see [16].) The
purpose of this note is to give a definite negative answer to the ques-
tion. For, we construct a bona-fide analytical counterexample proving
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