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Abstract. This paper extends the well-known concept, Sontag’s input-to-state stability (ISS),
to finite-time control problems. In other words, a new concept, finite-time input-to-state stability
(FTISS), is proposed and then is applied to both the analysis of finite-time stability and the design
of finite-time stabilizing feedback laws of control systems. With finite-time stability, nonsmoothness
has to be considered, and serious technical challenges arise in the design of finite-time controllers and
the stability analysis of the closed-loop system. It is found that FTISS plays an important role as the
conventional ISS in the context of asymptotic stability analysis and smooth feedback stabilization.
Moreover, a robust adaptive controller is proposed to handle nonlinear systems with parametric and
dynamic uncertainties by virtue of FTISS and related arguments.
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1. Introduction. Starting from the early 1980s, stability analysis and control
synthesis of nonlinear systems have become more and more important following var-
ious practical demands. Many fundamental nonlinear control approaches, includ-
ing feedback linearization, sliding mode, backstepping, forwarding, control Lyapunov
functions, input-to-state stability (ISS), passivity-based control, and small-gain tech-
niques, were proposed in the last few decades [5, 6, 14, 16, 17, 23, 24, 25, 27, 29, 30,
32, 35, 39, 41, 42, 46, 48, 49]. Most of these nonlinear analysis and synthesis tools
focus on the design of smooth controllers for various classes of nonlinear systems.

Among the nonlinear control techniques, ISS [40] provides an effective way to
tackle the stabilization of nonlinear systems or robust and adaptive control in the
presence of various uncertainties arising from control engineering applications. In
addition to many results on ISS stabilization design, an ISS-based modular design
was proposed for adaptive control of a class of parametric strict-feedback systems in
[25], where linear parametrization was considered. Moreover, dynamic uncertainties
were also investigated with the help of ISS (see [13, 20, 21, 45]).

On the other hand, nonsmooth (including discontinuous and continuous but not
Lipschitz continuous) control approaches have also drawn increasing attention in non-
linear control system design. There are some benefits in adopting the nonsmooth
control strategy. For example, nonsmooth feedback laws can be used to stabilize sys-
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4396 YIGUANG HONG, ZHONG-PING JIANG, AND GANG FENG

tems which, otherwise, are unstabilizable by smooth feedback. Moreover, under the
action of a nonsmooth control law, a control system can possibly be forced to reach
a desirable target in finite time. This approach was first studied in the literature on
optimal control, and nonsmooth finite-time control design via time-invariant state or
output feedback has become the focal point of several recent studies. Finite-time sta-
bility and finite-time stabilizing feedback design have been investigated for nonlinear
systems or networked systems (see [2, 3, 9, 31, 28, 38, 47]). More recently, finite-time
control for uncertain nonlinear systems has also been studied, and control designs have
been proposed for specific classes of nonlinear systems with parametric or dynamic
uncertainties using a backstepping-like procedure (see [11, 15, 12]). These finite-time
controllers can also yield, in some sense, fast response and high tracking precision
as well as disturbance-rejection properties because of their nonsmoothness [48, 7, 1].
Despite its potential application to practical problems, the study of finite-time sta-
bilization is still quite underdeveloped, partially because of the lack of effective and
constructive tools in nonsmooth analysis and synthesis.

The objective of this paper is to develop novel design tools for nonlinear con-
trol systems via the cross-fertilization of two fields. More specifically, our research
is motivated by the fact that ISS has found powerful applications in various control
problems and particularly has inspired the development of the nonlinear ISS stabi-
lization and small-gain theorems proposed in [17, 44, 18, 19]. We intend to develop
a framework for the nonsmooth finite-time control analysis and synthesis based on
the finite-time variant of ISS, which we term as finite-time ISS (FTISS). Charac-
terizations of FTISS are presented, and its combination with nonsmooth feedback
is proposed to yield a new design tool for finite-time stabilization of nonlinear sys-
tems. The main difficulties in the analysis of FTISS and the FTISS-based design are
its inherent nonsmoothness (referring to Remark 8). Furthermore, based on FTISS,
a robust adaptive controller is proposed to deal with a class of uncertain nonlinear
systems. In fact, the systematic application of FTISS alleviates the mathematical
technicality and complexity associated with nonsmooth feedback approaches. It is
our firm belief that FTISS will play a role in finite-time control, as important as what
conventional ISS has played in asymptotic stability analysis and smooth feedback
stabilization.

The organization of this paper is as follows. First, the concepts and preliminaries
are introduced in section 2. Then in section 3, results on FTISS are presented, while
issues on finite-time input-to-output stability (FTIOS) are addressed in section 4.
Following that, finite-time feedback design via FTISS is reported, and adaptive finite-
time control is given for a class of nonlinear systems with parametric and dynamic
uncertainties in section 5. Finally, concluding remarks are given in section 6.

By convention, | · | denotes the absolute value; ||x|| denotes the Euclidean norm
of vector x; and ||x||∞ = ess. supτ≥0 ||x(τ)||. Consider two functions χ(·) and χ̄(·):
χ̄(x) = o(χ(x)) means lim||x||→0 χ̄(x)/χ(x) = 0; χ̄(x) ∼ χ(x) means c1χ(x) ≤ χ̄(x) ≤
c2χ(x) (when ||x|| is sufficiently small) for some positive constants c1 and c2; and
χ̄(x) = O(χ(x)) means |χ̄(x)| ≤ c|χ(x)| (when ||x|| is sufficiently small) for some
constant c > 0. Id denotes the identity function. R+ = [0,+∞).

2. Concepts and preliminaries. The investigation of finite-time stability of
nonlinear systems is relatively challenging because of nonsmoothness in the system
vector fields. Hence, some generalizations such as the Dini derivative have been given
in this section to encompass the cases related to less smooth functions.
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FINITE-TIME ISS AND FINITE-TIME CONTROL DESIGN 4397

Let a and b (> a) be two real numbers, and consider a function φ : (a, b) → R.
The upper Dini derivative of φ at t ∈ (a, b) is defined as

D+φ(t) = lim sup
s→0+

φ(t + s)− φ(t)

s
.

It is known that when φ is continuous, φ is nonincreasing on (a, b) if and only if
D+φ(t) ≤ 0 for any t ∈ (a, b) (see [36, Theorem 2.1, Appendix I] or [22] for details).

Consider the system

(1) ẋ = f(t, x), f(t, 0) = 0, x ∈ Rn, t ∈ R,

where f is continuous with respect to (t, x). It is assumed that x = 0 is a unique
solution (in forward time). The continuity guarantees the existence of the solution,
which may not be unique. Denote the S(t, t0, x0) (or S for simplicity) as the set of
all the solutions with initial condition x(t0) = x0 in forward time (i.e., t ≥ t0), and
when there is no confusion, any solution in S is denoted simply by x(t).

The following is a basic concept about finite-time stability (referring to [2, 3]).
Definition 1. The equilibrium x = 0 of the system (1) is said to be (locally)

finite-time stable if it is Lyapunov stable and (locally) finite-time convergent in a
neighborhood U . By “finite-time convergence,” we mean that for any initial conditions
x(t0) = x0 ∈ U with given t0, there is a settling-time function

T (t0, x0) = inf

{
T̂ ≥ t0 : lim

t→T̂
x(t) = 0; x(t) ≡ 0 ∀t ≥ T̂

}

which is continuous with respect to (t0, x0) and T (t0, 0) = 0 for every solution x(t) ∈ S
of system (1). When U = Rn, the origin is a globally finite-time stable equilibrium.

Moreover, we consider a disturbed system, regarded as a special case of (1),

(2) ẋ(t) = g(x(t), d(t)), g(0, d) = 0, x ∈ Rn, d ∈ Rm,

where g(x, d) is continuous in (x, d), S denotes the solution set of system (2) with
initial condition x(t0) = x0, and “disturbance” input d(t) satisfies

(3) d(t) ∈ M := {all measurable functions from R to [−1, 1]m}.
Definition 2. System (2) is uniformly globally finite-time stable (UGFTS) if it

is uniformly stable (that is, for each ε > 0 and for some K∞-function δ(ε), ||x(t)|| ≤
ε (∀x(t) ∈ S) holds for any given d ∈ M, ||x0|| ≤ δ, and t ≥ t0) and uniformly
finite-time convergent (that is, system (2) is finite-time convergent for any given d(t),
and, for any initial condition x0, there is a finite positive number T̄ , depending on
x0, such that ||x(t)|| = 0 ∀d ∈ M when t ≥ T̄ ). Moreover, system (2) is strongly
uniformly globally finite-time stable (SUGFTS) if it is UGFTS and the settling time
Td is continuous with respect to x0 (for any initial condition x0) uniformly in d ∈ M.

Remark 1. If system (1) is time invariant, we can always take t0 = 0. A time-
invariant finite-time convergent system must be non-Lipschitz due to the nonunique-
ness in the backward time at the origin although its settling time T is a continuous
function of the initial state x0 (see [2] for more details). Note that although system
(2) takes a time-varying form, we can still always take t0 = 0 as we did for time-
invariant systems. In fact, we consider two cases: x(t10) = x0 and x(t20) = x0. Clearly,
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4398 YIGUANG HONG, ZHONG-PING JIANG, AND GANG FENG

system (2) with x(t10) = x0 and any given d1(t) ∈ M is equivalent to system (2) with
x(t20) = x0 and d2(t) = d1(t+ t10 − t20) ∈ M.

In this paper, we mainly consider time-invariant systems with input variables.
Based on the discussion given in Remark 1, we will take the initial moment t0 = 0.

Then we introduce new concepts to combine finite-time control with ISS ideas.
Consider a system

(4) ż = f(z, v), f(0, 0) = 0, z ∈ Rn, v ∈ Rm,

where f is continuous with respect to (z, v) and the input, v : R+ → Rm, is measurable
and locally essentially bounded (that is, bounded except a set of measure 0 [37]).

A function γ : R+ → R+ is said to be a K-function if it is strictly increasing and
continuous with γ(0) = 0, and it is a K∞-function if it is a K-function and γ(s) → ∞
as s → ∞. To study finite-time issues, we further consider generalized functions. A
function ϕ : R+ → R+ is said to be a generalized K-function if it is continuous with
ϕ(0) = 0 and satisfies {

ϕ(s1) > ϕ(s2) if ϕ(s1) > 0, s1 > s2,

ϕ(s1) = ϕ(s2) if ϕ(s1) = 0, s1 > s2.

Note that a (conventional) K-function is a generalized K-function. A function β :
R+×R+ → R+ is a generalized KL-function (GKL-function) if, for each fixed t ≥ 0,
the function s 
→ β(s, t) is a generalized K-function, and for each fixed s ≥ 0, the
function t 
→ β(s, t) is continuous and decreases to zero as t→ T for some T ≤ ∞.

Definition 3. System (4) is said to be locally FTISS (with v as the input) if
there exist some neighborhoods U of 0 ∈ Rn and Uv of 0 ∈ Rm such that, for initial
state z(0) = z0 ∈ U and measurable and locally essentially bounded input v ∈ Uv, each
solution z(t) ∈ S is defined for t ≥ 0 and satisfies

(5) ||z(t)|| ≤ β(||z0||, t) + γ(||v||∞),

where γ is a K-function and β is a GKL-function with β(r, t) ≡ 0 when t ≥ T̂ (r)
with T̂ (r) continuous with respect to r and T̂ (0) = 0. When U = Rn and Uv = Rm,
the system is said to be (globally) FTISS.

Obviously, FTISS implies ISS. Note that the main difference between ISS and
FTISS is that β is a GKL-function. In what follows, we mainly consider global
FTISS, and we write “finite-time input-to-state stability” instead of “global finite-
time input-to-state stability” if there is no confusion. In fact, it is rather easy to
extend our results to cover the local case.

Remark 2. It should be mentioned that there is an equivalent definition of FTISS.
In fact, it is mathematically equivalent to replace (5) by

(6) ||z(t)|| ≤ max{β̄(||z(0)||, t), γ̄(||v||∞)},
where β̄ is a GKL-function and γ is a K-function since (5) implies (6) by taking
β̄ = 2β and γ̄ = 2β.

Remark 3. When v ≡ 0, system (4) with z(0) = z0 is finite-time stable with
continuous settling-time function denoted by T (z0) (see [2]). Clearly, the existence
of a function T (z0) continuous in z0 is equivalent to the existence of a function T̂ (r)
defined in Definition 3. In fact, with taking r = ||z0||, the existence of T̂ (r) leads
to that of T (z0), and conversely, the conclusion also holds by noting that T (z0) is
continuous and {z0 ∈ Rn : ||z0|| ≤ r} is a compact set.
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FINITE-TIME ISS AND FINITE-TIME CONTROL DESIGN 4399

Remark 4. If a system is FTISS with v as the input, it is FTISS with input w =
χ(v) for a continuous function χ with χ(0) = 0. Moreover, given a homeomorphism
χ, a system is FTISS with v as the input if and only if it is so with w as the input.

Example 1. Consider the system ż = −z1/3 − z3 + v2. Take

β(s, t) =

⎧⎨
⎩
(
s

2
3 − 1

3 t
) 3

2

if 0 ≤ t ≤ T = 3s
2
3 ,

0, otherwise,
γ(s) = 2s2,

where T is continuous in s. Therefore, the system is FTISS with input v(t).
Example 2. FTISS implies the finite-time stability when v = 0, but the converse

may not be true, even in the bounded-input-bounded-state (BIBS) case. Consider

ż = −(1 + sin v)z
1
3 ,

which is BIBS and finite-time stable when v = 0. However, taking v = 3π/2 makes
the system not finite-time stable; therefore, this system is not FTISS.

Remark 5. As a natural extension of FTISS, system (4) is said to be finite-time
input-to-state practically stable (FTISpS) with v as the input if, for any initial state
z(0) = z0 and bounded input v(t),

(7) ||z(t)|| ≤ β(||z0||, t) + γ(||v||∞) + c0, c0 ≥ 0,

where γ is a K-function and β is a GKL-function with β(r, τ) ≡ 0 when τ ≥ T with
T continuous with respect to r. When constant c0 = 0, FTISpS becomes FTISS.
Clearly, FTISpS implies input-to-state practical stability (ISpS) [17]. Conversely, if

system (4) is ISpS, then, according to [17], ||z(t)|| ≤ β̂(||z0||, t) + γ(||v||∞) + ĉ0 with

a constant ĉ0 ≥ 0, a K-function γ, and a KL-function β̂. Since β̂ is continuous, for
any ε > 0, there is T ≥ 0, depending on z0 and ε, such that β̂(||z0||, t) ≤ ε when

t ≥ T . Therefore, there is a GKL-function β with β̂(||z0||, t) ≤ β(||z0||, t) + ε and
β(||z0||, t) = 0 when t ≥ T such that (7) holds with c0 = ĉ0 + ε. Thus, FTISpS is
equivalent to ISpS. By using the same reasoning, an ISS system is always FTISpS.

For subsequent use, we introduce some useful inequalities.
Lemma 1 (see [17]). For any K-function γ, any K∞-function ρ such that ρ− Id

is a K∞ function, and any nonnegative real numbers a and b, we have

(8) γ(a+ b) ≤ γ(ρ(a)) + γ(ρ ◦ (ρ− Id)−1(b)),

where ◦ denotes the composition of the functions.
Lemma 2. For any continuous function g(x, z), there are continuous nonnegative

functions g1(x) and g2(z) such that

(9) |g(x, z)| ≤ g1(x) + g2(z).

Moreover, both functions g1(x) and g2(z) vanish at zero when g(0, 0) = 0.
Note that inequality (9) has been widely used in the research work of others (see,

for instance, [34, Equations (22) and (14)]).
Lemma 3 (Young’s inequality [8]). Let φ(x) be a strictly increasing continuous

function. Then

(10) ab ≤
∫ a

0

φ(x) dx +

∫ b

0

φ−1(x)dx,
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where φ−1 is the inverse function of φ. Particularly,

(11) ab ≤ a1+c

1 + c
+
c b1+

1
c

1 + c
, a ≥ 0, b ≥ 0, c > 0.

Lemma 4 (Jensen’s inequality [8]). With bi ≥ 0 (1 ≤ i ≤ n),

(12)

(
n∑

i=1

bc2i

) 1
c2

≤
(

n∑
i=1

bc1i

) 1
c1

, 0 < c1 < c2.

3. FTISS and its properties. In this section, we will discuss the stability
properties related to FTISS.

Let V (z) : R×Rn → R be a continuous function. Thus,

D+V (z(t))|(4) = lim sup
s→0+

V (z(t+ s))− V (z(t))

s
,

where z(t) ∈ S is a solution of system (4) with any given v(t). For simplicity, denote

(13) V̇ (z(t))|(4) := D+V (z(t))|(4).
A continuous function V (z) is called an ISS-Lyapunov function for system (4) if

there exist K∞-functions φ1 and φ2 and K-functions φ3 and φ4 such that
(A1)

(14) φ1(||z||) ≤ V (z) ≤ φ2(||z||) ∀z ∈ Rn.

(A2) For any solution z(t) and input v(t) of system (4), it holds that

(15) ||z(t)|| ≥ φ4(||v(t)||) =⇒ V̇ (z(t))|(4) ≤ −φ3(||z(t)||) ∀t ≥ 0.

Remark 6. If V (z) is C1 (i.e., continuously differentiable), as shown in [43], (A2)
holds if and only if there exist K∞-functions φ5 and φ6 such that, for any input v(t)
and solution z(t) with t ≥ 0,

(16) V̇ (z(t))|(4) ≤ −φ5(||z(t)||) + φ6(||v(t)||).
Definition 4. A continuous function V (z) is called an FTISS-Lyapunov function

for system (4) if it is an ISS-Lyapunov function with conditions (A1) and (A2) and
φ3(||z||) ∼ V (z)a for some positive constant a < 1.

To study FTISS and its related properties, we introduce the following concepts.
Definition 5. System (4) is said to be weakly robustly finite-time stable if there

is a smooth function ϕ satisfying ρ̄(||z||) ≤ ϕ(z) ≤ ρ̂(||z||) for some K∞-functions ρ̄
and ρ̂ so that the system

(17) ż(t) = f(z(t), d(t)ϕ(z(t))) = g(z(t), d(t)), g(0, d(t)) = 0,

where g is continuous with respect to (z, d) and is UGFTS for any d ∈ M given in (3).
System (4) is said to be strongly finite-time stable if it is weakly robustly finite-time
stable and (17) is SUGFTS.

Although weakly robust finite-time stability of (4) implies UGFTS of (17), it
cannot guarantee that the settling time Td(x) is continuous with respect to x uniformly
in d(t) ∈ M, noting that M is not a compact set (referring to Definition 2).
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Definition 6. System (4) is said to be robustly finite-time stable if there are a
K∞-function ρ and a GKL-function β such that, for every solution z(t) of system
(4) with any input function v(t) satisfying ||v(t)|| ≤ ρ(||z(t)||), it holds that

(18) ||z(t)|| ≤ β(||z(0)||, t) ∀t ≥ 0

with β(r, t) ≡ 0 when t ≥ T (r) = inf{T̃ : β(r, T̃ ) = 0 ∀t ≥ T̂ , ||v(t)|| ≤ ρ(||z(t)||)}.
Then we have the first main result of this section.
Theorem 1. The following statements hold:
(a) System (4) is FTISS with v as the input if it has an FTISS-Lyapunov function;
(b) The FTISS of system (4) implies the weakly robust finite-time stability.
Proof. (a): Assume system (4) admits a FTISS-Lyapunov function V (z) with

(14) and (15) and z(t) ∈ S is a solution with initial condition z0 and input function
v(t). Then V = {z : V (z) ≤ φ2(φ4(||v||∞))} is an invariant set (which was shown in
Lemma 2.14 in [43]). Let t∗ := inf{t ≥ 0 : z(t) ∈ V} ≤ ∞, which implies

(19) ||z(t)|| ≤ γ(||v||∞), γ = φ−1
1 ◦ φ2 ◦ φ4 ∀t > t∗.

When t ≤ t∗, z(t) ∈ V , and therefore, ||z(t)|| ≥ φ4(||v(t)||). According to Definition 4,
||z(t)|| ≥ φ4(||v(t)||) implies V̇ (z(t))|(4) ≤ −φ3(||z(t)||) for any solution z(t) with
input v(t). Because φ3(||z||) ∼ V (z)a for a positive constant a < 1, it is not hard to
obtain

(20) ||z(t)|| ≤ β(||z0||, t) ∀t ≤ t∗

for a GKL-function β with β(r, t) ≡ 0 ∀t ≥ T (with T continuous with respect to r).
Combining (19) and (20) gives

||z(t)|| ≤ β(||z0||, t) + γ(||v||∞) ∀t ≥ 0,

and then the conclusion follows.
(b): From Remark 2, the FTISS of system (4) holds if and only if there exist a

GKL-function β̄ and a K-function γ such that ||z(t)|| ≤ max{β̄(||z0||, t), γ(||v||∞)}
with β̄(r, t) ≡ 0 when t ≥ T̂ with T̂ (r) continuous in r.

It is not hard to find a GKL-function β(r, t) ≥ β̄(r, t) with β(||z0||, t) ≡ 0 (when
t ≥ T̂ ) and β(r/2, t) ≡ 0 when t ≥ T/2 if β(r, t) ≡ 0 when t ≥ T for any r ≥ 0, T ≥ 0
(so the function t 
→ β(r, t) may be concave). Obviously,

(21) ||z(t)|| ≤ max{β(||z0||, t), γ(||v||∞)}.

According to the analysis for ISS given in Lemma 2.12 of [43], γ in (21) can be
assumed to be aK∞-function. Moreover, we have a continuous (or smooth everywhere
except possibly at the origin) function ϕ and a K∞-function ϕ̄ such that

ϕ̄(||z||) ≤ ϕ(z) ≤ γ−1

(
β−1
0 (||z||)

4

)
∀z ∈ Rn

with β0(r) = β(r, 0) when β(r, 0) = 0.
To obtain the conclusion, we need to prove the uniform finite-time stability of the

following system in the form of (17)

(22) ż(t) = f(z(t), d(t)ϕ(z(t))) = g(z(t), d(t)) ∀d ∈ M.
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Consider the uniform finite-time convergence at first. Let ζ(t, z0, d) = z(t)|v(t)=d(t)ϕ(z)

∈ S denote any solution of (22) with z(0) = z0 and “disturbance” d ∈ M.
Still invoking the proof of Lemma 2.12 of [43], we similarly obtain that

(23) γ
(||dϕ(ζ(t, z0, d))||) ≤ γ

(
ϕ(ζ(t, z0, d))

) ≤ ||z0||
2

, t ≥ 0

and, moreover, that for any r > 0, there is a Tr ≥ 0 so that β(r, t) ≤ r
2 ∀t ≥ Tr, which

implies

(24) ||ζ(t, z0, d)|| ≤ r

2
, ||z0|| ≤ r ∀t ≥ Tr and ∀d ∈ M

due to (21).
Then there is a sequence of time instants 0 = T0 ≤ T1 . . . Ti ≤ Ti+1 . . . , i =

1, 2, . . . such that

||ζ(t, z0, d)|| = ||ζ(t−Ti−1, z(Ti−1), d
)|| ≤ r

2i
, ||z(Ti−1)|| ≤ r

2i−1
, t ≥ Ti =

i−1∑
j=0

Tr/2j ,

where z(Ti−1) is a shorthand for ζ(Ti−1, z0, d) with satisfying limi→∞ Ti ≤ T̄ := 2T̂
because

||ζ(τ, z(Ti−1), d
)|| ≤ max

{
β(||z(Ti−1)||, τ), ||z(Ti−1)||

2

}

by (21) and (23), and β(||z(Ti−1)||, τ) with β defined in (21) vanishes when τ ≥ T̂ /2i−1

(and then we can take Tr/2i ≤ T̂ /2i, i = 1, 2, . . . , which implies limt→∞ Ti ≤ 2T̂ ).
This shows that the origin of system (22) is uniformly finite-time convergent.

In addition, (21) and (24) imply ||ζ(t, z0, d)|| ≤ β(||z0||, 0) for all t ≥ 0, z0 ∈ Rn,
and d ∈ M, which yields the uniform stability. Thus, system (22) is weakly robustly
finite-time stable according to Definition 5.

Remark 7. It is an interesting topic for future research to know whether the
converse statement of (a) in Theorem 1 holds, that is, FTISS implies the existence
of a (continuous) FTISS-Lyapunov function. However, an FTISS-Lyapunov function
does exist under the condition of strong finite-time stability (see Theorem 2).

When system (4) is strongly finite-time stable, system (17) is SUGFTS. Then we
denote Td(z̄) as the (continuous) settling-time function for system (17) with initial
state z̄ and a given d ∈ M (recalling Definition 1 and Remark 1). Furthermore, from
Definition 2, there is a finite number T̄ (z̄) such that Td(z̄) < T̄ ∀d ∈ M. Therefore,
we can define

(25) T∗(z̄) = sup
d∈M

Td(z̄) ≤ T̄

for system (17) with initial state z̄ ∈ Rn. Obviously, T∗(0) = 0, and there are

K∞-functions φ̃1 (which can be taken with φ̃1 ≤ inf ||z||=r T∗(z)) and φ̃2 (with φ̃2 ≥
sup||z||=r T∗(z)) such that φ̃1(||z||) ≤ T∗(z) ≤ φ̃2(||z||) for any z ∈ Rn.

Furthermore, we have the following lemma.
Lemma 5. If system (17) is SUGFTS, T∗(z̄) is continuous with respect to z̄.
Proof. To prove that T∗(z̄) is continuous at z̄, we need to prove that, for any

ε̄ > 0, there is δ > 0 such that |T∗(z)− T∗(z̄)| ≤ ε̄ when ||z − z̄|| ≤ δ.
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Here are two cases: (i) T∗(z̄)− T∗(z) ≥ 0: Obviously,

(26) T∗(z̄)− T∗(z) = T∗(z̄)− Td̄(z̄) + Td̄(z̄)− Td̄(z) + Td̄(z)− T∗(z)

for any d̄ ∈ M, which implies

0 ≤ T∗(z̄)− T∗(z) ≤ T∗(z̄)− Td̄(z̄) + Td̄(z̄)− Td̄(z)

because Td̄(z)− T∗(z) ≤ 0 for any d̄ ∈ M.
According to (25), there is d̄ ∈ M such that T∗(z̄) − Td̄(z̄) < ε̄/2. Because

Td̄ is continuous by Definition 1, then there is δ0 > 0 such that ||z − z̄|| ≤ δ0 and
|Td̄(z)− Td̄(z̄)| ≤ ε̄/2. It follows that

(27) 0 ≤ T∗(z̄)− T∗(z) ≤ ε̄.

(ii) T∗(z)− T∗(z̄) > 0: Similarly, we have

(28) T∗(z)− T∗(z̄) = T∗(z)− Td(z) + Td(z)− Td(z̄) + Td(z̄)− T∗(z̄)

which holds for any d ∈ M. Moreover, for each z, there is some dz ∈ M such that
T∗(z)− Tdz(z) < ε̄/2. Based on (25) and (28), we have

(29) 0 < T∗(z)− T∗(z̄) ≤ ε̄

2
+ Tdz(z)− Tdz(z̄).

Moreover, since Td(z) is continuous (with respect to z) uniformly in d ∈ M, there is
δ′ > 0 such that ||z − z̄|| ≤ δ′ and |Tdz(z)− Tdz(z̄)| ≤ ε̄/2, which leads to

(30) 0 < T∗(z)− T∗(z̄) ≤ ε̄.

Taking δ = min{δ0, δ′} yields |T∗(z)− T∗(z̄)| ≤ ε̄ by combining (27) and (30).
Now, we are ready to prove the second main result of this section.
Theorem 2. The following statements hold:
(i) The strong finite-time stability of system (4) implies that it admits an FTISS-

Lyapunov function.
(ii) The existence of an FTISS-Lyapunov function implies the robust finite-time

stability.
(iii) The robust finite-time stability of system (4) implies the weakly robust finite-

time stability.
Proof. (i): According to Definition 5, we need to consider only the SUGFTS

of system (17). Denote any solution z(t) ∈ S for any given d ∈ M. Note that
Td(z(τ)) = t− τ + Td(z(t)) (referring to [2]), and then

T∗(z(τ)) = sup
∀d(s), s∈[τ,∞)

Td(z(τ)) ≥ t− τ + sup
∀d(s), s∈[τ+t,∞)

Td(z(t)) = t− τ + T∗(z(t)).

Therefore,

(31) Ṫ∗|(17) := D+T∗|(17) = lim
t→τ+

T∗(z(t))− T∗(z(τ))
t− τ

≤ lim
t→τ+

τ − t

t− τ
= −1.

By Lemma 5, take a Lyapunov function candidate V (z(t)) = (T∗(z(t)))1/(1−a)

with 0 < a < 1, which is continuous and positive definite with V (0) = 0. Then

(32) V̇ (z(t))|(17) = T
a

1−a∗ Ṫ∗
1− a

|(17) ≤ − 1

1− a
T

a
1−a∗ = −cV (z(t))a, c =

1

1− a
.

D
ow

nl
oa

de
d 

10
/1

7/
16

 to
 1

30
.5

6.
21

1.
97

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

4404 YIGUANG HONG, ZHONG-PING JIANG, AND GANG FENG

From Definition 4, the conclusion of (i) follows readily by setting φ3 = cφa1 and
φ4 = ρ̂−1.

(ii): Assume V (z) is an FTISS-Lyapunov function as given in Definition 4. Then
there is a K∞-function ρ (larger than or equal to φ−1

4 ) such that V̇ (z(t)) ≤ −φ3(z(t))
when φ3(z) ∼ V (z)a (for 0 < a < 1) and ||v(t)|| ≤ ρ(||z(t)||) (for any solution z(t)
of system (4)). Clearly, there is a settling time T (z0) ≥ 0 such that V (z(t)) ≡ 0 (or
equivalently z(t) ≡ 0) when t ≥ T . It is not hard to see that there is a GKL-function
β(r, t) such that V (z(t)) ≤ β(||z0||, t) for any z(t) ∈ S and that β(r, t) ≡ 0 when
t ≥ T̂ (r) = sup{T (z0), ||z0|| = r} (referring to Remark 3), which implies the robust
finite-time stability.

(iii): For any K∞-function ρ, there exist a smooth function ϕ : Rn → R+ and a
K∞-function ρ̄ such that ρ̄(||z||) ≤ ϕ(z) ≤ ρ(||z||). Note that d(t)ϕ(z) with d ∈ M
is just a particular type of the feedback bounded by ρ̂ = ρ. Then it is easy to see
system (17) is UGFTS, and the conclusion follows by Definition 5.

It was shown in [2] that finite-time stability of ż = f(z) implies there is a continu-
ous Lyapunov function V (z) such that V̇ (z(t)) ≤ −cV (z(t))a, c > 0, 0 < a < 1. Part
(i) of Theorem 2 can be viewed as an extension by considering a family of nonsmooth
systems with disturbance d(t) ∈ M. The analysis becomes much harder partially
because M is not compact. If there is no d(t), [2] also showed that T (z) is continuous
if and only if T (0) is continuous. However, such a statement does not hold in the
presence of d(t).

Example 3. Revisiting Example 1, it is not hard to verify that V (z) = z2 is a
smooth finite-time ISS-Lyapunov function for system ż = −z−1/3 − z3 + v2 because
V̇ (z(t)) ≤ −V (z(t))

2
3 /2 if |z(t)| ≥ |v(t)|2.

4. Finite-time input-to-output stability and small-gain theorem. In this
section, we consider finite-time input-to-output stability (FTIOS) and the related
small-gain results. In fact, the “finite-time” discussion can be extended to systems
with outputs. Consider the system

(33)

{
ẋ = f(x, u), x ∈ Rn, x(0) = x0,

y = h(x, u), y ∈ Rl, u ∈ Rm,

where n, l, and m are positive integers, y denotes the output variables, and f and h
are continuous with h(0, 0) = 0 and f(0, 0) = 0.

Definition 7. System (33) is said to be FTIOS if there exist a GKL-function
β and a K-function γ such that, for any initial condition x(0) = x0, each measurable
and locally essentially bounded input u(t) on [0,∞), and each t in the right maximal
interval of the definition of the corresponding solution of system (33), we have

(34) ||y(t)|| ≤ β(||x0||, t) + γ(||u||∞),

where β(r, t) ≡ 0 when t ≥ T (r) with T (0) = 0 and T continuous with respect to r.
Definition 8. System (33) is said to be finite-time strongly detectable (FTSD)

if there exist a GKL-function β0 and a K-function γ0 such that, for each measurable
and locally essentially bounded input u(t) defined on [0, Tu) with Tu ≤ ∞, the solution
x(t) of system (33) right maximally defined on [0, Tx) (Tx ≤ Tu) satisfies

(35) ||x(t)|| ≤ β0(||x0||, t) + γ0(||(uT , yT )T ||∞) ∀t ∈ [0, Tx),

where β0(r, t) ≡ 0 when t ≥ T (r) with T (0) = 0 and T continuous with respect to r.
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Next we show a relationship between FTISS and FTIOS for system (33).
Theorem 3. System (33) is FTISS with u as the input if and only if it is FTIOS

and FTSD.
Proof. The “only if” part is as follows: Due to FTISS of system (33),

||x(t)|| ≤ β(||x0||, t) + γ(||u||∞)

with β(r, t) = 0, t ≥ T for some T (r) ≥ 0. Then FTSD can be easily obtained.
Moreover, it is not hard to see that there are K-functions γx and γu such that

||h(x, u)|| ≤ γx(||x||) + γu(||u||) by Lemma 1. With ||x(t)|| ≤ max{2β(||x0||, t),
2γ(||u||∞)} (see Remark 2), FTIOS follows readily because

||y(t)|| ≤ γx ◦ 2β(||x0||, t) + (γx ◦ 2γ + γu)(||u||∞).

The “if” part is as follows: There are two GKL-functions β and β0 and two
K-functions γ and γ0 such that, for t ≥ t∗ ≥ 0,

||y(t)|| ≤ β(||x(t∗)||, t− t∗) + γ(||u||∞),(36)

||x(t)|| ≤ β0(||x(t∗)||, t− t∗) + γ0(||(u, y)||∞),(37)

where β(r, t) = 0 for t ≥ T (r) and β0(r, t) = 0 for t ≥ T ′(r) with T and T ′ continuous
with respect to r.

By taking t∗ = t/2 in (37) and plugging (36) with t∗ = 0,

(38) ||x(t)|| ≤ β0

(
||x
(
t

2

)
||, t

2

)
+ γ0

(
||u||∞ + β

(
||x(0)||, t

2

)
+ γ(||u||∞)

)
.

By Lemma 1 for any K∞-function ρ with ρ− Id being a K∞-function, it follows that

γ0
(
||u||∞ + β

(
||x(0)||, t

2

)
+ γ(||u||∞)

)
≤ γ0

(
ρ

(
β(||x(0)||, t

2

))
+ γ̄(||u||∞),

where γ̄ = γ0
(
ρ ◦ (ρ− Id)−1 ◦ (Id+ γ)

)
is a K∞-function.

Moreover,∥∥∥∥x
(
t

2

)∥∥∥∥ ≤ β0

(
||x(0)||, t

2

)
+ γ0(||u||∞ + β(||x(0)||, 0) + γ(||u||∞))

≤ β0

(
||x(0)||, t

2

)
+ γ0(ρ(β(||x(0)||, 0))) + γ̄(||u||∞).

Again according to Lemma 1,
(39)

β0

(∥∥∥∥x
(
t

2

)∥∥∥∥ , t2
)

≤ β0

(
ρ

(
β0

(
||x(0)||, t

2

))
+ γ0(ρ(β(||x(0)||, 0))), t

2

)
+ γ̂(||u||∞),

where

γ̂(||u||∞) = β0
(
ρ ◦ (ρ− Id)−1 ◦ γ̄(||u||∞), 0

) ≥ β0

(
ρ ◦ (ρ− Id)−1 ◦ γ̄(||u||∞),

t

2

)
.

Therefore, by some manipulations after substituting (39) into (38),

(40) ||x(t)|| ≤ β∗(||x(0)||, t) + γ∗(||u||∞)
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with γ∗ = γ̄ + γ̂ and a GKL-function

β∗(||x(0)||, t) = β0

(
ρ

(
β0

(
||x(0)||, t

2

))
+ γ0(ρ(β(||x(0)||, 0))), t

2

)
+ γ0 (ρ(β(||x(0)||, t))) ,

where β∗(r, t) = 0 when t ≥ T 0 for some constant T 0, depending only on r, due to
the finite-time convergence properties of β0 and β. Thus, system (33) is FTISS.

Based on the FTIOS, we show a finite-time small-gain result. Consider intercon-
nected systems in the following form:

ẋ = f(x, yz, ux), yx = hx(x, yz , ux),(41)

ż = g(z, yx, uz), yz = hz(z, yx, uz),(42)

where x ∈ Rnx ; z ∈ Rnz ; ux ∈ Rn1 ; uz ∈ Rn2 ; yx ∈ Rmx ; yz ∈ Rmz ; f , g, hx, and hz
are continuous, and (yx, yz) is the unique solution of equations

yx = hx(x, hz(z, yx, uz), ux), yz = hz(z, hx(x, yz , ux), uz).

Theorem 4. Suppose systems (41) and (42) are FTIOS with (yz , ux) and (yx, uz)
as input and yx and yz as output, respectively, satisfying:

(43)

{
||yx(t)|| ≤ β1(||x0||, t) + γy1 (||yz ||∞) + γu1 (||ux||∞),

||yz(t)|| ≤ β2(||z0||, t) + γy2 (||yx||∞) + γu2 (||uz||∞)

for suitable functions βi, γ
y
i , γ

u
i , i = 1, 2. Also suppose (41) and (42) are FTSD. If

there are two K∞-functions ρi, i = 1, 2 satisfying

(44) (Id+ ρ2) ◦ γy2 ◦ (Id+ ρ1) ◦ γy1 (s) ≤ s, s ≥ 0

(or equivalently, (Id + ρ1) ◦ γy1 ◦ (Id + ρ2) ◦ γy2 (s) ≤ s), then system (41)–(42) with
u = (ux, uz) as the input and y = (yx, yz) as the output is FTIOS.

Proof. It follows directly from the constructive proof given in [17] (Proof of

Theorem 2.1). The KL-functions β̂i and βi (i = 1, 2) in the proof of Theorem 2.1
of [17] can be constructed to become GKL-functions, which leads to our conclu-
sion.

As explained in [18, 41, 44], the small-gain condition (44) can be simplified as
γy2 ◦ γy1 (s) < s ∀s > 0 whenever we use “max” instead of “+” in the definitions of
FTIOS and FTISS (see Remark 2, for example).

Corollary 1. Suppose the z-subsystem of the following system

(45)

{
ẋ = f(x, v),

ż = g(x, z, v),

where f and g are continuous, is FTISS with (x, v) as input and the x-subsystem of
system (45) is FTISS with input v. Then system (45) is FTISS with input v.

The corollary can be obtained from Theorem 4 by taking yx = x, yz = z, and
ux = uz = v. In this case, γy1 ≡ 0, and thus, the small-gain condition (44) holds.

5. Finite-time input-to-state stabilization. In this section, we will consider
the (adaptive) finite-time control design for the systems with or without uncertainties
by virtue of FTISS, FTIOS, and their properties.
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5.1. Finite-time stabilization. For practical Lyapunov-based design, we usu-
ally construct a Lipschitz continuous (or even smooth) Lyapunov function for a finite-
time stable system, although we are not sure if a finite-time stable system admits a
smooth Lyapunov function (see [2]). However, the assumption of the existence of a
Lipschitz continuous (or C1) Lyapunov function is not very restrictive in the finite-
time control design because we can try to obtain such Lyapunov functions using
“control” input during feedback design [2, 11, 15]. In fact, most of the existing results
on finite-time stabilization reveal the existence of smooth Lyapunov function. Here,
we consider a C1 Lyapunov function in the study of FTISS-based control design. In
this case, (15) and (16) are equivalent by Remark 6.

We first give a lemma for the following analysis.
Lemma 6. Suppose there are a C1 Lyapunov function V (z) =

∑n
i=1 Vi(z

0
i ) with

z0i = (0, . . . , 0, zi, 0, . . . , 0)
T , a positive definite function ϕ1, and a K-function ϕ2 such

that

(46) V̇ (z(t))|(4) ≤ −ϕ1(z(t)) + ϕ2(||v(t)||),
where ϕ1(z) ∼

∑n
i=1 c̄iVi(z

0
i )

ai , c̄i > 0, and 0 < ai < 1 for i = 1, . . . , n. Then system
(4) is FTISS with v as the input.

Proof. We give the proof only for n = 2 because the general case can be treated
analogously. When ϕ1(z) ≥ 2ϕ2(||v||),

(47) V̇ (z(t)) ≤ −1

2
ϕ1(z(t)),

which makes system (4) asymptotically stable. In some neighborhood of z = 0,
V̇ ≤ −c̄0(V a1

1 + V a2
2 ) with c̄0 = min{c̄1/2, c̄2/2} > 0 since ϕ1(z1, z2) ∼ c̄1V1(z1)

a1 +
c̄iV2(z2)

a2 . Without loss of generality, we assume a1 ≥ a2, which implies V a1
2 ≤ V a2

2

locally around the origin. By (12), we locally have

V a1
1 + V a2

2 ≥ V a1
1 + V a1

2 ≥ (V1 + V2)
a1 = V a1 ,

and then V̇ (z(t)) ≤ −c̄0V (z(t))a1 , which implies (local) finite-time convergence of
z = 0. Therefore, the global finite-time stability of z = 0 of system (4) can be
obtained due to the local finite-time convergence and global asymptotic stability based
on (47). Then, with arguments similar to the part (2 ⇒ 1) in the proof of Theorem 1,
the conclusion follows.

Then we consider a system of the form

(48)

{
ż = g(x, z),

ẋ = f(x, z) + v, (v, x, z) ∈ R×R ×Rl,

where f and g are continuous functions with f(0, 0) = 0 and g(0, 0) = 0.
For simplicity, denote

(49) x�p := |x|psgn(x), x ∈ R,

where sgn(·) is the sign function. x�p · x = |x|p+1 and x�p is C1 if p ≥ 1.
Theorem 5. Suppose the z-subsystem of (48) is FTISS with respect to the input

function h(x, z) = x�p − μ(z)�p for some p > 1, where μ(z)�p is C1 with respect
to z and μ(0) = 0. Moreover, suppose that the z-subsystem admits a C1 Lyapunov
function Vz and that there is a constant q > p such that

(50) V̇z(z)|ż=g(x,z) ≤ −γ1(Vz(z)) + γ2(|h(x, z)|), γ2(|h|) = O(|h|1+ 1
q ),
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4408 YIGUANG HONG, ZHONG-PING JIANG, AND GANG FENG

where γi (i = 1, 2) are K-functions with γ1(r) ∼ ra for some constant 0 < a < 1,

(51) |f(x, z)| ≤ f̂(h) + f̄(z), f̂(h) = O(|h| 1p ), f̄(z) = O(γ1(Vz(z))
1

1+q ),

and

(52)

∣∣∣∣∂μ(z)�p

∂z
g(x, z)

∣∣∣∣ ≤ ĝ1(h) + ĝ2(z)

with nonnegative functions ĝ1(h) = O(|h|) and ĝ2(z) = O(γ1(Vz(z))
p

1+p ). Then there
is a continuous function μ∗(h) with μ∗(0) = 0 and μ�q

∗ of class C1 with respect to
(x, z) such that system (48) is FTISS with w as the input by taking

(53) v(h(x, z), w) = μ∗(h) + w.

Remark 8. It is worth noting that the z-subsystem is not assumed to be FTISS
with respect to x but with respect to the (virtual) input h(x, z) = x�p−μ(z)�p. This
represents one of the main differences between C1 stabilizing control and nonsmooth

finite-time stabilizing control. It is not hard to show that |x − μ(z)| ≤ 2|h(x, z)| 1p
and |h(x, z)| ≤ 2p|x − μ(z)|p. With these inequalities, ż = g(x, z) is FTISS with
h̄ = x− μ(z) as the input if and only if it is FTISS with h as its input. Additionally,
according to Remark 4, if a system is FTISS with h as the input, it is also FTISS
with the input h�s for any constant s > 0.

Proof. Consider the following positive definite Lyapunov function

(54) V (x, z) =

∫ Vz(z)

0

ρ̄(s)ds+W∗(x, z)

with

W∗(x, z) =
∫ x

μ(z)

h(s, z) ds =
|x|p+1 + p|μ(z)|p+1

p+ 1
− xμ(z)�p,

where ρ̄ : R+ → R+ is an increasing and positive continuous function to be determined
later andW∗ is positive for h = 0 and is C1 with respect to z because μ�p is so. Then
V̇ (x, z) ≤ −ρ̄(Vz(z))γ1(Vz(z)) + ρ̄(Vz(z))γ2(|h|) + Ẇ∗(x, z), where

Ẇ∗ =
∂W∗
∂x

ẋ+
∂W∗

∂μ(z)�p

∂μ(z)�p

∂z
ż = h(x, z)[f(x, z) + v]− [x− μ(z)]

∂μ(z)�p

∂z
g(x, z).

According to (51), q > p, Remark 8, and Young’s inequality (11),

(55) hf(x, z) ≤ |h|[f̂(h) + f̄(z)] ≤ |h|1+ 1
q f̄1(h) + αf (z)

for nonnegative continuous functions f̄1(h) and αf (z) = O(γ1(Vz(z))).
By Remark 8, |x− μ(z)| ≤ 2|h|1/p. Then, from Lemmas 2 and 3 as well as (52),

[x− μ(z)]
∂μ(z)�p

∂z
g(x, z) ≤ 2|h| 1p [ĝ1(h) + ĝ2(z)] ≤ |h|1+ 1

q ḡ2(h) + αg(z)

with suitable nonnegative functions ḡ2(h) and αg(z) = O(γ1(Vz(z))).
Select a function ρ̄ such that ρ̄(Vz(z))γ1(Vz(z)) > 2(αf + αg)(z), noting that

(αf + αg)(z) = O(γ1(Vz(z))).

D
ow

nl
oa

de
d 

10
/1

7/
16

 to
 1

30
.5

6.
21

1.
97

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FINITE-TIME ISS AND FINITE-TIME CONTROL DESIGN 4409

Moreover, recalling Young’s inequality (10) by taking a = ρ̄(Vz), b = γ2(|h|),
and K-function φ with

∫ a

0 φ(s) ds ≤ aγ1(ρ̄
−1(a))/4, there is a K∞-function γ0(b) ≥∫ b

0
φ−1(s)ds such that

ρ̄(Vz(z))γ2(|h|) ≤ 1

4
ρ̄(Vz(z))γ1(Vz) + γ0(γ2(|h|)).

Then, with (50), there is a nonnegative function ḡ1(h) such that

(56) γ0(γ2(|h|)) ≤ |h|1+ 1
q ḡ1(h).

After some manipulations,

V̇ (x, z) ≤ −3

4
ρ̄(Vz(z))γ1(Vz(z)) + hv+ |h|1+ 1

q [f̄1(h) + ḡ1(h) + ḡ2(h)] + αf (z) +αg(z).

Take the control law (53) with

(57) μ∗(h) = −h�
1
q Φ(h),

where Φ is C1 and dominates 1 + ḡ1(h) + ḡ2(h) + f̄1(h), or equivalently,

hμ∗(h) + |h|1+ 1
q

[
f̄1(h) +

2∑
i=1

ḡi(h)

]
≤ −|h|1+ 1

q .

Obviously, μ∗(h)�q is C1. Therefore, according to Young’s inequality,

V̇ (x, z) ≤ −1

4
ρ̄(Vz)γ1(Vz(z))− |h|1+ 1

q + |w|1+q .

Since ρ̄(0) > 0 and q > p,

ρ̄(Vz(z))γ1(Vz(z)) ∼ Vz(z)
a ∼

(∫ Vz(z)

0

ρ̄(s)ds

)a

as z → 0

and |h|1+1/p ∼W∗(h) or, equivalently,

|h|1+ 1
q ∼W∗(h)a0 as h→ 0; a0 =

p(1 + q)

q(1 + p)
< 1.

Then, by Lemma 6, the conclusion follows.
The proof of Theorem 5 is consistent with the design procedure given in our

papers [11, 12]. Note that the controller v depends only on h(x, z), which may be
viewed as an output variable. In this sense, v may be regarded as an “output” or
“partial-state” feedback law.

5.2. Adaptive finite-time stabilization. Consider the system

(58) Ẋ = f(X) + g(X)u, X ∈ RN ,

where f and g are continuous with uncertainties (for example, unknown parameters
and uncertain nonlinearities). It is said to be (globally) adaptively finite-time stabi-
lizable if there is a continuous (partial-state) feedback law of the form

(59)

{
u = μ(X1, σ̂), μ(0, σ̂) = 0, X(0) = X0,
˙̂σ = ν(X1, σ̂), σ̂(0) = σ0,
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4410 YIGUANG HONG, ZHONG-PING JIANG, AND GANG FENG

where μ and ν are continuous, X1 ∈ Rn (n ≤ N) is a part of X (maybe measurable
output), and σ̂ ∈ R is an auxiliary variable to deal with uncertainties such that X = 0
of system (58) is globally finite-time convergent and σ̂(t) keeps bounded for any initial
condition (X0, σ0); namely, there is a continuous settling-time function T (X0, σ0) with
T (0, σ0) = 0 such that any solution (X(t)T , σ̂(t))T ∈ S(t,X0, σ0) (the solution set of
system (58) with (59) since the solution may not be unique) is bounded and satisfies

lim
t→T

X(t, x0, σ0) = 0; X(t, x0, σ0) = 0 ∀t > T.

Note that σ̂ is not required to converge to the real value in the design since it
is not included in X . Instead, the limit value of σ̂ usually depends on the initial
condition (X0, σ0). If X1 = X , the feedback becomes full state, and if there is no
uncertainty in system (58), the update law ˙̂σ = ν can be removed and the control
design reduces to the case discussed in the last subsection.

Lemma 7. Consider a system

(60) Ẋ = f̂(X, σ, σ̂), f̂(0, σ, σ̂) = 0 ∈ Rn

with continuous function f̂ , unknown constant σ, and its estimate σ̂(t). There is a
C1 positive definite function V (X)

V̇ (X)|(60) ≤ −γ1(V (X)) + (σ − σ̂)ν̂(X, σ̂) + η̂(X, σ̂)[ν̂(X, σ̂)− ˙̂σ]

with continuous functions η̂ and ν̂ = o(γ1(V (X))) ≥ 0 for any bounded σ̂ and K∞-
function γ1(V (X)) ∼∑n

i=1 V (X0
i )

ai for 0 < ai < 1 and X0
i = (0, . . . , 0, Xi, 0, . . . , 0)

T ,

i = 1, . . . , n. Then with dynamics ˙̂σ = ν̂(X, σ̂), X(t) becomes 0 in finite time.
This result was similarly obtained in [11] for adaptive finite-time analysis. Here

we give only a sketch of its proof. Take σ̃ = σ− σ̂ and V∗(X, σ̃) = V (X)+ σ̃2/2. Then

V̇∗(X, σ̃)|(60), ˙̂σ=ν̂ =
∂V∗(X, σ̃)

∂X
Ẋ +

∂V∗(X, σ̃)
∂σ̃

˙̃σ ≤ −γ1(V (X)).

Following the routine analysis of the conventional adaptive stabilization (referring to
[25, 27]) gives the asymptotic stability of system (60) and |σ̃(t)| ≤ ĉ0 for a constant ĉ0.
Therefore, V̇ (X) = V̇∗ − σ̃ν̂ ≤ −γ1(V (X)) + ĉ0ν̂. Since ν̂ = o(γ1(V (X))) for any σ̂,
there is a constant r(ĉ0) > 0 such that ĉ0ν̂ ≤ γ1(V (X))/2 once V (X) ≤ r (referring to
[11] for details); namely, if V (X(0)) ≤ r, V̇ ≤ −γ1(V (X))/2 and V (X(t)) ≤ r ∀t ≥ 0.
If V (X(0)) > r, then V (X(t)) ≤ r in finite time. Otherwise, due to V∗ ≥ V > r,

V∗(X(0), σ̂(0)) ≥ V∗(X(τ), σ̂(τ)) +

∫ τ

0

γ1(V (X))ds ≥ τγ1(r),

which leads to a contradiction when t ≥ V∗(X(0), σ̂(0))/γ1(r). Thus, V̇ (X) ≤
−γ1(V (X))/2 will hold in finite time. Because γ1(V (X)) ∼∑n

i=1 V (X0
i )

ai , X will be
0 in finite time by Lemma 6.

Example 4. Consider the system{
ẋ = −x1/3 + xσ̃,
˙̃σ = −x2,

where σ̃-subsystem can be viewed as an update law. Borrowing arguments from
[11], it directly follows that x(t) converges to zero in finite time. However, system
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ẋ = −x1/3+xσ̃ is not FTISS with σ̃ as the input, but it is so if ν̄ = xσ̃ is regarded as
its input. This observation, that is, FTISS depends on the selection of input variable,
will be applied to an adaptive finite-time design procedure in what follows.

Consider the system

(61)

{
ż = g(x, z),

ẋ = f(x, z) + v, (v, x, z) ∈ R×R ×Rl,

where f and g are unknown continuous functions with g(0, 0) = 0 and f(0, 0) = 0.
Theorem 5 cannot be applied straightforwardly to the uncertain system (61), but,

with similar proof ideas, the next result can be viewed as its extension to the adaptive
case.

Theorem 6. Suppose the z-subsystem of (61) admits a C1 Lyapunov function
Vz and that there are two constants q > p > 1 and an unknown constant σ such that
h(x, z) = x�p − μ(z)�p is C1,
(62)

|f(x, z)| ≤ f̃1(h) + σf̃2(h) + f̃(z), f̃(z) = O(γ1(Vz(z))
1

1+q ), f̃i(h) = O(|h| 1p ), i = 1, 2,

(63)∣∣∣∣∂μ�p

∂z
g(x, z)

∣∣∣∣ ≤ g̃1(h)+σg̃2(h)+g̃(z), g̃(z) = O(γ1(Vz(z))
p

1+p ), g̃i(h) = O(|h|), i = 1, 2,

and

(64) V̇z(z) ≤ −γ1(Vz(z)) + γ2(|h(x, z)|) + (σ − σ̂)ν(x, z) + η(x, z)[ν(x, z) − ˙̂σ],

where σ̂ is the estimate of σ, ν = o(|h|1+ 1
q + γ1(Vz(z))) ≥ 0, and γ1 and γ2 are

K-functions with γ2(|h|) = O(|h|1+ 1
q ) and γ1(r) ∼ ra for some constant 0 < a < 1.

Then there is a continuous function μ∗(h, σ̂) with μ∗(0, σ̂) = 0 and μ�q
∗ of class C1

such that system (61) is FTISS by taking

(65) v(h, σ̂, w) = μ∗(h, σ̂) + w.

Moreover, if we take w = 0 and ˙̂σ = ν̂(x, z) for a suitably selected function ν̂, the
origin (x, z) = (0, 0) of system (61) is finite-time stabilizable.

Proof. Take a Lyapunov function

V (x, z) =

∫ Vz(z)

0

ρ̄(s)ds+W∗(x, z), W∗(x, z) =
∫ x

μ(z)

h(s, z) ds,

where ρ̄ : R+ → R+ is a continuous and increasing function with ρ̄(0) ≥ 1 to be
determined later. As usual, denote σ̃(t) = σ − σ̂(t).

According to (62), q > p, and (11), we have

hf(x, z) ≤ |h|1+ 1
q [f̄1(h) + σf̄2(h)] + αf (z)

for nonnegative continuous functions f̄i(h) (i = 1, 2) and αf (z) = O(γ1(Vz(z))).
Similarly, from Remark 8, (63), and (11), we obtain

(x− μ)
∂μ�p

∂z
g(x, z) ≤ |h|1+ 1

q [ḡ1(h) + σḡ2(h)] + αg(z)

for some nonnegative functions ḡi(h) (i = 1, 2) and αg(z) = O(γ1(Vz(z))).
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Take

η̂ = ρ̄η − ∂W∗
∂σ̂

, ν̂ = ρ̄ν + |h|1+ 1
q [f̄2(h) + ḡ2(h)] = o(|h|1+ 1

q + γ1(Vz(z))).

Then, from (11),

ρ̄η[f̄2(h) + ḡ2(h)] + ρ̄ν
∂W∗
∂σ̂

≤ |h|1+ 1
q [f̂1(h) + σ̂f̂2(h)] + αe(z)

with suitable nonnegative functions f̂i(h) (i = 1, 2) and αe(z) = γ1(Vz(z))/4.
Select a function ρ̄ such that ρ̄(Vz(z))γ1(Vz(z)) > 2ᾱ0(z) since ᾱ0(z) = αf +αg+

αe = O(γ1(Vz(z))). By Young’s inequality, it follows that

ρ̄(Vz)γ2(|h|) ≤ 1

4
ρ̄(Vz)γ1(Vz) + |h|1+ 1

q ḡ0(h).

With similar arguments given in the proof of Theorem 5,

V̇ ≤ −3

4
ρ̄(Vz)γ1(Vz)+hu+|h|1+ 1

q [f̄1+f̂1+ḡ1+ḡ0+σ(f̄2+ḡ2)+σ̂f̂2]+ᾱ0+σ̃ν̂+η̂[ν̂− ˙̂σ].

Take the control law

(66) μ∗(h, σ̂) = −h�
1
q Φ(h, σ̂),

where Φ is C1 and dominates 1+f̄1(h)+f̂1(h)+ḡ1(h)+ḡ0(h)+σ̂[f̄2(h)+ḡ2(h)+f̂2(h)],
or equivalently,

hμ∗ + |h|1+ 1
q [f̄1 + f̂1 + ḡ1 + ḡ0 + σ(f̄2 + ḡ2) + σ̂f̂2] ≤ −|h|1+ 1

q + σ̃|h|1+ 1
q (f̄2 + ḡ2).

Using Young’s inequality again,

V̇ (x, z) ≤ −1

2
ρ̄(Vz)γ1(Vz(z))− |h|1+ 1

q + |w|1+q + ν̄w,

where ν̄w = σ̃ν̂ + η̂[ν̂ − ˙̂σ] and μ∗(h)�q is C1. Similar to the analysis given in the
proof of Theorem 5, we obtain the FTISS of system (61) under (65) with (ν̄w, w) as
the input.

Moreover, set w = 0 and ˙̂σ = ν̂ = − ˙̃σ. Then V̇ (h, z) ≤ − 1
2 ρ̄(Vz)γ1(Vz(z)) −

|h|1+ 1
q + σ̃ν̂, which implies the conclusion by Lemma 7.
It is hard to solve the adaptive stabilization problem for general nonlinear systems.

Here we focus on the following class of systems:

(67)

⎧⎪⎨
⎪⎩
ζ̇i = ψi(x1, . . . , xi, ζi), 1 ≤ i ≤ n,

ẋi = xi+1 + fi(x1, . . . , xi, ζi), 1 ≤ i ≤ n− 1,

ẋn = u+ fn(x1, . . . , xn, ζn),

where u ∈ R is the control input, x = (x1, . . . , xn)
T ∈ Rn is the measured portion of

the state, and ζ = (ζT1 , . . . , ζ
T
n )

T ∈ Rn0 is the remaining unmeasured state, referred
to as dynamic uncertainty, which often arises from many engineering applications (see
[13, 20, 21, 45] and references therein). For each i = 1, 2, . . . , n, fi is an unknown
and Lipschitz continuous function, and ψi is piecewise continuous with respect to
ζi and Lipschitz continuous with respect to (x1, . . . , xi). For simplicity, we assume
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ψi(0, . . . , 0) = 0. Nonlinear systems transformable into (67) have been studied exten-
sively over the last decades from both theoretical and practical viewpoints (see, e.g.,
[24, 25, 27]).

The following assumptions are made regarding system (67) with dynamic and
parametric uncertainties:

(B1) ζ̇i = ψi(x1, . . . , xi, ζi) is FTISS with (x1, . . . , xi) as the input, along with an
FTISS-Lyapunov function Ui(ζi) that satisfies

(68) U̇i(ζi) ≤ −γi(Ui(ζi)) + γ0i (||(x1, . . . , xi)||),
with K∞-functions γi and γ0i , where γi(r) ∼ râi for some positive constant âi < 1
and γ0i = O(||(x1, . . . , xi)||1+p̂) for some constant p̂ > 1.

(B2) For each i = 1, . . . , n, there are an unknown parameter θ > 0 and C1 known
nonnegative functions κi1 and κi2 vanishing at the origin such that

(69) |fi(x1, . . . , xi, ζi, t)| ≤ κi(ζi, x1, . . . , xi, θ) := κi1(ζi) + θκi2(x1, . . . , xi),

where κi1 = O(γi(Ui)
1

1+q̂ ) for a positive constant q̂ ≤ 1.
Here we show a constructive procedure for adaptive finite-time control of system

(67), based heavily on the repeated usage of the technique given in the proof of
Theorems 6 and 5. In fact, the recursive design procedure is similar to that given, for
example, in [45, 33, 19, 20, 11, 12]. Therefore, without loss of the main ideas, some
tedious details are omitted due to space limitations.

Choose 0 < ā < 1 such that

(70)

⎧⎨
⎩r1 = 1 > r2 > · · · > ri := ri−1 − ā > 0, q̂ <

(1 − ā)rn
rn − ā

,

p0 = 1, (pi−1 + 1)ri = (pi + 1)ri+1, 1 < pi < p̂ (i = 1, . . . , n− 1)

which can be satisfied as ā is sufficiently small (noting that ri = pi−1 = 1 and
i = 1, . . . , n if ā = 0). Take

(71) qi =
ripi−1

ri+1
, qi > qi−1 (i = 2, . . . , n).

Clearly, 1 ≤ ripi−1 < ri+1pi, pi−1 < qi < pi for i = 1, . . . , n− 1.

As in [12], denote σ = max{1, θ 2−2ā
rn } ≥ θ, which is an unknown parameter since θ

is unknown. Denote σ̂ as an estimate of σ. Define “virtual controller” μj (j = 1, . . . , n)
recursively as follows:

(72)

{
μ0 = 0, μj(x1, . . . , xj−1, σ̂) = −h�

1
qj

j Φj(x1, . . . , xj , σ̂),

hj = x�pj−1

j − μ�pj−1

j−1 , 1 ≤ j ≤ n,

where Φj (1 ≤ j ≤ n) is a C1 positive function to be determined later. Take
(73)

Vi(x1, . . . , xi, ζ1, . . . , ζi) =

i∑
j=1

Uj(ζj)+V̄i(x1, . . . , xi), V̄i =

i∑
j=1

∫ Wj(x1,...,xj)

0

ρj(s)ds,

where

(74) Wj(x1, . . . , xj) =

∫ xj

μj−1

[s�pj−1 − μ�pj−1

j−1 (x1, . . . , xj−1)] d s, j = 1, . . . , n,

and ρj(s) ≥ 1 (j = 1, . . . , n) is an increasing function for s ≥ 0 to be determined.
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Step 1: Consider the subsystem of (67):

(75)

{
ζ̇1 = ψ1(x1, ζ1),

ẋ1 = x2 + f1(x1, ζ1).

Denote α1 = ψ1 and Z1 = ζ1 for the recursive procedure. Take h1 = x1 andW1(x1) =
x21/2 (see (72) and (74)). Then

V̇1(ζi, x1)|(75) ≤ ρ1

(
x21
2

)
[x1x2 + |x1|κ1(ζ1, x1, θ)]− γ1(U1(ζ1)) + γ01(|x1|).

Based on assumptions (B1) and (B2), the conditions (64), (62), and (63) are satisfied.
Following the proof of Theorem 6 with some manipulations (referring to [11, 12] for
details, too), there are ρ1(W1) and a “virtual controller” μ1(x1, σ̂) in the form of (72)
as μ∗ constructed in the proof of Theorem 6 such that

(76) V̇1(Z1, x1)|(75) ≤ −l1[ρ1(W1)W
2−ā
2

1 + γ1(U1)] + 2|h2|1+
1
q2 + ν̄2,

where l1 > 0 and ν̄2 = σ̃ν1 with ν1(x1) = ρ1(W1)|x1|κ12(x1) and h2 given in (72).
Thus, system (75) is FTISS with input (ν̄2, h2).

Step i (2 ≤ i < n): Suppose we have designed a function μi−1(h1, . . . , hi−1) so
that

(77)

{
Żi−1 = αi−1(hi−1, Zi−1),

ẋi−1 = xi + f̂i−1, f̂i−1(hi−1, Zi−1) = fi−1(x1, . . . , xi−1, ζi−1),

where Zi−1 = (ζT1 , x1, . . . , ζ
T
i−2, xi−2, ζ

T
i−1)

T , is FTISS with (ν̄i, hi) as its input with

(78) V̇i−1(Zi−1, xi−1)|(77) ≤ −li−1

⎡
⎣i−1∑
j=1

ρj(Wj)W
2−ā
2

j +

i−1∑
j=1

γj(Uj)

⎤
⎦+ 2|hi|1+

1
qi + ν̄i

for a suitably constant li−1 > 0, hi in the form of (72), and

ν̄i(x1, . . . , xi−1, σ̃, ˙̂σ) := σ̃νi−1(x1, . . . , xi−1, σ̂)−
i−1∑
j=1

ρj(Wj)
∂Wj

∂σ̂
[νi−1 − ˙̂σ]

with a continuous function νi−1. Clearly, (76) is a special form of (78) by ∂W1

∂σ̂ = 0.

Take Zi = (ZT
i−1, xi−1, ζ

T
i )

T , and rewrite Żi = αi(hi, Zi) for a vector-valued
function αi. After manipulations with (B1), (B2), (70), (71), and (73),

(79) κi1 = O(γi(Ui)
1

1+qi ), κi2(x1, . . . , xi)|hi≡0 = O(V̄
1

1+qi

i−1 ),

and, moveover, because μi−1 is independent of ζ1, . . . , ζi,

(80)

∣∣∣∣∂μ
�pi−1

i−1

∂Zi
αi

∣∣∣∣ =
∣∣∣∣∣∣
i−1∑
j=1

∂μ�pi−1

i−1

∂xj
(xj+1 + fj(hj , Zj))

∣∣∣∣∣∣ .
Since the ζi-subsystem, ζ̇i = ψi(x1, . . . , xi, ζi), is FTISS with input (x1, . . . , xi),

it is FTISS with (x1, . . . , xi−1, hi) as the input according to Remark 4 (by noting
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that there is a global homeomorphism between (x1, . . . , xi) and (x1, . . . , xi−1, hi)).
Therefore, Żi = αi(hi, Zi) is FTISS with (ν̄i, hi) as its input in light of Corollary 1
with taking x = ζi and z = (ZT

i−1, xi−1)
T . Then the considered subsystem of (67) is

expressed in a compact form:

(81)

{
Żi = αi(hi, Zi),

ẋi = xi+1 + f̂i(hi, Zi), f̂i(hi, Zi) = fi(x1, . . . , xi, ζi).

Recalling the proof of Theorem 6 along with (70), (79), and (80), there is a
function ρi(s) ≥ 1 and a “virtual controller” μi(x1, . . . , xi, σ̂), constructed in the form
of (72) as μ∗ done in the proof of Theorem 6 such that

(82) V̇i(Zi, xi)|(81) ≤ −li
⎡
⎣ i∑
j=1

ρj(Wj)W
2−ā
2

j +

i∑
j=1

γj(Uj)

⎤
⎦+ 2|hi+1|1+

1
qi + ν̄i+1

with a constant li > 0 and the “input” function ν̄i+1 = σ̃νi −
∑i

j=1
∂Wj

∂σ̂ [νi − ˙̂σ] for
a selected nonnegative function νi(x1, . . . , xi, σ̂). Then system (81) is FTISS with
(ν̄i+1, hi+1) as its input.

Step n: From (82), it holds that

V̇n(Zn, xn)|(67) ≤ −ln
⎡
⎣ n∑
j=1

ρj(Wj)W
2−ā
2

j +

n∑
j=1

γj(Uj(ζj))

⎤
⎦

+ 2|hn+1|1+
1
qi + ν̄n+1, ln > 0.

With u = μn(x, σ̂) and ˙̂σ = νn(x, σ̂) for a suitably constructed function νn and
μn given in (72), the adaptive finite-time stabilization of system (67) is obtained
from Theorem 6 (or Lemma 7) by noting that w = hn+1 = 0 (for xn+1 = u), ν̂ =

ν̄n+1 = σ̃νn, and
∑n

j=1 ρj(Wj)W
2−ā
2

j ∼ V̄
2−ā
2

n (i = 1, . . . , n) (referring to the proof of
Theorem 5).

Summarizing the above discussions, we have the following theorem.
Theorem 7. System (67) with assumptions (B1) and (B2) is adaptively finite-

time stabilizable.
Theorem 7 is consistent with existing finite-time control results. If there are no

ζi-subsystem and no parametric uncertainties in system (67), the result is consistent
with the finite-time stabilizing control design shown in [10], and if there is no ζi-
subsystem (i.e., no dynamic uncertainties), a similar adaptive finite-time controller is
proposed in [11]. Moreover, [12] considered a simple dynamic uncertainty case, where
there is no ζi-subsystem when i ≥ 2.

Example 5. Consider the system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ζ̇1 = −ζ5/71 + x1,

ζ̇2 = −ζ3/52 + sin(x2 − x1),

ẋ1 = x2 + θ sinx1 cos ζ1,

ẋ2 = u− ζ22 sinx2,

where θ = 1 is an unknown parameter and ζi (i = 1, 2) are unmeasurable variables.
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Fig. 1. Trajectories of ζ1 (solid line) and ζ2 (dashed line).
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Fig. 2. Trajectories of x1 (solid line), x2 (dashed line), and σ̂ (dotted line).

Set r1 = 1 and r2 = 7/9. Following the procedure described as above, the adaptive
finite-time controller can be taken as{

u = −4(x
9
7
2 + 2x1Φ

9
7
1 )

5
9 (3 + 2Φ1 + 2Φ2

1 + 2σ̂x
4
9
1 ),

˙̂σ = x
16
9
1 + 4x

4
9
1 (x

9
7
2 + 2x1Φ

9
7
1 )

14
9 ,

Φ1 = σ̂2x21/9 + 2.

With initial conditions ζ1(0) = 1, ζ2(0) = 3, x1(0) = 1, x2(0) = −2, and
σ̂(0) = 0, Figures 1 and 2 show the trajectories of ζi, xi (i = 1, 2) and σ̂, respectively.
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6. Conclusions. In this paper, we have developed a new framework for tackling
finite-time control problems in nonlinear uncertain systems. First, Sontag’s original
notion of ISS was extended to FTISS, along with various characterizations of FTISS.
Then the notion of FTIOS and a finite-time small-gain theorem were presented. Fur-
thermore, a design tool for propagating the FTISS property was also proposed for a
class of interconnected nonlinear systems with “partial-state” feedback. The proposed
framework was complemented by control applications including finite-time stabiliza-
tion and adaptive finite-time control, which generalizes several previously proposed
adaptive control results to a broader class of nonlinear uncertain systems. Further
characterizations and applications of FTISS are under investigation.

Acknowledgment. The authors wish to thank the reviewers for their construc-
tive and helpful comments.
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