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a b s t r a c t

This paper studies the problem of global robust distributed output consensus of heterogeneous
leader–follower multi-agent nonlinear systems by general directed output interactions. For a class of
minimum-phase single-input single-output nonlinear agents having unity relative degree, it is shown
that the problem is solvable by an internal model approach under certain mild conditions. A Lyapunov
function based output-feedback control law is developed by converting the global output consensus into
a global distributed stabilization problem for an augmented network.
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1. Introduction

Recently, the consensus problem of multi-agent systems has
been studied increasingly from linear to nonlinear dynamic net-
works; for an overview, to name but a few, see Refs. [1–5] for
linear agent networks and see also Refs. [6–14] for some up-
to-date studies in the context of nonlinear networks. A number
of effective approaches have been developed to cope with the
wide range of multi-agent coordination control problems. Pre-
vious studies on nonlinear consensus control are usually devel-
oped for normal-form agents with stable zero dynamics, see Refs.
[7,8,10,11]. Notably, Ref. [11] proposed an adaptive internal
model approach to a controlled bidirected network, while Refs.
[12,14] studied some scenarios of global nonlinear control of
general directed agent networks, where the former is by state-
feedback design for a heterogeneous network and the latter is by
output-feedback design for networks of identical followers. Ref. [8]
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considered semi-global distributed control for heterogeneous dif-
fusively coupled nonlinear networks in a strict-feedback nor-
mal form having unity relative degree. Moreover, Refs. [9,10]
developed a cyclic small-gain theorem based approach to address-
ing global output consensus of multi-agent nonlinear systems. In
particular, for heterogeneous uncertain networks with general di-
rected interactions, Ref. [10] developed an interesting result of
reaching time-invariant agreements by output-feedback control
in a cyclic-small-gain framework. In the aforementioned result,
some integral control and gain assignment techniques were devel-
oped to succeed the global output consensus to a reference set-
point, which also guarantees a practical output consensus when
non-vanishing external disturbances exist. In view of Ref. [10], it
motivates us to study the more general problem of time-varying
agreement from a Lyapunov function perspective.

In the paper, for uncertain nonlinear agents in a leader–follower
heterogeneous network, the global output consensus problem is
formulated as forcing each agent output globally asymptotically
attracted by their respective output zeroing invariant manifold
(see Eq. (7) in Section 2 in this paper). The synchronous output is
actually indicated by its associated output zeroingmanifold. In this
task, available measurements are merely provided by neighboring
output interactions. The schemeengaged in this paper is comprised
of two steps. The first step is the design of internal models and
formulation of a certain distributed stabilization problem of some
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augmented networks. The second step is to solve the stabilization
problem which in turn implies the global output consensus.

For heterogeneous and minimum-phase nonlinear agents
transformable into a strict-feedback normal form, it is shown
that the global distributed consensus problem can be approached
when their information digraph contains a directed spanning tree
with the leader node as the root. Based on a modified variable
gradient method, a Lyapunov function based output-feedback
design is further developed to achieve the global asymptotic output
consensus. The main technical challenges of the problem are
two-fold. First, we deal with global asymptotic output consensus
of heterogeneous nonlinear networks. To make the problem
tractable, we need to formulate a distributed stabilization problem
which should guarantee solvability of the original consensus
problem. Second, because the information digraph is generally
directed and the controlled nonlinear agents are heterogeneous
with uncertainties, it is challenging to develop Lyapunov functions
and related consensus algorithms. To address these challenges, we
utilize a modified variable gradient method to construct a storage
function of a general form. Thenwe are able to establish consensus
algorithms from an output regulation viewpoint (see Ref. [15]).
The main contribution of this paper is summarized as follows. A
unified treatment is presented for nonlinear consensus control and
a solution is developed for global asymptotic consensus control
of multi-agent nonlinear systems of a normal form in directed
networks. Our study partially generalizes some existing results,
e.g., Refs. [1,7,10,16], from several aspects, including general
directed networks and time-varying agreements.

The rest of this paper is organized as follows. In Section 2,
we formulate the global output consensus problem and link it to
distributed output regulation theory. Then in Section 3 we present
themain result of the paper and an example is also given. Section 4
closes the paper with some concluding remarks.

2. Consensus as a distributed output regulation problem

In this section, we describe the consensus problem that is
formally formulated as distributed output regulation.

Consider a group of uncertain multi-agent nonlinear systems
with each one being globally transformable into a strict-feedback
normal form having unity relative degree (see, e.g., Refs. [8,17,18])

i ∈ O : żi = fi(zi, yi, v, w)
ẏi = gi(zi, yi, v, w)+ bi(w)ui.

(1)

In combination with (1), a leader node with index 0 is described by

v̇ = Sv, y0 = qr(v,w), v ∈ Rnv . (2)

Here O := {1, 2, . . . ,N} is to denote the follower node set, and
for each agent i ∈ O, (zi, yi) ∈ Rni × R is the state viewed as dy-
namic uncertainties (see Ref. [19]), yi ∈ R is the output, ui ∈ R is
the control input, w ∈ W is the parametric uncertainties in some
compact set W ⊂ Rnw with ẇ = 0, and y0 ∈ R is given as the
desired output reference. The function bi := bi(w) ≠ 0 is the un-
certain high frequency gain, continuous inwwith bi(w) > 0 for all
w ∈ W. Assume that all the functions fi, gi, qr are smooth in their
argumentswith fi(0, 0, 0, w) = 0, gi(0, 0, 0, w) = 0, qr(0, w) = 0
for all i ∈ O and allw ∈ W. We further pose a compact setV ⊂ Rnv

such that for each initial value v(0) ∈ V for (2), the response v(t)
of (2) satisfies v(t) ∈ V for all t ≥ 0. Assume that bothV andW are
fixed with known boundaries. For conciseness, we denote µ(t) :=

[v⊤(t), w]
⊤ and D := V × W referred to as node uncertainties.

The cooperative control of multi-agent systems studied in this
paper is based on local measurements

i ∈ O : emi =


j∈V

aij(yi − yj) =


j∈V

aij(ei − ej)

with e0 ≡ 0, ei = yi − y0 (3)
dictated by an information digraph1 G = {V, E,A}, where e :=

[e1, . . . , eN ]
⊤ is regarded as regulated output. Specifically, for the

group of agents (1) and (2), we aim to find a controller of the form

i ∈ O : ξ̇i = fci(ξi, emi), ui = uci(ξi, emi) (4)

such that, for each initial condition (zi(0), yi(0), ξi(0)) in their
respective entire spaces and each (v(0), w) ∈ V×W, the following
two conditions are satisfied (i) the trajectory of the closed-loop
system exists for all t ≥ 0 and is bounded over the time interval
[0,+∞); (ii) the regulated output e(t) satisfies limt→+∞ e(t) = 0.

In this paper, the concerned information digraph G is further
posed by the following condition.

Assumption 1. The digraph G = {V, E,A} contains a directed
spanning tree with the leader node as the root.

Remark 1. An immediate implication of Assumption 1 is as
follows. For any information digraph G, the resultant Laplacian L
contains a submatrix H ∈ RN×N by removing its first row and
column. Moreover, the resultant matrix −H is Hurwitz and there
exists a diagonal matrix R = diag(r1, . . . , rN)with positive entries
such that, for a real number λ0 > 0, the matrix2

λ0I − RH − H⊤R (5)

is negative definite (see [20, Theorem 2.3, pp. 134]).

In contrast to ‘‘non-networked’’ output regulation problems
(see Ref. [15] and references therein), the output consensus can be
treated as distributed output regulation with a local measurement
provided in distributed sensing.

To expand our investigation, we list the following standing as-
sumptions assuring solvability of global output consensus prob-
lem. In particular, Assumption 2 ensures the (global) solvability
of the regulator equations (see [21, Assumption 7.10]), while As-
sumption 3 is adopted from Ref. [22], that is often used in nonlin-
ear control theory to suffice output-feedback design as aminimum
phase or output-feedback passivity condition imposed on each fol-
lower; see [23, pp. 517 & 606]; cf. strict passivity of [23, Defini-
tion 6.3] and [8, Assumption 3].

Assumption 2. For each i ∈ O, there is a smooth function zi : D →

Rni such that
∂zi
∂v

Sv = fi(zi(µ), qr(µ), µ).

Under Assumption 2, we can obtain the individual zero-error
constraint input manifolds (see [21, pp. 83]) for the network of (1)
and (2)

Ui =

(ui, µ) : ui = ui(µ), µ ∈ D


, i ∈ O (6)

where

ui(µ) = b−1
i
∂qr
∂v

Sv − b−1
i gi(zi(µ), qr(µ), µ).

Clearly, u1(µ), . . . ,uN(µ) are heterogeneous and all uncertain.
Moreover, the individual global output zeroing manifolds can be
given as follows: for each i ∈ O

Pi =

(zi, yi, µ) : zi = zi(µ), yi = qr(µ), µ ∈ D


(7)

where agent outputs synchronize, cf. [24, Remark 3.9] and
[10, Remark 4]. The manifold (7) is regarded as the synchronous
invariant manifold.

1 See Appendix at the end of this paper for graph notation.
2 I stands for an identity matrix of suitable dimensions.
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Also, under Assumption 2 and the coordinates z̄i = zi − zi(µ)
and ei = yi − y0, we can get a translation of (1)

i ∈ O : ˙̄z i = f̄i(z̄i, ei, µ), ėi = biui − biui(µ)+ ḡi(z̄i, ei, µ) (8)

with

f̄i(z̄i, ei, µ) = fi(z̄i + zi(µ), ei + qr(µ), µ)− fi(zi(µ), qr(µ), µ)
ḡi(z̄i, ei, µ) = gi(z̄i + zi(µ), ei + qr(µ), µ)− gi(zi(µ), qr(µ), µ).

Assumption 3. For each i ∈ O, there is a C1 (continuously diff-
erentiable) function Vz̄i : Rni → R such that

αi (∥z̄i∥) ≤ Vz̄i(z̄i) ≤ ᾱi (∥z̄i∥)

V̇z̄i |(8) ≤ −αi (∥z̄i∥)+ φi(ei)e2i

for αi(·), αi(·), ᾱi(·) ∈ K∞
3 and a smooth function φi(ei) ≥ 1with

αi(·) being locally quadratic in the sense that lim sups→0+(α−1
i

(s2)/s) < ∞.

3. Solution to distributed output consensus

This section is devoted to elaborating a global distributed
regulator design to achieve the global output consensus of (1)
by an internal model approach. Because the zero-error constraint
inputs U1 to UN shown in (6) are uncertain, the internal models
as dynamic compensators are indispensable to further make each
Pi specified by (7) globally attractive by a distributed stabilization
design in the spirit of general problem conversion in [24].

3.1. Converting consensus to distributed stabilization

To do the problem conversion, we first consider the internal
model design. Because the zero-error constraint inputs U1 to
UN shown in (6) are uncertain, the internal models as dynamic
compensators are indispensable to further make each Pi specified
by (7) globally attractive by a distributed stabilization design.

For internal model design, we suppose the following.

Assumption 4. Each of ui(µ) = ui(v,w), i ∈ O is polynomial in v.

Under Assumption 4, it is known that for each ui(µ), by calcu-
lating its minimal zeroing polynomial (see page 170 of Ref. [21]),
we have an si-th dimensional steady-state generator with output
ui as follows:

τ̇i(µ) = Φiτi(µ), ui(µ) = Ψiτi(µ). (9)

Next, for each follower agent, a linear internal model can be
constructed as follows:

η̇i = Miηi + Giui (10)

where (Mi,Gi) is a controllable matrix pair withMi being Hurwitz.
In fact, such an internal model can be obtained by writing the
generator (9) as follows:

τ̇i(µ) = Miτi(µ)+ GiΨiτi(µ), ui(µ) = Ψiτi(µ) (11)

whereMi = Φi −GiΨi for a vector Gi ∈ Rsi such thatMi is Hurwitz.
Then the generator (11) immediately leads to the internal model
(10). We refer the reader to [21, Chapter 6] for more details.

3 K∞ is the set of continuous, strictly increasing, and unbounded functions α :

[0,∞) → [0,∞)with α(0) = 0.
Remark 2. Regarding Assumption 4 as well internal model design
of (10), we shall note the following. On one hand, Assumption 4
is most popular in the study of nonlinear output regulation; see,
e.g., Refs. [7,12]. On the other hand, it is worth noting that if
a network like (1) and (2) is homogeneous, then its associated
manifolds Ui as (6) satisfy ui(µ) = 0 for all i ∈ O (e.g., Ref. [4]). In
this case, there is no need to introduce an internal model (10) for
each follower agent.

For the augmented networked dynamics composed of (8) and
(10), under the following coordinate and input transformations:

i ∈ O : η̄i = ηi − τi − b−1
i Giei, ūi = ui − Ψiηi

we obtain

i ∈ O :


˙̄ηi = Miη̄i + ϕi(z̄i, ei, µ)
˙̄z i = f̄i(z̄i, ei, µ)
ėi = biūi + g̃i(z̄i, η̄i, ei, µ)

(12)

where

ϕi(z̄i, ei, µ) = b−1
i MiGiei − b−1

i Giḡi(z̄i, ei, µ),

g̃i(z̄i, η̄i, ei, µ) = biΨi(η̄i + b−1
i Giei)+ ḡi(z̄i, ei, µ).

Denote z̄ := [z⊤

1 , . . . , z
⊤

N ]
⊤ and η̄ := [η̄⊤

1 , . . . , η̄
⊤

N ]
⊤.

Remark 3. It can be shown that (12) has an equilibrium at (z̄, η̄,
e) = (0, 0, 0) for all µ ∈ D. If the equilibrium can be made
globally asymptotically stable, it implies the global asymptotic
attractiveness of P1 to PN by (7). Thus we are left to solve a
distributed stabilization problem, i.e., find a stabilizer of the form

i ∈ O : ūi = −kiκi(emi) (13)

for (12), where ki > 0, κi(s) = sκ̄i(s), and κ̄i(·) ≥ 1 is a smooth
function to be designed, in order to globally asymptotically stabilize
the equilibrium (z̄, η̄, e) = (0, 0, 0).

The dynamics (z̄i, η̄i) in (12) can be viewed as dynamic uncer-
tainties (see Ref. [19]). The following lemma (see Ref. [22]) presents
a useful property for the output-feedback stabilization of (12).

Lemma 1. For each i ∈ O, consider the ζi := (z̄i, η̄i) subsystem
of (12). Then under Assumption 3, for any smooth function∆i(ζi) ≥

1, there exists a C1 function Ṽi(ζi) such that, for all µ ∈ D,

α′

i(∥ζi∥) ≤ Ṽi(ζi) ≤ ᾱ′

i(∥ζi∥),
˙̃V i|(12) ≤ −∆i(ζi)∥ζi∥

2
+ γi(ei)e2i

(14)

with some smooth functionsα′

i(·), ᾱ
′

i(·) ∈ K∞ and a smooth function
γi(·) ≥ 1.

Remark 4. We summarize a couple of notable Lyapunov function
construction techniques in the literature. The first is for bidirected
(or undirected) subgraph induced by the follower nodes only. In
this case, the matrix H specified in Remark 1 is positive definite,
which suggests a Lyapunov function candidate

V̆ (e) =
1
2
e⊤He (15)

to succeed an intermediate stabilization control, cf. [11, Equa-
tion (21)]. The second is the general interaction digraphs, it is still
valid to employ a quadratic function

V̆ (e) =
1
2
e⊤Pe, P > 0 s.t. PH + H⊤P = I (16)

to accomplish semi-global control (see, e.g., [6] and construction
of a Lyapunov function for χ2 subsystem in [25, Equation (16)]).
For the purpose of semi-global control, one may also refer to [6]
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for a viable two-layer network design for consensus problem with
local actuating disturbances and [8] for an interesting result on
approaching the consensus problem by introducing an auxiliary
homogeneous network of N identical copies to produce a local
reference. At this point, it is noted that both the intermediate
stabilization methods in [8] are accomplished in a decentralized
mode and the resultant controller orders are more than that of
the proposed method in this paper. In view of the above analysis,
for the present global distributed output consensus control, both
(15) and (16) are not amenable any more. We need to introduce
a general one as (18) to cope with general digraphs and global
distributed output-feedback control.

To proceed and for convenience, denote that

em := [em1, . . . , emN ]
⊤

ϖ(em) := [ϖ1(em1), . . . ,ϖN(emN)]
⊤

ϖi(emi) := bikiκi(emi), κi(s) = sκ̄i(s)

for a design function κ̄i(·) ≥ 1, i ∈ O. By utilizing a modified vari-
able gradient method (see, e.g., [26, Section 3.5.3]), the following
lemma establishes a heuristic result on the system

ė = −ϖ(em) or ėm = −Hϖ(em) (17)

induced from the closed-loop system composed of (12) and (13).
It is of importance to note that it may fail to construct a Lyapunov
function for (17) by applying the variable gradient method in a di-
rect manner, because H is not symmetric and −Hϖ(em) of (17)
would be not a gradient vector (see [23, pp. 120]). Nonetheless, we
can introduce a modified one

V (em) =

 em

0
ϖ⊤(s)Rds (18)

where R is specified in Remark 1.

Lemma 2. The function (18) is a positive definite and radially
unbounded, and moreover satisfies

V̇ |(17) ≤ −λ′

0 ∥ϖ∥
2

for a constant λ′

0 > 0.

Proof. First, it can be shown that for each i ∈ O, emi

0
ϖi(s)rids ≥

1
2
bikirie2mi emi

0
ϖi(s)rids ≤ bikiriκ̄i(emi)e2mi.

Thus V (em) is positive definite and radially unbounded. Next, we
have

V̇ |(17) = −ϖ⊤RHϖ ≤ −
1
2
λ0 ∥ϖ∥

2

by using (5). Letting λ′

0 =
1
2λ0 completes the proof.

3.2. Main theorem

Theorem 3. For the network of (1) and (2) under Assumptions 1–4,
the global output consensus problem can be solved by

i ∈ O : η̇i = Miηi + Giui, ui = −kiκi(emi)+ Ψiηi. (19)
Proof. By Remark 3, we only need to solve the stabilization prob-
lem for (12). Consider the closed-loop systemcomposedof (12) and
(13). By Lemma 2, it can be seen that V (em) by (18) satisfies

V̇ |(12)+(13) ≤ −λ′

0 ∥ϖ∥
2
+


i

riϖi


j∈V

aij

g̃i − g̃j


(20)

where g̃0 ≡ 0 and g̃i is to denote g̃i(z̄i, η̄i, ei, µ) for short.
In (20), completing the squares gives

riϖi


j∈V

aij

g̃i − g̃j


≤
ϵ

2
ϖ 2

i + Ii (21)

and thus we have

V̇ (em)|(12)+(13) ≤ −


λ′

0 −
ϵ

2


∥ϖ∥

2
+


i

Ii (22)

where

Ii :=
r2i
2ϵ


j∈V

aij

g̃i − g̃j

2
.

Further by using Lemma 7.8 in Ref. [21] and completing the squares,
we conclude the following. For each i ∈ O, there are smooth func-
tions∆′

i(ζi) ≥ 1 and ϕi0(s)written by ϕi0(s) = sϕ∗

i0(s), ϕ
∗

i0(s) ≥ 1
such that

i

Ii ≤
1
2ϵ


i

(∆′

i(ζi) ∥ζi∥
2
+ ϕ2

i0(emi)). (23)

Therefore, V (e) satisfies

V̇ |(12)+(13) ≤ −λ′

0 ∥ϖ∥
2
+

1
2ϵ


i


∆′

i(ζi) ∥ζi∥
2
+ ϕ2

i0(emi)

.

Next, by Lemma 1, define

Vζ (ζ ) =


i

Ṽi(ζi)

which satisfies

V̇ζ |(12) ≤ −


i

∆i(ζi) ∥ζi∥
2
+


i

γi(ei)e2i .

In the above inequality, it can be shown that there exist smooth
functions ϕi1(s), i = 1, . . . ,N with each one written by ϕi1(s) =

sϕ∗

i1(s), ϕ
∗

i1(s) ≥ 1, such that
i

γi(ei)e2i ≤


i

ϕ2
i1(emi).

Thus, Vζ (ζ ) satisfies

V̇ζ |(12) ≤ −


i

∆i(ζi) ∥ζi∥
2
+


i

ϕ2
i1(emi). (24)

Finally, we can define a Lyapunov function candidate for the
closed-loop system as follows:

U(ζ , em) = Vζ (ζ )+ V (em) (25)

which satisfies

α̃1 (∥ζ , em∥) ≤ U(ζ , em) ≤ α̃2 (∥ζ , em∥) (26)

for some functions α̃1(·), α̃2(·) ∈ K∞, and by using (20), (23)
and (24)

U̇|(12)+(13) ≤ −

λ′

0 −
ϵ

2


∥ϖ∥

2
+


i

 1
2ϵ
ϕ2
i0(emi)

+ ϕ2
i1(emi)+

 1
2ϵ
∆′

i(ζi)−∆i(ζi)


∥ζi∥
2

.
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In the above, to make its right side non-positive, one can choose
ϵ, k̄i > 1 and ∆i(·), ψi(·), κ̄i(·) ≥ 1 such that, for all their argu-
ments

λ′

0 −
ϵ

2
≥
λ′

0

2
, ∆i(ζi) ≥

1
2ϵ
∆′

i(ζi)+ 1

λ′

0

2
b2i k̄iψi(emi)e2mi ≥ ϕ2

i1(emi)+
1
2ϵ
ϕ2
i0(emi),

ki ≥


k̄i, κ̄2

i (emi) ≥ ψi(emi)+ 1. (27)

Then the above leads to

U̇|(12)+(13) ≤ −
λ′

0

2


i

b2i

k2i κ̄

2
i (emi)e2mi − k̄iψi(emi)e2mi


−


i

∥ζi∥
2

≤ −
λ′

0

2


i

b2i e
2
mi −


i

∥ζi∥
2 .

Thus, we obtain α̃3(·) ∈ K∞ such that

U̇|(12)+(13) ≤ −α̃3 (∥ζ , em∥) . (28)

From (26) and (28), by LaSalle–Yoshizawa Theorem (see [18, pp.
492]), the equilibrium (z̄, η̄, e) = (0, 0, 0) is globally uniformly
asymptotically stable. Hence, the proof is complete.

Remark 5. It is of interest to note that our approach can also
handle the case of information digraph with the subgraph induced
by the follower agents being bidirected. It may lead to more
design freedom than the method based on (15). Recently, another
effective technique was proposed in [27] to construct the function
in (18), i.e.,

V (em) =

N
i=1

Vi(emi) =

N
i=1

ribiki

 V̄i(emi)

0
γi(s)ds

with V̄i(emi) = e2mi

for a smooth design function γi(·) ≥ 1. In this manner, the
controller may be given by

ūi = −γi(V̄i(emi))emi. (29)

This method is called changing supply functions based design,
see [27] for more details. Disregarding the difference of the agent
relative degrees, the controller (13) may have a more simplified
growth nonlinearity than (29) provided by the design in [27].

3.3. An example

For an illustration, we consider a consensus problem for a het-
erogeneous network of agents of the FitzHugh–Nagumo (FHN) dy-
namics (e.g., Refs. [14,28]), which can be described as follows:żi = ϱi1(yi − ϱi2zi)
ẏi = yi(yi − ϱi3)(1 − yi)− zi + δi(v,w)+ biui
ei = yi − y0, i = 1, . . . , 4

(30)

where ϱij = ϱ̄ij + wij > 0, j = 1, 2, 3 are some positive real pa-
rameters undergoing uncertainties wij ∈ R for the nominal value
ϱ̄ij, (zi, yi) is the state, δi(v,w) is the input disturbance, and y0 = v1
is the reference signal generated by a harmonic oscillator

v̇ = Sv, S = diag(S1, S2), Sj =


0 ωj

−ωj 0


, j = 1, 2.

Denote ϱ = (ϱ11, ϱ12, . . . , ϱ42, ϱ43). It can be shown that Assump-
tions 2 and 3 are verifiable for all agents.
Fig. 1. Profiles of e(t) and y(t).

To do the simulation, we set ω1 =
π
7 , ω2 =

π
10 , and δ1(v,w) =

0.5v3, δ2(v,w) = 0.2v4, δ3(v,w) = 0.5v4, δ4(v,w) = 0.3v3. The
steady-state generator (9) with si = 9 andΦi can be given as

0 I
0 −ℓ4, 0,−ℓ3, 0,−ℓ2, 0,−ℓ1, 0


.

where ℓ1 = 14ω2
1+ω

2
2 , ℓ2 = 49ω4

1+14ω2
1ω

2
2 , ℓ3 = 36ω6

1+49ω4
1ω

2
2 ,

and ℓ4 = 36ω6
1ω

2
2 .

Then for each i = 1, . . . , 4, we obtain the internal model (10)
determined by the pair (Mi,Gi), where Mi = Φi − GiΨi and Gi =

[9ϵ−1, 36ϵ−2, 84ϵ−3, 126ϵ−4, 126ϵ−5, 84ϵ−6, 36ϵ−7, 9ϵ−8, ϵ−9
]
⊤

and ϵ = 0.2. It ensures that allMi are Hurwitz. The information di-
graph G = {V, E,A} is chosen with V = {0, 1, 2, 3, 4} and A =

[0, 0, 0, 0, 0; 1, 0, 1, 0, 0; 0, 0, 0, 1, 0; 1, 0, 0, 0, 1; 0, 0, 0, 1, 0].
Each controller (13) is with ki = 25 and κ̄i(emi) = e6mi + 3. A sim-
ulation result is shown in Fig. 1 with ϱ = (1, 1, 2, 2, 3, 1, 1, 2,
3, 3, 1, 1), v(0) = (2, 1, 2, 3), the follower initial conditions are
(−2, 3), (−3, 1), (3,−2), (−1, 2), respectively, and all the other
initial values are set zero.

4. Conclusion

For a class of heterogeneous and minimum-phase nonlinear
agents, a global distributed output consensus problemwas studied
by an internalmodel approach. A Lyapunov function based output-
feedback protocol was proposed. It is interesting to note that the
proposed approach is also applicable to bidirected networks.

Appendix. Graph notation

Denote the information digraph G associated with the leader
and follower nodes by a triplet G := {V, E,A}, where V :=

{0, 1, 2, . . . ,N} is the node set, E ⊂ V × V is the edge set
(with self-loops excluded), and A = [aij]i,j=0,1,...,N is the weighted
adjacency matrix of (N + 1) × (N + 1). An edge of G is denoted
by an ordered pair of nodes (j, i) ∈ E with j being indicated as
a neighbor of i. A directed path [29] of G is an ordered sequence
of distinct nodes in V such that any consecutive nodes in the
sequence correspond to an edge of the digraph. A node j is said to be
connected to another node i if there is a directed path from j to i.G is
said to contain a directed spanning tree if there is at least one node,
called the root, connected to every other node. A is a nonnegative
matrix and aij > 0 if and only if (j, i) ∈ E . L = [lij]i,j=0,1,...,N with
lii =

N
j=0 aij and lij = −aij, i ≠ j is called the Laplacian associated

with G.
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