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a b s t r a c t

In this paper, a distributed constrained optimization problem is discussed to achieve the optimal point
of the sum of agents’ local objective functions while satisfying local constraints. Here neither the local
objective function nor local constraint functions of each agent can be shared with other agents. To solve
the problem, a novel distributed continuous-time algorithm is proposed by using the KKT condition com-
bined with the Lagrangian multiplier method, and the convergence is proved with the help of Lyapunov
functions and an invariance principle for hybrid systems. Furthermore, this distributed algorithm is ap-
plied to optimal load sharing control problem in power systems. Both theoretical and numerical results
show that the optimal load sharing can be achieved within both generation and delivering constraints in
a distributed way.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Recent years have witnessed increasing research attention on
distributed optimization and its applications in many engineering
systems (see [1–10]). In fact, distributed optimization algorithms
with a global objective function as the sum of agents’ local ob-
jective functions have been proposed in the multi-agent systems
where each agent’s local objective/constraint function cannot be
known or shared by other agents, maybe due to the privacy con-
cern, computational burden, or communication cost/failure.

Actually, optimization problems often involve certain con-
straints, and great efforts keep devoted to solve the constrained
optimization problems in a distributedway (see [2–8]). Projection-
based distributed algorithmwas proposed in [2], and further inves-
tigated in [5] and [7] for set constrained optimization. Lagrangian
multiplier method was investigated in [4], while a penalty-based
method was proposed in [8], both for function constrained prob-
lems. Meanwhile, dual decomposition was applied to separable
problems with affine constraints in [3,6]. However, those results
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(with discrete-time algorithms) mainly addressed the problems
where all the agents have the same constraints, which may be re-
strictive in some situations.

The continuous-time dynamics for distributed optimization at-
tract more and more attention by taking advantage of the well-
developed continuous-time control techniques and by concerning
the implementation of physical systems (see [11–17]). The
continuous-time optimization algorithm was studied in the sem-
inal work [18] and then investigated with various backgrounds
(referring to [19,20]). Recently, there have been discussions
on continuous-time distributed optimization. For example, a
continuous-time dynamics was proposed to show connectivity
conditions for the convex set intersection computation in [12]. A
second-order distributed dynamics was proposed to solve an un-
constrained optimization in [11], while a similar algorithm was
also constructed with non-smooth objective functions in [16].
Moreover, a distributed optimization algorithm based on propor-
tional–integral control was given in [15], and later internal model
principle was employed to achieve exact optimization with capa-
bility of rejecting external disturbance in [13]. However, to our
knowledge, very few continuous-time distributed algorithms for
constrained optimization have ever been documented.

The distributed load sharing optimization problem has been
widely investigated in power systems (see [21–24]). It aims to find
the optimal generation allocation to share the loads within both
the generation and the transmission capacity bounds, which can
be formulated as a class of distributed constrained optimization
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problems. [21] provided an interesting insight that the frequency
and power flow dynamics are closely related with a primal–dual
optimization algorithm. [22–24] considered the distributed load
sharing control with or without generation capacity constraints.
However, suchworks have not taken the transmission line capacity
constraints into consideration, which is crucial for the practicality
of the load sharing control. Theoretically, the distributed load
sharing optimization considering both the generation and the
transmission constraints can lead to a new class of distributed
constrained optimization problem which is the focus of this
paper.

In this paper, we study a distributed optimization problem for
agents with their local inequality constraints, and its application to
the load sharing optimization. Different from the existing results
such as those given in [2–8] and [25,11–17], our distributed
algorithm enables the agents to find the optimal pointwith respect
to the sum of the local objective functions while satisfying all the
local constraints. Note that the optimal solutionmust bewithin the
intersection set of each agent’s local private feasible set specified
by the local constraints, while neither local objective function nor
local constraint functions of each agent can be known or shared by
other agents.

To solve the complicated optimization problem, we propose
a novel continuous-time distributed algorithm by using the
KKT condition and saddle point property, and analyze the
algorithmwith constructed Lyapunov functions and hybrid LaSalle
invariance principle. Then we apply the proposed algorithm to
the optimal load sharing problem considering both the generation
limits of the power generators and the delivering limits of the
transmission lines. This extends the existing results presented
in [21–24], leading to a more practical optimal distributed load
sharing control. We also provide the simulation experiments to
show the effectiveness of the proposed method.

The paper is organized as follows. The distributed constrained
optimization problem is formulated in Section 2, while the
continuous-time algorithm is proposed in Section 3. Then the
convergence of the algorithm is proved along with a numerical
experiment in Section 4. Moreover, the application to the
distributed load sharing optimization in power systems is shown
in Section 5. Finally, the concluding remarks are given in Section 6.

Notations: Denote 1m = (1, . . . , 1)T ∈ Rm and 0m = (0,
. . . , 0)T ∈ Rm. For a column vector x ∈ Rm, xT denotes its trans-
pose. In denotes the identity matrix in Rn×n. For a matrix A = [aij],
aij or Aij stands for the matrix entry in the ith row and jth column
of A.

2. Problem formulation

In this section, we give the formulation of a distributed
optimization problem with local inequality constraints.

Consider a group of agents, N = {1, . . . ,N}, where each
has local objective function fi(x) and local inequality con-
straints g i

j (x) ≤ 0, j = 1, . . . , J i. The agents need to optimize the
sum of their local objective functions fi(x) under all the agents’ lo-
cal constraints. Since both the local objective functions fi(x) and
local constraints g i

j (x), j = 1, . . . , J i are only known by agent i
and cannot be shared with other agents, the optimization has to
be achieved with the cooperation of all the agents in a distributed
way. To be strict, we consider

Problem 1.

min f (x), f (x) =

N
i=1

fi(x)

subject to g i
j (x) ≤ 0, j = 1, . . . , J i, i = 1, . . . ,N,
where x ∈ Rm is the decision variable, and fi(x), g i
j (x), j = 1,

. . . , J i, i = 1, . . . ,N are twice continuously differentiable and
convex functions over Rm, which are only known by agent i.

Remark 2.1. Problem 1 is different from the formulations given
in [2,4,5,7,8], because each agent has local private convex feasible
set Xi = {x ∈ Rm

|g i
j (x) ≤ 0, j = 1, . . . , J i} specified by local

constraint functions. Moreover, Problem 1 is not the separable one
considered in [3,6] and [25], because the decision variable x is
common for all the agents. Therefore, the agents need to find one
common point within the intersection set X =

N
i=1 Xi in order

to minimize the sum of local objective functions, without knowing
other agents’ feasible sets.

Then we give the following assumptions for Problem 1:

Assumption 1. At least one of the local objective functions has
positive definite Hessian ∇

2fi(x) over x ∈ Rm.

Assumption 1 implies that at least one of the local objective
functions is strictly convex, hence the uniqueness of the optimal
solution (see Theorem 2.69 in [26]).

Assumption 2. Problem 1 has finite optimal solution, and X =N
i=1 Xi has nonempty interior point.

Assumption 2 guarantees Slater’s constraint qualification
condition, andmoreover, this assumption implies that there exists
finite x∗ such that x∗

= argmin f (x) =
N

i=1 fi(x), x ∈ X , and
there exists at least one interior point x0 of X with g i

j (x0) < 0, j =

1, . . . , J i, i = 1, . . . ,N .
From Theorems 3.25, 3.26 and 3.27 in [26], we have the

following result.

Lemma 2.2. With Assumptions 1 and 2, the point x∗ is the optimal
solution of Problem 1 if and only if there exist Lagrangian multipliers
λ∗

ij ≥ 0, j = 1, . . . , J i, i = 1, . . . ,N (or denoted as {λ∗

ij}) satisfying
the following KKT condition.

N
i=1

∇fi(x∗) +

N
i=1

J i
j=1

λ∗

ij∇g i
j (x

∗) = 0

g i
j (x

∗) ≤ 0, λ∗

ijg
i
j (x

∗) = 0, j = 1, . . . , J i, i = 1, . . . ,N.

(1)

Furthermore, the set of multipliers {λ∗

ij} satisfying KKT condition (1) is
closed, convex, and bounded.

By Lemma 2.2, the distributed optimization task is to coopera-
tively find the point x∗ with multipliers {λ∗

ij} to satisfy (1).
In the multi-agent network, each agent can exchange informa-

tion only with some neighbor agents. The network topology can be
described by a graph G = (N , E) with N = {1, . . . ,N} represent-
ing the agents set and E ⊂ N × N containing all the information
interactions between agents. If agent i can get information from
agent j, then (j, i) ∈ E . The graph G is undirected when (i, j) ∈ E
if and only if (j, i) ∈ E . A path of graph G is a sequence of distinct
agents in N such that any consecutive agents in the sequence cor-
responding to an edge of the graphG. Agent j is said to be connected
to agent i if there is a path from j to i. Graph G is said to be con-
nected if any two agents are connected. Define the adjacency ma-
trix A = [aij] associated with G with aij = 1 if (j, i) ∈ E and aij = 0
otherwise. Then the Laplacian of graph G is L = Deg − A with the
degree matrix Deg = diag{

N
j=1 a1j, . . . ,

N
j=1 aNj}. More details

about graph theory for multi-agent network can be found in [27].
The following assumption is about the connectivity of graph G,
which guarantees that any agent’s information can reach any other
agents.
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Assumption 3. The undirected graph G is connected.

Clearly, Assumption 3 implies that 0 is a simple eigenvalue of
Laplacian L with the eigenspace {α1N |α ∈ R}, and L1N = 0N ,
1T
NL = 0T

N (see [27]).

3. Distributed optimization algorithm

In this section, we propose a distributed continuous-time
algorithm for Problem 1.

Denote xi ∈ Rm as agent i’s estimation of the optimal solution x∗,
and x̄ = (xT1, . . . , x

T
N)T . Then we consider the following problem:

Problem 2.

min f̄ (x̄) =

N
i=1

fi(xi) +
1
2
x̄T L ⊗ Imx̄

subject to L ⊗ Imx̄ = 0mN ,

g i
j (xi) ≤ 0, j = 1, . . . , J i, i = 1, . . . ,N

where L is the Laplacian of graph G.

Remark 3.1. The equality constraint with Laplacian matrix L
ensures that all the estimations must lie in the null space of L,
which is exactly the consensus space {x1 = x2 =, . . . ,= xN}.
The quadratic penalty term in the objective function utilizes the
augmented Lagrangian method (see section 4.7 of [26]) for the
consensus, and it plays a damping role in the algorithm (as in [15]).

Then we show a relationship between Problems 1 and 2.

Lemma 3.2. Suppose Assumptions 1–3 hold. Then Problem 2 has the
optimal solution as x̄∗

= (x∗, . . . , x∗)where x∗ is the optimal solution
of Problem 1.

Denote vi ∈ Rm as the multiplier for constraint
N

j=1 aij(xi −

xj) = 0m, and λij ≥ 0 as the multiplier for constraint g i
j (xi) ≤

0. For the same reason of Lemma 2.2, x̄∗
= (x∗

1, . . . , x
∗

N) is the
optimal solution of Problem 2 if and only if there exist Lagrangian
multipliers v∗

i , λ
∗

ij ≥ 0, j = 1, . . . , J i, i = 1, . . . ,N (denoting
v̄∗

= (v∗

1
T , . . . , v∗

N
T )T and λ̄∗

= (λ∗

ij, j = 1..., J i, i = 1, . . . ,N)
for simplicity in the sequel) such that the following KKT condition
holds:

∇fi(x∗

i ) +

N
j=1

aij(x∗

i − x∗

j ) +

N
j=1

aij(v∗

i − v∗

j )

+

J i
j=1

λ∗

ij∇g i
j (x

∗

i ) = 0, i = 1, . . . ,N;

g i
j (x

∗

i ) ≤ 0, λ∗

ijg
i
j (x

∗

i ) = 0, j = 1, . . . , J i, i = 1, . . . ,N;

L ⊗ Imx̄∗
= 0mN .

(2)

Remark 3.3. Under Assumptions 2 and 3, Slater’s constraint
qualification condition also holds for Problem 2. There exist
multipliers (v̄∗, λ̄∗) satisfying KKT condition (2) and belonging to
a compact convex set, from Theorems 3.25, 3.26 and 3.27 in [26].

Since graph G is connected, KKT condition (2) is also equivalent
to the following one:

∇fi(x∗) +

N
j=1

aij(v∗

i − v∗

j ) +

J i
j=1

λ∗

ij∇g i
j (x

∗) = 0;

λ∗

ij ≥ 0, g i
j (x

∗) ≤ 0, λ∗

ijg
i
j (x

∗) = 0, j = 1, . . . , J i.

(3)
Hence, if all the agents can find the point x̄∗ with multiplier v̄∗, λ̄∗

satisfying (3) in a distributed way, then all the agents’ estimations
converge to the same optimal solution of Problem 1.

We design the distributed algorithm by the observation that
the point satisfying (3) is also the saddle point of the following
Lagrangian function.

L(x̄, v̄, λ̄) =

N
i=1

fi(xi) + v̄T L ⊗ Imx̄ +
1
2
x̄T L ⊗ Imx̄

+

N
i=1

J i
j=1

λijg i
j (xi) λij ≥ 0. (4)

By the Saddle Point Theorem (Theorem 4.7 in [26]), we have:

Lemma 3.4. Given Assumptions 1–3, an optimal solution (x∗

1, . . . ,
x∗

N) of Problem 2 satisfies the KKT condition (3) with Lagrangian
multiplier v̄∗, λ̄∗ if and only if (x̄∗, v̄∗, λ̄∗) is a saddle point of the
Lagrangian function L(x̄, v̄, λ̄) in (4).

To find one saddle point of Lagrangian function (4) with a
continuous-time algorithm, we adopt the primal–dual gradient
dynamics as follows, which was first proposed in a centralized
version in [18] and further investigated in [25],

ẋi = −∇xiL(x̄, v̄, λ̄);

v̇i = ∇viL(x̄, v̄, λ̄), λ̇ij = [∇λijL(x̄, v̄, λ̄)]+λij .
(5)

Hence, the dynamics for agent i is:

ẋi = −∇fi(xi) −

N
j=1

aij(xi − xj)

−

N
j=1

aij(vi − vj) −

J i
j=1

λij∇g i
j (xi);

v̇i =

N
j=1

aij(xi − xj);

λ̇ij = [g i
j (xi)]

+

λij
, j = 1, . . . , J i.

(6)

Here [p]+λ = p if p > 0 or λ > 0, and [p]+λ = 0 otherwise. Notice
that x(t) ≥ 0, ∀t ≥ 0 for the dynamics ẋ = [f (x)]+x with the initial
condition x(0) ≥ 0. Thus, the multipliers in λ̄ are nonnegative all
the time due to (6).

In our formulation, agent i has its private variables xi, vi, λij, j =

1, . . . , J i in (6), and only needs to exchange state xi and multiplier
vi with its neighbor agents through graph G. Therefore, the
algorithm (6) is fully distributed because each agent only needs to
manipulate its private local objective function and local constraint
functions, and only needs partial information of its neighbors.

Remark 3.5. Note that (6) contains an additional second-order
consensus dynamics to ensure all the agents to reach the same
optimal point, differing from that given in [25]. Moreover, if there
were no constraints in our problem formulation, our algorithm
would be consistent with those algorithms for the unconstrained
optimization in [11,15–17].

4. The convergence analysis

In this section, we prove the convergence of algorithm (6),
and then show an illustrative simulation example. Without loss
of generality, we assume the dimension of the decision variable
x ∈ Rm to bem = 1 here.
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Let us first analyze the equilibrium point (x̄∗, v̄∗, λ̄∗) of (6).
Since graph G is connected, ˙̄v = 0 yields x∗

1 = x∗

2 =, . . . ,= x∗

N =

x∗. When [g i
j (x

∗)]+
λ∗
ij

= 0, we have

λ∗

ijg
i
j (x

∗) = 0, g i
j (x

∗) ≤ 0. (7)

From the first equation of (6), we get

∇fi(x∗) +

N
j=1

aij(v∗

i − v∗

j ) +

J i
j=1

λ∗

ij∇g i
j (x

∗) = 0,

i = 1, . . . ,N. (8)

Hence, the equilibrium point of (6) satisfies KKT condition (3).
Moreover, adding those N equations in (8) and combined with (7),
we obtain KKT condition (1) since the graph G is also undirected.
Therefore, the equilibrium point of (6) contains the optimal
solution to Problem 1.

We will prove that all the agents converge to the set of equilib-
rium points of (6) satisfying ˙̄x = 0, ˙̄v = 0, ˙̄λ = 0, and therefore,
find the same optimal solution to Problem 1.

At first, the following result shows that the trajectories are
bounded.

Lemma 4.1. Under Assumptions 1–3, the trajectories of the dynam-
ics (6) with any finite initial points are bounded.

Proof. Define the function

W (x̄, v̄, λ̄) =

N
i=1

1
2

(xi − x∗

i )
2
+ (vi − v∗

i )
2
+

J i
j=1

(λij − λ∗

ij)
2


where (x̄∗, v̄∗, λ̄∗) is one finite point satisfying KKT condition (2).

Then along the trajectories of the dynamics (6),

dW (x̄, v̄, λ̄)

dt
=

N
i=1

−(xi − x∗

i )∇xiL(x̄, v̄, λ̄)

+ (vi − v∗

i )∇viL(x̄, v̄, λ̄) +

J i
j=1

(λij − λ∗

ij)[∇λijL(x̄, v̄, λ̄)]+λij

≤

N
i=1

− (xi − x∗

i )∇xiL(x̄, v̄, λ̄) + (vi − v∗

i )∇viL(x̄, v̄, λ̄)

+

J i
j=1

(λij − λ∗

ij)∇λijL(x̄, v̄, λ̄)

 . (9)

In the last step of (9), if the projection is active at some constraint
index j for agent i, (λij − λ∗

ij)g
i
j (xi) ≥ 0, due to g i

j (xi) < 0,
λij = 0 and λ∗

ij ≥ 0. Because L(x̄, v̄, λ̄) is convex in xi and
concave in λij, vi (in fact, linear in λij, vi),

N
i=1[−(xi − x∗

i )∇xi
L(x̄, v̄, λ̄)] ≤ L(x̄∗, v̄, λ̄)−L(x̄, v̄, λ̄), and ((v̄, λ̄)−(v̄∗, λ̄∗))T (∇v̄

L(x̄, v̄, λ̄), ∇λ̄L(x̄, v̄, λ̄)) ≤ L(x̄, v̄, λ̄) − L(x̄, λ̄∗, v̄∗).
Since (x̄∗, v̄∗, λ̄∗) is one saddle point of the Lagrangian function

L(x̄, v̄, λ̄) by Lemma 3.4, after manipulation, we have

dW (x̄, v̄, λ̄)

dt
≤ L(x̄∗, λ̄, v̄) − L(x̄, v̄, λ̄)

+ L(x̄, v̄, λ̄) − L(x̄, λ̄∗, v̄∗)

≤ L(x̄∗, λ̄, v̄) − L(x̄∗, v̄∗, λ̄∗)

+ L(x̄∗, v̄∗, λ̄∗) − L(x̄, λ̄∗, v̄∗) ≤ 0. (10)

From Assumption 2 and Remark 3.3, (x̄∗, v̄∗, λ̄∗) is a finite point.
Thus, there is a positive invariant compact set for algorithm (6):
{(x̄, v̄, λ̄)|W (x̄, v̄, λ̄) ≤ W (x̄(0), v̄(0), λ̄(0))}, which also implies
that the trajectories are bounded. �

To show that x̄, v̄, λ̄ converge to the set of points satisfying
˙̄x = 0, ˙̄v = 0, ˙̄λ = 0, we will adopt a LaSalle invariance principle
of hybrid systems (see [28] and [25]). Define an index set of local
constraint functions for agent i as σi = {j|λij = 0, g i

j (xi) < 0}.
The constraints corresponding to the set σi are irrelevant with the
optimization for agent i. Take σ = {σ1, . . . , σN}, and then different
σ ’s indicate different multipliers dynamics. Hence, algorithm (6)
can be regarded as a hybrid system, where σ indicates which
dynamics the multi-agent system is performing with. Because the
numbers of the constraints and agents are finite, there are only a
finite number of different index sets σ .

Construct a Lyapunov function:

V (˙̄x, ˙̄v, ˙̄λ; σ) =
1
2

N
i=1


ẋ2i + v̇2

i +


j∉σi

λ̇2
ij


. (11)

Since σ is totally determined by the state (x̄, v̄, λ̄) and λ̇ij = 0
for j ∈ σi, Lyapunov function (11) only depends on (x̄, v̄, λ̄).
When the index set σ changes as the changing of the state (x̄, v̄, λ̄)

(taking some g j
i (xi) ≤ 0 leads λij decreasing to zero), the function

V (˙̄x, ˙̄v, ˙̄λ; σ) may be discontinuous. However, the following result
shows that V (˙̄x, ˙̄v, ˙̄λ; σ) is non-increasing along the dynamics (6).

Lemma 4.2. With Assumptions 1–3, the function V (˙̄x, ˙̄v, ˙̄λ; σ)
in (11) is non-increasing along the dynamics (6) all the time.

Proof. With fixed σ , since the matrix L is symmetric,

dV
dt

=

N
i=1


ẋiẍi + v̇iv̈i +


j∉σi

λ̇ijλ̈ij



=

N
i=1


ẋi


−∇

2fi(xi)ẋi −
N
j=1

aij(ẋi − ẋj) −

N
j=1

aij(v̇i − v̇j)

−


j∉σi

[∇g i
j (x)λ̇ij + λij∇

2g i
j (xi)ẋi]



+ v̇i


N
j=1

aij(ẋi − ẋj)


+


j∉σi

λ̇ij∇g i
j (x)ẋi



=

N
i=1


−ẋi∇2fi(xi)ẋi −


j∉σi

λijẋi∇2g i
j (xi)ẋi


− ˙̄x

T
L˙̄x − ˙̄x

T
L ˙̄v + ˙̄v

T
L˙̄x

= −˙̄x
T 

diag{∇2f1(x1) . . . ∇2fN(xN)} + L

˙̄x

−

N
i=1


j∉σi

λijẋi∇2g i
j (xi)ẋi


≤ 0 (12)

where ∇
2fi(xi) and ∇

2g i
j (xi) are positive semidefinite for all xi ∈

Rm (see Theorem 2.69 in [26]) because fi(x) and g i
j (x) are convex

functions with Slater’s condition, and the last step in (12) holds
because the Laplacian L is positive semidefinite and λij ≥ 0.

For the state (x̄, v̄, λ̄) is changing, the index set σ may change
accordingly. The following analysis shows that the Lyapunov
function V (˙̄x, ˙̄v, ˙̄λ; σ) keeps non-increasing even when the index
set σ changes.

(i) The first case is that the change of the states results in that
some index set σi is reduced from time t− to time t+. For some
agent i and corresponding constraint g i

j (xi), the function g i
j (xi)
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goes through zero from negative to positive. Then V (˙̄x, ˙̄v, ˙̄λ; σ)

will change from V (˙̄x, ˙̄v, ˙̄λ; σ(t−)) to V (˙̄x, ˙̄v, ˙̄λ; σ(t+)) with
V (˙̄x, ˙̄v, ˙̄λ; σ(t+)) owning an extra term related to λ̇2

ij. However, for

this term λ̇2
ij(t−) = λ̇2

ij(t+) = 0. Thus the function V (˙̄x, ˙̄v, ˙̄λ; σ) is
continuous at time t . With the same argument as before, dV

dt ≤ 0

holds for t < t− and t > t+ and V (˙̄x, ˙̄v, ˙̄λ; σ)(t−) = V (˙̄x,
˙̄v, ˙̄λ; σ)(t+).

(ii) The second case is that from time t− to time t+, for
some agent i and some constraint g i

j (xi), the corresponding mul-
tiplier λij decreases from positive to zero. This causes func-
tion V (˙̄x, ˙̄v, ˙̄λ; σ(t+)) to lose a nonnegative term compared with
V (˙̄x, ˙̄v, ˙̄λ; σ(t−)). Thus, dV

dt ≤ 0 for t < t− and t > t+ and
V (t+) ≤ V (t−). �

Next we introduce a LaSalle invariance principle for hybrid
systems obtained in [28]:

Lemma 4.3. Suppose the hybrid dynamics (6) have a compact,
positively invariant set Ω (i.e., trajectories starting in Ω stay in Ω)
and a function V (˙̄x, ˙̄v, ˙̄λ; σ) decreasing along trajectories in Ω . Then
every trajectory inΩ converges to I, the maximal positively invariant
set within Ω with trajectory satisfying

•
dV (˙̄x, ˙̄v, ˙̄λ;σ)

dt ≡ 0 in intervals of fixed σ ;

• V (˙̄x, ˙̄v, ˙̄λ; σ−) = V (˙̄x, ˙̄v, ˙̄λ; σ+) if σ switches at time t between
σ− and σ+.

Based on the above analysis, we give our main result.

Theorem 4.4. Suppose Assumptions 1–3 hold.With algorithm (6), all
the agents converge to the same optimal solution of Problem 1.

Proof. By the invariance principle given in Lemma 4.3, for a
fixed σ ,

dV (˙̄x, ˙̄v, ˙̄λ; σ)

dt
≡ 0.

WithAssumption 1, one of the local objective functions has pos-
itive definite Hessian ∇

2fi(x). Then the matrix diag{∇2f1(x1), . . . ,
∇

2fN(xN)}+L is positive definite. (With Assumption 3, if a nonzero
vector satisfies xT Lx = 0N , it must be of the form x = α1N . Be-
cause ∇

2fi(xi) is positive semidefinite for all i and one of ∇
2fi(xi)

is positive definite, the matrix diag{∇2f1(x1), . . . ,∇2fN(xN)}+ L is
positive definite.) Thus, ˙̄x = 0 from (12).

With ẋi = 0, we claim that all xi must reach consensus (that is,
x1 = x2 = · · · = xN = x∗). Otherwise, there is vi such that vi goes
to infinity from ˙̄v = Lx̄, because {α1N |α ∈ R} is the null space of
L. This contradicts the boundedness of trajectories in Lemma 4.1,
which implies ˙̄v = 0.

If there exists g i
j (x

∗) > 0 at the point x∗, then the corresponding
λij goes to infinity with λ̇ij = g i

j (x
∗), which also contradicts the

boundedness of the trajectories in Lemma 4.1. Therefore, g i
j (x

∗) ≤

0, j = 1, . . . , J i. If there is g i
j (x

∗) < 0, then the corresponding
λ∗

ij = 0. Otherwise, λij will decrease to zero, which contradicts the

continuity of function V (˙̄x, ˙̄v, ˙̄λ; σ). Therefore, ˙̄λ = 0.
As a result, the trajectories converge to one point such that

˙̄x = 0, ˙̄v = 0, ˙̄λ = 0

which also satisfies the KKT condition (1). Thus, all the agents con-
verge to the same optimal solution of Problem 1. �

Here is a numerical example to illustrate our algorithm.
Example 4.5. There are five agents with local objective functions
as follows:

f1(y1, y2) = 2y1 − 10y2;
f2(y1, y2) = 3y21 ln(y21 + 1) + 2y22;

f3(y1, y2) = 3(y1 − 10)2 + (y2 − 8)2;

f4(y1, y2) =
4y21

2y21 + 1
+ 0.1(y1 + y2)2;

f5(y1, y2) = (y1 + y2)2 + 2(y1 + y2).

Agent 1 has local constraints as g1
1 (y1, y2) = (y1−1)2+y22−1 ≤

0 and g1
2 (y1, y2) = y21 + y22 − 1 ≤ 0. Agent 2 has local constraint

as g2(y1, y2) = y1 −
1
2 ≤ 0. Agent 3 has local constraint as

g3(y1, y2) = −y2 ≤ 0. Agent 4 has local constraint as g4(y1, y2) =

y21 + (y2 − 2)2 − 4 ≤ 0, while there is no constraint for agent 5.
Notice that agent 1 has just a linear objective function, while

with f5(y1, y2) Assumption 1 is satisfied. Moreover, different
agents have different inequality constraints, which implies that
they have different local feasible sets. The intersection set of the
local feasible sets is shown in Fig. 1.

The information sharing graph G in algorithm (6) is set as a ring
graph: 1 ↔ 2 ↔ 3 ↔ 4 ↔ 5 ↔ 1. Set the initial values of
the five agents’ states as (−2, 4), (2, 3), (4, −3), (1, −2), (−1, 2),
respectively. Set the initial values of the multiplies as zero. The
algorithm (6) is solved with Matlab Simulink ODE1 solver.

The state trajectories of the five agents are shown in Fig. 1,
and the initial points are marked with circles. It can be seen that
all the agents asymptotically approach the same optimal solution
( 1
2 ,

√
3
2 ), which satisfies all the local constraints and minimizes the

sum of local objective functions, without knowing other agents’
constraints or feasible sets.

5. Distributed optimal load sharing control

In this section, we apply the proposed algorithm to the
distributed optimal load sharing control in power systems.

5.1. Problem statement

In a power grid, the power sources are responsible to decide
the most efficient generation allocation to meet the load demand
within the generation capacities and transmission line delivering
limits, which is referred as the optimal load sharing problem.
Recent years, with the high penetration of renewable generations
and deregulation of power markets, there is increasing research
interest in distributed load sharing control [21–24].

Consider a transmission network GP = (NP , EP) with NP =

{1, . . . , n} as the buses set and EP = {1, . . . ,m} as the transmis-
sion lines set. Each pair of buses i, k ∈ NP that are able to exchange
power are connected by a transmission line l ∈ EP . After arbitrar-
ily assigning direction to each line l as the reference power flow
direction, define the incidence matrix D ∈ Rn×m with Dil = 1 if
line l goes to bus i and Dil = −1 if line l origins from bus i, and
Dil = 0, otherwise.

Each bus has both generator to provide power and local load
demand to be met. The load at bus i is constant as Pd

i , and the local
cost function at bus i is fi(P

g
i ) with respect to generation Pg

i . The
generator at bus i has generation capacity constraint: Pg

i ≤ Pg
i ≤

P̄g
i . The power flow vl in transmission line l must satisfy vl ≤ vl ≤

v̄l. P
g
i , P̄

g
i and vl, v̄l are constants, which should be decided with

the consideration of physical systems operation limits. Then we
formulate the following optimization problem to determinate the



50 P. Yi et al. / Systems & Control Letters 83 (2015) 45–52
–2 –1 0 1 2 3 4 5 6 7
The first optimization coordinate

–3

–2

–1

0

1

2

3

4

5

T
he

 s
ec

on
d 

op
ti

m
iz

at
io

n 
co

or
di

na
te

Fig. 1. The state trajectories of agents’ estimations of optimal solution.
optimal generation at each bus tomeet the overall load demands at
the lowest cost subject to generation and transmission constraints.

min
Pg∈Rn,v∈Rm

f (Pg , v) =


i∈NP

fi(P
g
i )

s.t Pg
− Dv − Pd

= 0n;

Pg
i ≤ Pg

i ≤ P̄g
i , ∀i ∈ NP ;

vl ≤ vl ≤ v̄l, ∀l ∈ EP ,

(13)

where decision vector Pg
= (Pg

1 , . . . , Pg
n ) represents the genera-

tion allocation, and v = (v1, . . . , vm) gives the network flow on
each transmission line. Pd

= (Pd
1 , . . . , P

d
n ) denotes the load de-

mands at all the buses. The power balance is guaranteed by the
equality constraint, which is the DC power flow equation.

In practice, problem (13) should be solved in a distributed
manner, because each bus’s local generation cost fi(P

g
i ) and local

generation capacities Pg
i , P̄

g
i cannot be known by other buses.

Besides that, each bus can only know the power flow capacities
vl, v̄l of the transmission lines that it is directly connected to.

Remark 5.1. The load sharing problem (13) considers both the
power grid topology and transmission line capacity limitations,
hence is a more realistic model than those proposed in [21–24]
which only considered the overall power balance and generation
capacity constraints. An equivalent formulation of problem (13) is:

min
v∈Rm


i∈NP

f̄i(v) =


i∈NP

fi


m
l=1

Dilvl + Pd
i



Pg
i ≤

m
l=1

Dilvl + Pd
i ≤ P̄g

i , ∀i ∈ NP ;

vl ≤ vl ≤ v̄l, ∀l ∈ EP .

(14)

Because (14) is not separable for the decision variable v ∈ Rm

as those in [21–24], the dual decomposition methods in [3,6,25]
and [21–24] may not be directly applied to it, and may also fail for
problem (13).

Clearly, (14) matches the formulation of Problem 1 with
each bus having local generation cost function and local private
inequality constraints Pg

i ≤
m

l=1 Dilvl + Pd
i ≤ P̄g

i . For the security
operation of power system, the optimal power flow must locate
within the intersection set of all the buses’ private feasible sets. In
what follows, we apply the ideas andmethod in Section 3 to derive
a distributed load sharing algorithm.
5.2. Algorithm

With the incidence matrix D and abuse of notations, we still
define the incidence line set of each bus i as Ei = {l ∈ EP |Dil ≠ 0}
when there is no confusion. We also define the incidence bus set
for each line l as Nl = {i ∈ NP |Dil ≠ 0}. Clearly, |Nl| = 2, ∀l ∈ EP .
Then we define variables {vl

i, l ∈ Ei} as bus i’s estimations of the
optimal power flow on the transmission lines adjacent to bus i. To
solve problem (13) in a distributed way, we first give the following
formulation:

min
Pg∈Rn,ṽ∈R2m

f (Pg , ṽ) =


i∈NP

fi(P
g
i )

+
1
2


l∈EP ,i,k∈Nl

[vl
i, v

l
k]

T Lc[vl
i, v

l
k],

s.t Pg
i −


l∈Ei

Dilv
l
i − Pd

i = 0, ∀i ∈ NP ;

Pg
i ≤ Pg

i ≤ P̄g
i , ∀i ∈ NP ;

vl ≤ vl
i ≤ v̄l, ∀l ∈ Ei, i ∈ NP ;

Lc[vl
i, v

l
k] = 02, i, k ∈ Nl, ∀l ∈ EP ,

(15)

where Lc =


1 −1

−1 1


. Here the decision variable ṽ = ({vl

1},

{vl
2}, . . . , {v

l
n}) becomes 2m dimensional, where each sub-vector

variable is {vl
i} = (vl

i, l ∈ Ei).

Remark 5.2. In (15), with the last equality constraints, the
estimations of each pair of buses on the power flow of the
transmission line connecting themhave to reach consensus. Hence,
denote (Pg∗, v∗) and (P̄g , v̄) as the optimal solutions of problems
(13) and (15), respectively, and there must be Pg∗

= P̄g and
v∗

l = v̄l
i, ∀i ∈ Nl, ∀l ∈ EP .

For equality constraint Pg
i −


l∈Ei

Dilv
l
i − Pd

i = 0, γi is given
as the associated Lagrangian multiplier. λi, λ̄i are given as the
multipliers for Pg

i ≤ Pg
i ≤ P̄g

i , respectively. η
l
i
, η̄l

i, θ
l
i , l ∈ Ei, are

given as the multipliers for vl ≤ vl
i ≤ v̄l, v

l
i − vl

Nl\i
= 0, l ∈ Ei,

respectively. Then the Lagrangian function of (15) is:

L(Pg
i , γi, λi, λ̄i; vl

i, η
l
i
, η̄l

i, θ
l
i , l ∈ Ei; i ∈ NP)

=


i∈NP


fi(P

g
i ) + γi(P

g
i −


l∈Ei

Dilv
l
i − Pd

i )


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+


i∈NP

(λi(P
g
i − Pg

i ) + λ̄i(P
g
i − P̄g

i ))

+


i∈NP


l∈Ei

(ηl
i
(vl − vl

i) + η̄l
i(v

l
i − v̄l))

+


l∈EP ,i,k∈Nl


(θ l

i , θ
l
k)

T Lc(vl
i, v

l
k) +

1
2
(vl

i, v
l
k)

T Lc(vl
i, v

l
k)


.

Applying the primal–dual gradient dynamics in (5) with simple
calculation, we get the dynamics for bus i as follows:

Ṗg
i = −(∇fi(P

g
i ) + γi − λi + λ̄i),

γ̇i = Pg
i −


l∈Ei

Dilv
l
i − Pd

i ,

λ̇i = [Pg
i − Pg

i ]
+

λi
, ˙̄λi = [Pg

i − P̄g
i ]

+

λ̄i
,

v̇l
i = −(−γiDil − ηl

i
+ η̄l

i) − (θ l
i − θ l

Nl\i) − (vl
i − vl

Nl\i),

l ∈ Ei,

θ̇ l
i = vl

i − vl
Nl\i, l ∈ Ei

η̇l
i
= [vl − vl

i]
+

ηli
, l ∈ Ei, ˙̄η

l
i = [vl

i − v̄l]
+

η̄li
l ∈ Ei.

(16)

The variables Pg
i , γi, λi, λ̄i, and {vl

i; ηl
i
, η̄l

i; θ l
i , l ∈ Ei} are

associated with bus i. Then we observe that only the dynamics of
v̇l
i, θ̇

l
i , l ∈ Ei need the state information {vl

Nl\i
, θ l

Nl\i
|l ∈ Ei} from

neighbor buses {Nl \ i|l ∈ Ei}. In other words, each pair of buses i, k
connected by line l (i, k ∈ Nl) only needs to exchange information
{vl

i, θ
l
i } and {vl

k, θ
l
k}.

Remark 5.3. Since each bus i only needs to know the local
generation cost function fi(P

g
i ), the local generation capacity

bounds P̄g
i , Pg

i , and the capacities of the transmission lines it
directly connects to, {vl, v̄l|l ∈ Ei}, and to exchange information
with its neighboring buses {Nl \ i|l ∈ Ei}, the algorithm (16) is a
fully distributed algorithm for the problem (13).

Based on a similar analysis of Theorem 4.4, we have the
following result:

Corollary 5.4. Suppose that each pair of buses connected by the
same transmission line can exchange information bi-directionally.
Given all the cost functions fi(P

g
i ) being continuously differentiable

convex functions with positive definite Hessian ∇
2fi(P

g
i ), then with

algorithm (16) all the buses can find the optimal generation allocation
corresponding to problem (13).

It is worthy of noting that the load sharing model (13) with
distributed algorithm (16) has the following highlights:

(i) Here we consider various physical constraints for optimal
load sharing. The generator capacity constraint is crucially
important for the security operation of both traditional and
nontraditional generators, such as storagedevice andwind turbine.
The transmission line capacity constraints are also critical for
load sharing in low-voltage distribution network (e.g., micro-grid).
With the consideration of the network topology and transmission
line delivering limits, our optimizationmodel (13) ismore practical
than some existing ones, such as [21–24].

(ii) With the distributed algorithm (16), all the buses can adap-
tively achieve secure and optimal load sharing among the dis-
tributed generators. Then optimal load sharing control is relatively
easily realizable with a ‘‘peer-to-peer’’ architecture, in addition to
the conventional ‘‘master–slave’’ hierarchal one. Moreover, our al-
gorithmmay also enable ‘‘plug-and-play’’ optimal control in power
systems with scheduled or unscheduled environmental changes,
including load changes, generator/load buses joining-in or leaving-
out, generation cost changes, and transmission lines switches.
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Fig. 2. The state trajectories of generation levels.

5.3. Example

For illustration, we consider a five-bus four-line power grid
with the incidence matrix as

D =


−1 −1 0 0
1 0 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1

 .

The initial generation cost functions of the five buses are set as
follows:

f1(P
g
1 ) = 2Pg

1
2
+ 2Pg

1 ; f2(P
g
2 ) = Pg

2
2
+ 4Pg

2 ;

f3(P
g
3 ) = 4Pg

3
2
+ Pg

3 ; f4(P
g
4 ) = 3Pg

4
2
+ Pg

4 ;

f5(P
g
5 ) = Pg

5
2
+ 2Pg

5 .

The generation capacity bounds of the five buses are (0, 6) p.u.
(shorthand for per unit), (0, 12) p.u., (0, 3) p.u., (0, 3) p.u., (0, 4)
p.u., respectively, while the capacity limits of the four transmission
lines are (−10, 10), (−3, 3), (−2, 2), (−2, 2) p.u., respectively.

The initial load vector at the five buses is Pd
= [1, 4, 2, 4, 5] p.u.

Then, we have Pd
3 change to 5 p.u. at time 80 s, and Pd

2 change to 8
p.u. at time 160 s. Moreover, the cost function of bus 2 changes to
f2(P

g
2 ) = 0.25Pg

2
2
+ Pg

2 at time 400 s.
The initial values of all the variables are set with zero. The

simulation results are shown in Figs. 2 and 3.
All the results after the transition process are consistent with

centralized optimization results, demonstrating that algorithm
(16) can correctly find the optimal solution in a distributedmanner.
From Fig. 2, all the buses can find the optimal generations under
different load circumstances and cost functions in fair time. Fig. 3
indicates that the two buses connected to the same transmission
line always reach consensus on the optimal power flow of that
line. Note that all the settled generations and power flow points
satisfy both the generation and the transmission capacities bounds,
therefore guarantee the secure operation of the power grids.

6. Conclusions

In this paper, we first formulated a distributed optimization
problem with both local objective functions and local constraints
private to each agent. Then we proposed a novel continuous-
time distributed algorithm for the constrained optimization with a
convergence proof. Moreover, we applied the algorithm to optimal
load sharing optimization in power grids with simulation analysis.

However, many promising research topics still remain to be in-
vestigated. For instance, the convergence rate and communication
mechanismmaydeservemore research attention, and the practical
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Fig. 3. The state trajectories of power flow estimations.
physical dynamicsmay also be considered for optimal load sharing
control.
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