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This paper studies a semi-global asymptotic consensus problem of nonlinear multi-agent systems with
local actuating disturbances. For a modest nonlinear scenario, a consensus protocol is proposed based on
a viable two-layer network. The consensus problem is treated as distributed output regulation, which is
resolved by a joint decomposition of the zero-error constraint inputs and a configuration of a flexible
internal model network. An illustrative example is also given to show the efficiency of the two-layer
networked design.
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1. Introduction

In the past few years, cooperative control of multi-agent
systems has gained increasing research interest and a major
development. One of the central problems is that of controlling
all agents in order to make their outputs converge to a common
output trajectory. This problem usually refers to as consensus
or output synchronization. Since the fundamental study of
consensus protocols for single-integrator agents (see [1]), a
number of effective techniques have been proposed for multi-
agent systems from linear to nonlinear in many directions, see
for instances [2–7] and references therein. At the present stage,
to the best of our knowledge, there is a lack of particular studies
on consensus control with external disturbances appearing at
individual agent dynamics. Relevant results may be found in [8–
10]. In particular, [9,10] proposed an observer-based control by
viewing the disturbances as exosystem outputs and [8] studied the
problem by a non-smooth control technique. It is noted that the
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methods developed in the aforementioned literature rely on the
absolute state information in addition to the neighbor information.
Also, the result of [8] is a practical consensus design, not leading
to asymptotic consensus. In view of these existing studies,
consensus control with exogenous disturbances deserves further
investigation, particularly for nonlinear multi-agent networks.

It is known that, to cope with asymptotic tracking and/or dis-
turbance rejection of uncertain systems, in the terminology of
robust output regulation, the device of internal model plays an in-
dispensable role, see [11–16]. Recently, a lot of efforts have been
made to distributed control of the leader–followermulti-agent sys-
tems with uncertainties by applying the output regulation the-
ory; see, for instances [17–19]. In accordance with these results,
an individual internal model should be embedded in each local
controller to succeed the consensus with node uncertainties and
disturbances. Recall that in output regulation, the exosystem is of-
ten used tomodel references and disturbances as well. In the usual
centralized or decentralized setup, there is no need to treat them
separately. Nonetheless, regarding multi-agent systems in the dis-
tributed fashion, things are basically inconsistent due to limited
interactions or communications. To adapt this situation, the leader
in leader–follower type networks can be viewed as an exosystem
to produce references relating to certain collective behaviors. Con-
trary to references, local disturbances certainly have a negative
effect to the control goal. These two types of signals thus have op-
posite effects with respect to the control goal. This fact basically
motivates us to develop more flexible strategies that can manage
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them in some separable and general manner to realize the neces-
sary input compensation for all controlled agents.

In the paper, we study an asymptotic consensus design for a
class of locally disturbed homogeneous multi-agent systems; re-
fer to [20,21] for consensus control of homogeneous networks in
the absence of disturbances. Our main objective is to demonstrate
how a networked internal model can be implemented in a more
general network to solve the problem. In the problem, each con-
troller is required to asymptotically reject its local disturbances,
meanwhile to reach consensus as chief control goal. To do the
task, we employ a novel configurable internal model network, dis-
tinguished from the output-interaction network. It is shown that
some agents only need an internal model to reject its local dis-
turbance. The new treatment still allows us to engage a scheme
of converting the consensus problem into a tractable distributed
stabilization problem of an augmented network. For an arbitrary
initial region, the latter stabilization problem is further solved by a
linear high-gain type distributed stabilizer.

The proposed design belongs to two-layer networked control
in a broadened level than the usual distributed consensus control.
Particular attentions will be paid to the links among local con-
trollers. A relevant two-layer networked control was studied
in [22]. Regarding the consensus protocol developed in the present
study, three main reasons are summarized to explain why we do
so. First, in most existing results (e.g. [17–19]), the internal model
communication has not been carefully considered, especially
when communication is ‘‘cheap’’. Our study at least leads to an
interesting alternative. Second, by the internal model based
consensus control, the controller network itself has a certain
‘‘consensus’’ property, since it contains internal models that are
essentially ‘‘copies’’ to the controlled agents. This observation
actually has evoked the interest of building up links among local
controllers for the purpose of sharing useful information. Third,
from the viewpoint of computing the consensus protocol, reducing
its complexity certainly makes sense. In summary, our study can
provide flexible strategies especially when control complexity
matters and communication is comforted.

The rest of this paper is organized as follows. In Section 2, some
preliminaries are given. In Section 3, the configurable internal
model network is elaborated and the main result is presented. In
Section 4, an example is given for an illustration. Finally in Sec-
tion 5, the paper is closed with some concluding remarks. The
graph notations used throughout the paper are put in the Ap-
pendix.

Notations: throughout thepaper, for any columnvectors x1, . . . ,
xn, (x1, . . . , xn) denotes


x⊤

1 , . . . , x
⊤
n

⊤ if no confusion arises in the
context; for a real number ρ > 0, Bx

ρ = {x ∈ Rn
: ∥x∥ ≤ ρ}; for a

real number c > 0 and a smooth positive definite and radially un-
bounded functionW : Rn

→ R,Ωc(W ) := {x ∈ Rn
: W (x) ≤ c}.

2. Preliminaries

The focus of this paper is on leader-following consensus of
nonlinear multi-agent systems with local disturbances, consisting
of a leader and a set of controlled nonlinear uncertain systems. The
leader with node index 0 is described by

v̇r = Srvr , y0 = q(vr , w) (1)

where vr ∈ Rnvr is the state and y0 ∈ R is the desirable reference
characterizing the collective output behavior. The follower agents
are assumed to be globally transformable into the form

i ∈ O :


żi = f (zi, yi, w)
ẏi = g(zi, yi, w)+ δi(vi, w)+ ui

(2)

where O := {1, . . . ,N} denotes the follower node set and for
each agent i ∈ O, (zi, yi) ∈ Rn is the state, yi ∈ R is the output,
ui ∈ R is the control input,w ∈ W is the parameter uncertainty in
a known compact set W ⊂ Rnw and δi(vi, w) is the local actuating
disturbance of agent i with vi governed by some local disturbance
source
v̇i = Sivi, vi ∈ Rnvi . (3)
It is noticed that the local disturbance sources and the leader are
divided, different from the usual. We also assume that each of
the matrices Sr and Si, i = 1, . . . ,N has distinct eigenvalues
lying on the imaginary axis such that (1) and (3) can generate
the fundamental sinusoidal/step type signals; cf. Assumption A2.2
in [14] and Assumption 3 in [16]. This type of disturbances have
been studied in the framework of output regulation, see, for
instances, [11,15]. The functions f , g, q and δi are polynomials in
their arguments, satisfying
f (0, 0, w) = 0, g(0, 0, w) = 0, q(0, w) = 0, δi(0, w) = 0,∀w ∈ W.
We denote z := (z1, . . . , zN) ∈ RN(n−1), y := (y1, . . . , yN) ∈ RN .

Remark 1. The follower agent in (2) is called a strict-feedback
uncertain nonlinear system having unity relative degree [23,24]
that is basic and popular in nonlinear control, see, e.g.
[25,17,18,26]. The consensus of this class of nonlinear multi-agent
systems can cover interesting synchronization problems of a num-
ber of benchmark nonlinear oscillators, including Lorenz systems,
FitzHugh–Nagumo (FHN) systems (that will be discussed in Sec-
tion 4), etc., see [26].

Let v = (vr , v1, . . . , vN)with initial condition v(0) starting in a
known compact region V. Clearly, we have another compact set V′

such that for any v(0) ∈ V, its response v(t) := v(t, v(0)) satisfies
v(t) ∈ V′ for all t ≥ 0. It is denoted that D := V′

× W. Denote the
regulated output e = (e1, . . . , eN)where
i ∈ O : ei = yi − y0
which is usually unavailable to every follower agent. In practice,
determined by an output-interaction graph G = {V, E} with
V = {0, 1, 2, . . . ,N} (turn to Appendix at the end of the paper
for graph notations), agent i has a neighbor-based measurement
emi as follows:

i ∈ O : emi =


j∈V

aij(yi − yj) =


j∈V

aij(ei − ej) (4)

with e0 := 0.
Besides the graph G (referred to as network sometimes in the

paper), another graph Gc
= {O, E c

}, to denote an internal model
network, is configured to indicate the internal model communica-
tions, to be elaborated in Section 3.1. One of the main objectives of
the paper is to implement a communication network in amore ex-
tended distributed control setup than the single-layer one where
only G is considered.

Specifically, we study a semi-global leader-following consensus
problem of the systems (1) and (2) in the presence of the distur-
bance (3), formulated as follows. For any graph Gc (as the internal
model network admitting certain physical requirements, if any) and
for any compact setsBz

ρ andBy
ρ , find a smooth distributed controller1

i ∈ O :


ξ̇i = hξ i(ξi, ξȷ, ui, ȷ ∈ N c

i )
ui = uci(ξi, ξȷ, emi, ȷ ∈ N c

i )
(5)

together with a specified compact set B
ξ ′

ρ′ , ξ ′
:= (ξ1, . . . , ξN), such

that, for each (v(0), w, z(0), y(0), ξ ′(0)) ∈ B ′, B ′
:= V × W ×

Bz
ρ × By

ρ × B
ξ ′

ρ′ , both the following conditions hold

(i) the trajectory of the closed-loop system composed of (1), (2) and
(5) exists for all t ≥ 0 and is bounded over [0,+∞);

1 N c
i := {j ∈ O : (j, i) ∈ E c

} means the neighbor set of agent i in the graph Gc .
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(ii) every output yi synchronizes with the reference y0 at the infinity,
i.e., limt→∞ e(t) = 0.

The above problem is formulated as distributed output regu-
lation for leader–follower networks. It leads to a general time-
varying agreement. A relevant study can be found in [27] for a
disturbance-free network, where a solution with Gc containing a
single host agent (see Section 3.1 for the definition) has been ad-
dressed. In the rest of this section, we list some basic assumptions
as those in [19,27].

Assumption 1. The output-interaction digraph G contains a di-
rected spanning tree with the leader as the root.

Assumption 2. There exists a smooth function z(vr , w), which is
polynomial in vr and satisfies z(0, w) = 0, such that

∂z(vr , w)
∂vr

Srvr = f (z(vr , w), q(vr , w),w), (vr , w) ∈ D. (6)

Under Assumption 2, performing the coordinate transformation
z̄i = zi − z(vr , w) gives a translated inverse dynamics

˙̄z i = f̄ (z̄i, ei, v, w) (7)
where f̄ (z̄i, ei, v, w) = f (z̄i + z(vr , w), ei + q(vr , w),w) −

f (z(vr , w), q(vr , w),w). To ensure stabilizability of an augmented
network (18) in the next section, we need another condition
imposed on (7).

Assumption 3. There is a smooth function V (z̄i) such that

α(∥z̄i∥) ≤ V (z̄i) ≤ α(∥z̄i∥)
∂V (z̄i)
∂ z̄i

f̄ (z̄i, 0, v, w) ≤ −ε1∥z̄i∥2, ∀(v,w) ∈ D

for some smooth functions α(·), α(·) ∈ K∞ and a real number
ε1 > 0.

Remark 2. At this point, we note that Assumption 1 is a standing
as well as necessary condition that is imposed on the interaction
graph for multi-agent system control, e.g. see Assumption 6
in [19]. Assumptions 2 and 3 are most often used in nonlinear
output regulation. In particular, Assumption 2 ensures the global
solvability of the so-called regulator equations (REs); see Remark
3.10 and Assumption 7.10 in [13], Assumption 4 in [16], and also
Assumption 3 in [19]. Assumption 3 restricts the agent (2) to
someminimum-phase systems, which is used to suffice the output
feedback control; cf. Assumption 6 in [16] and Assumption 5 in [19].

To examine Assumption 2, an effective way is by using the
power series approach, referring to Chapter 4.3 of [13] for details.
According to Lemma 4.12 and Lemma 4.13 of [13], Assumption 2
can be verified by two steps. First, consider the condition: for each
w ∈ W, none of eigenvalues of the matrix ∂ f

∂zi
(0, 0, w) coincides with

any λ ∈ Λl, l = 1, 2, . . . , with
Λl := {λ : λ = l1λ1 + · · · + lnvr λnvr , l1 + · · · + lnvr = l,

l1, . . . , lnvr = 0, 1, 2, . . . , l} (8)
where λ1, . . . , λnvr are the eigenvalues of the matrix Sr . If so, by
Lemma 4.12 and Lemma 4.13 in [13], a unique series solution to
Eq. (6) can be obtained with z(vr , w) =


l≥1 Zl(w)v

[l]
r with

Zl(w) satisfying a certain Sylvester matrix equation (specified by
Equation 4.63 in [13]) and v[l]

r being defined as (see p. 118 of [13])

v[l]
r := (vlr1, v

l−1
r1 vr2, . . . , v

l−1
r1 vrnvr , v

l−2
r1 v

2
r2, v

l−2
r1 vr2vr3, . . . ,

vl−2
r1 vr2vrnvr , . . . , v

l
rnvr
)

where vr := (vr1, . . . , vrnvr ). Second, examine the existence of an
integer l0 ≥ 1 so that Zl(w) = 0, ∀l = l0, l0 + 1, l0 + 2, . . . . If l0
exists, an exact solution satisfying Assumption 2 can be obtained,
see Remarks 4.14 and 4.15 of [13]. To show an example, note that
both Assumptions 2 and 3 are verifiable for the system (2) with the
following manageable condition: The nonlinearities of (2) satisfy

f (zi, yi, w) = Azi + f0(yi, w), g(zi, yi, w) = Bzi + g0(yi, w)

where A and B are matrices of appropriate dimension with A being
Hurwitz, and functions f0 and g0 are polynomials in yi. Indeed, the
above condition has been used in [17] for a multi-agent systems
control problem and the 2nd order FHN systems are exactly of this
case, see [28,27].

Also note that as direct consequences of Assumption 2, by solv-
ing the associated REs of agents (1) and (2), it gives

i ∈ O : ui(v,w) = uri(vr , w)+ udi(vi, w) (9)

where udi(vi, w) = −δi(vi, w), i = 1, . . . ,N and ur1(vr , w) =

· · · = urN(vr , w) = ur(vr , w)with

ur(vr , w) =
∂q(vr , w)
∂vr

Srvr − g(z(vr , w), q(vr , w),w).

Clearly, ur(vr , w) and udi(vi, w) are polynomials in vr and vi,
respectively. Consequently, according to the Proposition in [29],
ur(vr , w) and udi(vi, w), i ∈ O have the following minimal ze-
roing polynomials

pr(λ) = λsr − ϱr1 − ϱr2λ− · · · − ϱrsrλ
sr−1

pi(λ) = λsi − ϱi1 − ϱi2λ− · · · − ϱisiλ
si−1 (10)

for some real numbers ϱr1, . . . , ϱrsr and ϱi1, . . . , ϱisi .

3. Main result

In this section, we elaborate a solution to the consensus prob-
lem. In particular, we demonstrate how to attach a configurable
internal model network to the output-interaction network to con-
stitute a general two-layer network; see Fig. 1 for a fast grasp of
the network topology.

3.1. Configuration of internal model network

Here we aim to introduce a configurable internal model net-
work to cope with the leader-following consensus in the pres-
ence of actuating disturbances. The internal model network Gc

=

{O, E c
} is to describe the information communication among the

internal models. Let us start by giving the description of the inter-
nal model network concerned in the paper.

Definition 1. An internalmodel networkGc
= {O, E c

} is a digraph
satisfying the following conditions:

(i) O is the union of two disjoint subsets H and H ′ with H non-
empty, i.e., O = H ∪ H ′ and H ∩ H ′

= ∅ (∅ denotes the
empty set);

(ii) For each i ∈ H , there exists no j ∈ O satisfying (j, i) ∈ E c ;
(iii) For each i ∈ H ′, there is a unique j ∈ H satisfying (j, i) ∈ E c

and no j ∈ H ′ satisfying (j, i) ∈ E c .

Throughout the paper, for i ∈ H ′, we denote ȷi as the index such
that (ȷi, i) ∈ E c .

By Definition 1, the agent with its index belonging to the set
H is called the host agent, and its associated internal model is
called host internalmodel. Itwill be shown later that for an internal
model network Gc , each host internal model can produce a jointly
decomposable output. All the jointly decomposable outputs are
distributed alongwithGc . In particular, each agent inH ′ only needs
an internal model to cope with its local actuating disturbances.

The resultant topology of the closed-loop system consists of
two layers; see Fig. 1 again. What makes our design interesting is
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Fig. 1. Illustration of two-layer networked design and internal model network
candidates. (0, 1, . . . , 4 are plant nodes; 1′, . . . , 4′ are controller nodeswith the red
colored to indicate host internalmodels. Layer I is the output-interaction networkG
with V = {0, 1, 2, 3, 4} and E = {(0, 1), (1, 2), (1, 3), (2, 4), (3, 2), (4, 3)}; Layer
II is the designed internal model network.) (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

two-fold. One is that Gc is introduced that can be different from
G. The other is that the information transmission along with Gc is
non-trivial, i.e., their steady-state values are generally persistent.
The host agent set H can be an arbitrary non-empty subset of O,
which results in two extreme situations. One isH = O andE c

= ∅,
which means that an internal model needs to be implemented
for each controller without communications, e.g. the candidate C4
in Fig. 1. This configuration of internal model network has been
studied in [18,19]. The other one is H = {ȷ} and E c

= {(ȷ, i) ∈

ȷ × O : i ∈ O, i ≠ ȷ} for some index ȷ ∈ O, e.g. C2 in
Fig. 1 with ȷ = 2. In the latter case, our configuration reduces to
the case of a host internal model approach discussed in [27] in
the absence of local disturbances. As a result, our configuration of
internal model network indicates a notable design freedom and
the choice of the internal model network is generally not unique
if there is no particular physical requirement.

Remark 3. The internalmodel network can be judiciously selected
to fulfill certain physical communication requirements. It mani-
fests that Gc can be a subgraph of G, e.g. C1 in Fig. 1, E c

⊂ E . In
this situation, for each agent i ∈ O, the local controller for agent
i is only based on the neighboring information of agent i in the
sense of output-interaction graph G. Thus, the designed controller
is a distributed one. Notice that, in addition to the neighbor-based
measurement emi, using information exchanges among controller
states has been issued in [20,21] along with the same output-
interaction digraph G that is essentially to assist the stabilization
design. Again, it is emphasized that the communicationswere used
for the purpose of stabilization in the aforementioned results. Here
they are however used for the networked internal model construc-
tion.

Keeping the above notations in mind, we now consider the
internal model construction that is networked along with a fixed
digraph. To fulfill this construction, we need to characterize the
common information to be shared and communicated in the
internal model network. For this purpose, we first present a useful
lemma.

Lemma 1. For the network (1) and (2) under Assumption 2, suppose
that each pair of polynomials (pr , pi), i ∈ O is generically coprime.
Then for each i ∈ O, there is an observable steady-state generator

τ̇i(v,w) = Φc
i τi(v,w), ui(v,w) = Ψ c

i τi(v,w) (11)

with output ui (in the sense of Definition 6.2 in [13]), being jointly
decomposable in the following sense:

∀i ∈ O : ∃ Γi ∈ R1×(sr+si) s.t. ur(vr , w) = Γiτi(v,w). (12)
Proof. To show the lemma, from polynomials in (9), define τr(vr ,
w) = (τr1(vr , w), . . . , τrsr (vr , w)) and τdi(vi, w) = (τdi1(vi, w),

. . . , τdisi(vi, w)), i ∈ O which can be given by

τr1(vr , w) = ur(vr , w)

τrj(vr , w) =
∂τr,j−1(vr , w)

∂vr
Srvr , j = 2, . . . , sr

and for each i ∈ O

τdi1(vi, w) = udi(vi, w)

τdij(vi, w) =
∂τdi,j−1(vi, w)

∂vi
Sivi, j = 2, . . . , si.

Then, we have

τ̇r(vr , w) = Φrτr(vr , w), ur(vr , w) = Ψrτr(vr , w)

τ̇di(vi, w) = Φiτdi(vi, w), udi(vi, w) = Ψiτdi(vi, w)

where

Φr =


0 Isr−1
ϱr1 ϱr2, . . . , ϱrsr


sr×sr

, Ψr =

1 01×(sr−1)


Φi =


0 Isi−1
ϱi1 ϱi2, . . . , ϱisi


si×si

, Ψi =

1 01×(si−1)


.

Recalling (9), defining τi(v,w) = (τr(vr , w), τdi(vi, w)) leads to
the steady-state generator (11) with

Φc
i =


Φr 0
0 Φi


, Ψ c

i =

Ψr Ψi


.

Thus, letting

Γi =

Ψr 01×si


which is independent ofw ∈ W, confirms (12). Finally, the observ-
ability of the generator (11) can be verified by Lemma 6.17 in [13]
together with the fact that the pair of polynomials pr(λ) and pi(λ)
is coprime, which completes the proof.

Remark 4. Lemma 1means that the steady-state generators of the
form (11) have a non-empty intersection, given by

τ̇r(vr , w) = Φrτr(vr , w), ur(vr , w) = Ψrτr(vr , w). (13)

We refer to Definition 3.1 in [30] for a notion of system inter-
sections, which can be adopted to understand the forthcoming
networked steady-state generator. Roughly speaking, to reach
consensus, each agent needs to embed a dynamic compensator
(called internal model) to reproduce this common signal. Thus,
all the internal models share a common information, which leads
to a repeat of the internal model dynamics in a partial manner
for all agents. In view of (13), we find interest in constructing
some networked steady-state generator which can consequently
facilitate some networked internal model design. In this way, by
introducing a suitable networked internal model, it is possible
to realize distributed compensation and therefore avoid possible
repeats in local internal model design. The above observation
motivates the materials in the rest of this subsection.

Based on the joint decomposition of (12), we can obtain a net-
worked steady-state generator (cf. [22]) and a networked internal
model both specified by Gc , described by the following lemma.

Lemma 2. Suppose that all conditions in Lemma 1 are satisfied.
For any digraph Gc specified by Definition 1, there is a networked
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steady-state generator described by

i ∈ O :


τ̇ ′

i (v,w) = Φ ′

i τ
′

i (v,w)

ψi

ui(v,w), τ

′

ȷi(v,w)


= Ψ ′

i τ
′

i (v,w)
(14)

where (Φ ′

i ,Ψ
′

i ) is an observable matrix pair, and ψi is a smooth
function satisfying, for some matrix Γ ′

ȷi

ψi

ui(v,w), τ

′

ȷi(v,w)


=


ui(v,w) when i ∈ H
ui(v,w)− Γ ′

ȷiτ
′

ȷi(v,w) when i ∈ H ′.
(15)

Furthermore, each agent has an internal model confined to Gc , de-
scribed by

i ∈ O : η̇i = Miηi + Qiψi(ui, ηȷi) (16)

for a controllable pair (Mi,Qi) with Mi being Hurwitz.

Proof. To show (14),we need to find τ ′

i (v,w) and the pair (Ψ ′

i ,Φ
′

i )
for i ∈ O, and Γ ′

ȷi for i ∈ H ′. As in the proof of Lemma 1, let

τ ′

i (v,w) = τi(v,w), Φ ′

i = Φc
i , Ψ ′

i = Ψ c
i , i ∈ H

τ ′

i (v,w) = τdi(v,w), Φ ′

i = Φi, Ψ ′

i = Ψi,

Γ ′

ȷi = Γȷi , i ∈ H ′.

Clearly, (Ψ ′

i ,Φ
′

i ) is observable. Then the networked steady-state
generator (14) specified by graph Gc can be obtained.

To show the internal model design, put the steady-state gener-
ator (14) in the following form

τ̇ ′

i (vi, w) = Miτ
′

i (vi, w)+ Qiψi(ui(v,w), τ
′

ȷi(v,w))

ψi(ui(v,w), τ
′

ȷi(v,w)) = Ψ ′

i τ
′

i (vi, w) (17)

where

Mi = Φ ′

i − QiΨ
′

i

withQi being chosen such thatMi is Hurwitz, which can be ensured
by the observability of the pair (Ψ ′

i ,Φ
′

i ). Then an internal model
with output ψi(ui, ηȷi) of the form (16) follows immediately. The
proof is complete.

Remark 5. From the definition of ψi by (15), for each host agent
ȷ, the output Γ ′

ȷ ηȷ is produced to compensate the steady-state
information ur(vr , w) to achieve the leader-following consensus.
Then it can be transmitted to some other follower agents, along
with a directed path from ȷ to them, specified by Gc .

Remark 6. It should be noted that the networked steady-state
generator (14) can be given in some other form. For example, let

Ti =

 Ψ c
i

Ψ c
i Φ

c
i

· · ·

Ψ c
i (Φ

c
i )

sr+si−1

 .
Since (11) is observable, Ti is nonsingular. Thus, let

τ ′

i (v,w) = Tiτi(v,w), Φ ′

i = TiΦc
i T

−1
i ,

Ψ ′

i = Ψ c
i T

−1
i , i ∈ H

τ ′

i (v,w) = τdi(v,w), Φ ′

i = Φi, Ψ ′

i = Ψi,

Γ ′

ȷi = ΓȷiT
−1
ȷi , i ∈ H ′

which leads to another networked steady-state generator candi-
date with (Ψ ′

i ,Φ
′

i ) taking Brunovsky observable normal form.

With the designed internal model network, we have an aug-
mented network defined by attaching (16) to (2). In the spirit
of [14], we next derive a tractable augmented dynamics and
achieve the problem conversion. To this end, let

i ∈ O :

η̄i = ηi − τ ′

i (v,w)− Qiei
ei = yi − q(vr , w)
ūi = ui − Γ ′

ȷiηȷi − Ψ ′

i ηi

with Γ ′
ȷi := 0 for i ∈ H . Then it gives a (translated) augmented

network

i ∈ O :


˙̄z i = f̄ (z̄i, ei, v, w)
˙̄ηi = Miη̄i + ϕi(z̄i, η̄ȷi , ei, eȷ, v, w)
ėi = ği(z̄i, η̄i, η̄ȷi , ei, eȷi , v, w)+ ūi

(18)

where

ϕi(z̄i, η̄ȷi , ei, eȷi , v, w)

=

MiQiei − Qiḡ(z̄i, ei, v, w) when i ∈ H
MiQiei − QiΓ

′

ȷi(η̄ȷi + Qȷieȷi)
−Qiḡ(z̄i, ei, v, w) when i ∈ H ′

ği(z̄i, η̄i, η̄ȷi , ei, eȷi , v, w)

=

ḡ(z̄i, ei, v, w)+ Ψ ′

i (η̄i + Qiei) when i ∈ H
ḡ(z̄i, ei, v, w)+ Γ ′

ȷi(η̄ȷi + Qȷieȷi)
+Ψ ′

i (η̄i + Qiei) when i ∈ H ′

ḡ(z̄i, ei, v, w) = g

z̄i + z(vr , w), ei + q(vr , w),w


− g(z(vr , w), q(vr , w),w).

It can be shown that the unforced augmented dynamics (18) has
an equilibrium at

(z̄, η̄, e) = (0, 0, 0), ∀(v,w) ∈ D

with z̄ := (z̄1, . . . , z̄N) and η̄ := (η̄1, . . . , η̄N).

Remark 7. In this remark, we show that the consensus problem
can be converted into a tractable stabilization problem of the
augmented network (18). Note that, by subadditivity property of
norm

∥z̄i∥ ≤ ∥zi∥ + ∥z(vr , w)∥
∥η̄i∥ ≤ ∥ηi∥ + ∥τ ′

i (vi, w)∥ + ∥Qi∥

|yi| + |q(vr , w)|


|ei| ≤ |yi| + |q(vr , w)|.

Since z(vr , w), q(vr , w), τr(vr , w) and τi(vi, w) are bounded over
(v,w) ∈ D, for any compact sets Bz

ρ,B
y
ρ,B

η

ρ′ with η := (η1, . . . ,

ηN), there exists a real number ρ∗ > 0 such that, for each (z(0),
y(0), η(0)) subject to

∥z(0)∥ ≤ ρ, ∥y(0)∥ ≤ ρ, ∥η(0)∥ ≤ ρ ′

it follows

∥z̄(0)∥ ≤ ρ∗, ∥η̄(0)∥ ≤ ρ∗, ∥e(0)∥ ≤ ρ∗.

Thus, by a general property of Corollary 7.4 in [13], the semi-global
leader-following consensus problem of (1) and (2) in the presence
of the disturbance (3) can be solved if we can solve the following
problem: for any digraph Gc (specified by Definition 1), and any com-
pact sets B z̄

ρ,B
η̄
ρ and Be

ρ , we can find a distributed stabilizer

i ∈ O : ūi = −kiemi, ki > 0 (19)

for (18) such that the equilibrium (z̄, η̄, e) = (0, 0, 0) of the closed-
loop system composed of (18) and (19) is uniformly asymptotically
stable with a basin of attraction containing B z̄

ρ × B η̄
ρ × Be

ρ . The lat-
ter problem is called the semi-global distributed stabilization of
the augmented network (18). As a result, we are left to solve the
semi-global stabilization problem to solve the original consensus
problem.
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Remark 8. In (18), by a direct application of Lemma 7.8 in [13], we
have, for all (v,w) ∈ D,ϕi(z̄i, η̄ȷi , ei, eȷi , v, w)

2

≤


pi1(z̄i) ∥z̄i∥2

+ pi2(ei)e2i when i ∈ H

p0(
η̄ȷi2

+ e2ȷi)
+ pi1(z̄i) ∥z̄i∥2

+ pi2(ei)e2i when i ∈ H ′

|ği(z̄i, η̄i, η̄ȷi , ei, eȷi , v, w)|
2

≤


p0 ∥η̄i∥

2
+ pi3(z̄i) ∥z̄i∥2

+ pi4(ei)e2i when i ∈ H

p0(∥η̄i∥2
+

η̄ȷi2
+ e2ȷi)

+ pi3(z̄i) ∥z̄i∥2
+ pi4(ei)e2i when i ∈ H ′

(20)

for a real number p0 > 0 and smooth functions pij(·) ≥ 1, j =

1, 2, 3, 4, i = 1, . . . ,N . The above property is useful in the proof
of Proposition 1 to be given later.

3.2. Distributed stabilization of augmented network

Before stating the stabilization solution, as preparations, we
show some useful dissipation properties for (18). First for the z̄i
subsystem with V (z̄i) by Assumption 3, let

Vz̄(z̄) =


i∈O

V (z̄i)

which manifests the following

α′(∥z̄∥) ≤ Vz̄(z̄) ≤ α′(∥z̄∥)
i∈O

∂Vz̄(z̄)
∂ z̄i

f̄ (z̄i, 0, v, w) ≤ −ε1∥z̄∥2

for some smooth functions α′(·), α′(·) ∈ K∞ and the real number
ε1 > 0 being specified by Assumption 3.

Next, for each i ∈ O, consider the η̄i subsystem. Because each
Mi is Hurwitz, define

Vη̄i(η̄i) = η̄i
⊤P1iη̄i

where thematrix P1i is positive definite satisfying P1iMi+M⊤

i P1i =

−2I . It can be seen that

V̇η̄i |(18) = −2 ∥η̄i∥
2
+ 2η̄⊤

i P1iϕi(z̄i, η̄ȷ, ei, eȷ, v, w)

≤


− ∥η̄i∥

2
+ ∥P1i∥2 

pi1(z̄i) ∥z̄i∥2
+ pi2(ei)e2i


when i ∈ H

− ∥η̄i∥
2
+ ∥P1i∥2 

p0(
η̄ȷi2

+ e2ȷi)
+ pi1(z̄i) ∥z̄i∥2

+ pi2(ei)e2i


when i ∈ H ′.

Thus, by letting

Vη̄(η̄) =


i∈H

p̄0Vη̄i +

i∈H ′

Vη̄i ,

p̄0 := p0


j∈{j∈H ′:(i,j)∈Ec }

∥P1j∥2
+ 1

we have

V̇η̄|(18) ≤ −∥η̄∥2
+ p̄1(z̄) ∥z̄∥2

+ p̄2(e) ∥e∥2

where

p̄1(z̄) =


i∈H

p̄0 ∥P1i∥2 pi1(z̄i)+


i∈H ′

∥P1i∥2 pi1(z̄i)

p̄2(e) =


i∈H

p̄0 ∥P1i∥2 pi2(ei)+


i∈H ′

∥P1i∥2 (p0 + pi2(ei)).

With above preparations, we are ready to derive a stabilizability
result for the augmented network (18).
Proposition 1. Suppose that the network (18) satisfies Assump-
tions 1 and 3. Then, for any digraph Gc specified by Definition 1 and
for any compact sets B z̄

ρ,B
η̄
ρ ,B

e
ρ , there exist a real number k > 0

(depending on ρ) and a distributed controller of the following form

i ∈ O : ūi = −kemi (21)

such that the equilibriumpoint (z̄, η̄, e) = (0, 0, 0) of the closed-loop
system composed of (18) and (21) is uniformly asymptotically stable
with a basin of attraction containing B z̄

ρ × B η̄
ρ × Be

ρ .

Proof. First consider the composite e subsystem. Because all the
eigenvalues of matrix H (defined in the Appendix) have positive
real parts, the matrix equation P2H + H⊤P2 = I admits a positive
definite matrix P2. Let

Ve(e) = e⊤P2e.

Then, substituting (21) in (18) and using (20) gives

V̇e|(18)+(21) = −2ke⊤P2He + 2e⊤P2

ğ1, . . . , ğN

⊤

= −k ∥e∥2
+ 2e⊤P2


ğ1, . . . , ğN

⊤

≤ −k ∥e∥2
+ p′

0 ∥η̄∥2
+ p̄3(z̄) ∥z̄∥2

+ p̄4(e) ∥e∥2

where

p′

0 = 2Np0, p̄3(z̄) =


i∈O

pi3(z̄i)

p̄4(e) =


i∈O

pi4(ei)+ Np0 + ∥P2∥2 .

Because each of Vz̄, Vη̄, Ve is positive definite and radially un-
bounded, for anyB z̄

ρ,B
η̄
ρ andBe

ρ , there exists a real number ρ̄ > 0
such that

B z̄
ρ ⊂ Ωρ̄(Vz̄), B η̄

ρ ⊂ Ωρ̄(Vη̄), Be
ρ ⊂ Ωρ̄(Ve).

Clearly, each of Ωρ̄(Vz̄),Ωρ̄(Vη̄),Ωρ̄(Ve) is compact set. Conse-
quently, by Lemma 7.8 in [13], there exist a real number c1 > 0
and a smooth functionϖ(e) ≥ 1 such that, for all z̄ ∈ Ω3ρ̄(Vz̄)
i∈O

∂Vz̄(z̄)
∂ z̄i

 ≤ c1∥z̄∥
i∈O

f̄ (z̄i, ei, v, w)− f̄ (z̄i, 0, v, w)
 ≤ ϖ(e) ∥e∥

p̄1(z̄) ≤ c1, p̄3(z̄) ≤ c1.

Furthermore, letting

ε′

1 =
1
2
ε1, ϖ ′(e) =

c21
2ε1

ϖ 2(e)

yields

V̇z̄ |(18) ≤ −ε′

1 ∥z̄∥2
+ϖ ′(e) ∥e∥2 , z̄ ∈ Ω3ρ̄(Vz̄), e ∈ RN .

Next, consider the following Lyapunov function candidate

W (z̄, η̄, e) = Vz̄(z̄)+ c2Vη̄(η̄)+ c2c3Ve(e)

where

c2 = min

1,

ε′

1

2c1(1 + c3)


, c3 = min


1,

1
2p′

0


.

Clearly,Ω3ρ̄(W ) is a compact set satisfying

Ω3ρ̄(W ) ⊂ Ω3ρ̄(Vz̄)×Ω3ρ̄′(Vη̄)×Ω3ρ̄′′(Ve)

with ρ̄ ′
=

ρ̄

c2
and ρ̄ ′′

=
ρ̄

c2c3
. Accordingly, there exists a real num-

ber c4 > 0 such that

ϖ ′(e)+ c2p̄2(e)+ c2c3p̄4(e) ≤ c4, ∀e ∈ Ω3ρ̄′′(Ve).
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As a result, onΩ3ρ̄(W ), we have

Ẇ |(18)+(21) ≤ −
ε′

1

2
∥z̄∥2

−
c2
2

∥η̄∥2
−


c2c3k − c4


∥e∥2 .

Choose

k∗
=

c4 + 1
c2c3

.

Then, for each k ≥ k∗, onΩ3ρ̄(W ), we have

Ẇ |(18)+(21) ≤ −
ε′

1

2
∥z̄∥2

−
c2
2

∥η̄∥2
− ∥e∥2 .

Because

B z̄
ρ × B η̄

ρ × Be
ρ ⊂ Ωρ̄(Vz̄)×Ωρ̄(Vη̄)×Ωρ̄(e) ⊂ Ω3ρ̄(W )

for each initial condition (z̄(0), η̄(0), e(0)) ∈ B z̄
ρ × B η̄

ρ × Be
ρ ,

(z̄(t), η̄(t), e(t)) ∈ Ω3ρ̄(W ).

Moreover, we have limt→∞(z̄(t), η̄(t), e(t)) = (0, 0, 0). The proof
is thus complete.

By Remark 7 and Proposition 1, we state the main result of the
paper.

Theorem 3. Suppose that the network (1) and (2) satisfies Assump-
tions 1–3 and each pair of polynomials (pr , pi), i ∈ O is generically
coprime. Then, for any digraphGc specified by Definition 1 and for any
real numbers ρ, ρ ′ > 0, there exist a real number k > 0 (depending
on ρ and ρ ′) and a distributed controller of the form

i ∈ O :


η̇i = Miηi + Qiψi(ui, ηȷi)
ui = −kemi + Γ ′

ȷiηȷi + Ψ ′

i ηi
(22)

such that, for each initial condition (z(0), y(0), η(0)) ∈ Bz
ρ × By

ρ ×

B
η

ρ′ with η := (η1, . . . , ηN), the trajectory of the closed-loop system
composed of (1), (2) and (22) exists and is bounded over [0,+∞)
and meanwhile, limt→∞ e(t) = 0.

Remark 9. Note that when δi(vi, w) = 0, i = 1, . . . ,N , i.e.,
the local disturbances vanish, we have ui(v,w) = ur(vr , w).
In this situation, focusing on the internal model network and in
comparisonwith the single-host internalmodel studied in [27], the
proposed networked design is extended in two directions. First,
the network candidates are carefully presented in the consensus
design. Second, local actuating disturbances are issued in the plant
network. Also note that the recent result of [19] proposed an
applicable approach to solving a general setting of the problem
by constructing a separate internal model for each agent without
internal model communications (e.g. C4 in Fig. 1). Indeed, [19]
is applicable to the present problem. By [19], we note that the
resultant order of the composite internal models is Nsr +

N
i=1 si,

whereas the dimension of the composite one consisting of (16)
is |H |sr +

N
i=1 si. Here |H | denotes the number of host agents

in set H . Thus by contrast, on the one hand, a notable reduction
of controller order is reached, especially when N and sr (defined
in (9)) are large and |H | is small. On the other hand, to reduce
the computation complexity of the consensus protocol, it is fair to
note that certain additional communication costs come out when
transmitting the signals Γ ′

ȷ ηȷ, ȷ ∈ H .

To close this section, we summarize the proposed protocol by
Theorem 3 as follows. If the assumptions are verifiable, one can
perform the following procedure to reach at (22).
Step 1: Set the host agent set H and the internal model network

Gc (in line with Definition 1), taking care of physical
requirements or similar others on controller network
requirements, if any;
Step 2: Construct the internalmodel of the form (16) for each agent
by Lemma 2;

Step 3: Convert the problem into a stabilization problem of the
network (18) by Remark 7;

Step 4: Design the distributed controller (21) according to the
proof of Proposition 1 and obtain (22).

4. Example

For an illustration, we consider a consensus design of a group
of FHN type agents with local actuating disturbances, adopted
from [26]. The interaction graph G is specified in Fig. 1 with N = 4
and unity weights which verifies Assumption 1. The controlled
agents are described by

ẋi1 = xi1 −
1
3
x3i1 − xi2 + xi3 + Fi(t)+ Fui

ẋi2 = σ5(xi1 + σ1 − σ2xi2)
ẋi3 = σ6(−xi1 + σ3 − σ4xi3), i = 1, . . . , 4

(23)

where xi = (xi1, xi2, xi3) is the state, Fui is the control input,σ(w) =

(σ1, . . . , σ6) is a parameter vector undergoing some uncertainties
with σ2, σ4, σ5, σ6 being positive entries, i.e. σ = σ̄ + w with σ̄
being the nominal value and w ∈ R6 being uncertainties, Fi(t) =

Ami sin(ωit+φi)+di is the local disturbance in control channelwith
unknown (Ami, φi, di). For simplicity, we assume σ1 = σ3 = 0.
Then by letting

zi1 = xi2, zi2 = xi3, yi = xi1, ui = Fui, i = 1, . . . , 4

we can write (23) in the form of (2) as follows:
żi1 = σ5(yi − σ2zi1)
żi2 = σ6(−yi − σ4zi2)

ẏi = yi −
1
3
y3i − zi1 + zi2 + Fi(t)+ ui, i = 1, . . . , 4

(24)

with (zi, yi) = (zi1, zi2, yi). The leader (1) with node index 0 can be
formulated by a harmonic oscillator

v̇r1 = ωrvr2, v̇r2 = −ωrvr1, ωr > 0

with vr = (vr1, vr2) being its state and y0 = vr1 being the desired
reference. Defining the following differential equation

v̇i1 = ωivi2, v̇i2 = −ωivi1, v̇i3 = 0, ωi > 0

with vi = (vi1, vi2, vi3) and vi(0) = (Ami sinφi, Ami cosφi, di), it
can be seen that Fi(t) = vi1 + vi3.

By solving the REs, we have ui(v,w) = ur(vr , w) + udi(vi, w)
with

z(vr , w) =


z1(vr , w)
z2(vr , w)



=


σ 2
5 σ2

ω2
r + σ 2

5 σ
2
2
vr1 −

ωrσ5

ω2
r + σ 2

5 σ
2
2
vr2

−
σ 2
6 σ4

ω2
r + σ 2

6 σ
2
4
vr1 +

ωrσ6

ω2
r + σ 2

6 σ
2
4
vr2


ur(vr , w) = −vr1 + ωrvr2 +

1
3
v3r1 + z1(vr , w)− z2(vr , w)

udi(vi, w) = −vi1 − vi3

which verifies Assumption 2. Because σ5σ2 > 0 and σ6σ4 > 0, As-
sumption 3 is also satisfied. Moreover, the minimal zeroing poly-
nomials in (9) are given with

pr(λ) = λ4 + 10ω2
r λ

2
+ 9ω4

r

p1(λ) = λ2 + ω2
1, p2(λ) = λ2 + ω2

2

p3(λ) = λ2 + ω2
3, p4(λ) = λ(λ2 + ω2

4).
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Fig. 2. 3D plot of agent responses with axis (t, zi1, yi).

In addition, Assumption 3 is also verifiable. It is concluded that the
problem can be solved by Theorem 3.

To do the simulation, we choose (ωr , ω1, ω2, ω3, ω4) = (π3 ,
π
5 ,

π
7 ,

π
10 ,

π
8 ) which ensures the coprime condition in Theorem 3.

Choose the networkGc specified by C1 in Fig. 1 and in linewith (16)
to design the internal models. We place the poles of M1 and M2 at
{−1± ı,−2± ı,−3± ı},M3 at {−2,−3}, andM4 at {−1,−2,−3}.
Choose (σ2, σ4, σ5, σ6) = (1, 1, 1, 1) and the agent initial
values {(2, 3), (1, 0,−1), (−1, 1, 2), (1, 0,−2), (2,−1, 0)}. The
disturbances are {F1(t); . . . ; F4(t)} = {3 sin(ω1t); 2 sin(ω2t);
2 sin(ω3t); sin(ω4t) − 5} for 0 ≤ t ≤ 50. To test the efficiency
of the networked internal model, the disturbances vary at t = 50
to be {F1(t); . . . ; F4(t)} = {35 sin(ω1t); 50 sin(ω2t); 60 sin(ω3t);
40 sin(ω4t)+20}. All the other initial conditions are set to be zero.
A simulation result is shown in Fig. 2 with k = 80 chosen as
the stabilizer gain to ensure the numerical performance. From the
simulation, it is observed that the consensus can still be achieved
under the same controller even when a vast variation of the
disturbance parameters was made.

5. Conclusion

We have studied the leader-following consensus problem with
an asymptotic rejection of actuating disturbances. A two-layer
networked design was proposed by configuring an internal
model network in addition to the output-interaction network.
The consensus control problem was solved in the framework
of distributed output regulation. Finally, an illustrative example
was given to confirm the efficiency of the proposed two-layer
networked design.

Appendix. Graph notation

The interaction among the leader and follower nodes can be
described by an output-interaction (directed) graph G := {V, E}

where V := {0, 1, 2, . . . ,N} is the node set, E ⊂ V × V is
the edge set. A subgraph of a graph G is a graph Gs = {Vs, Es}

such that Vs ⊂ G, Es ⊂ E . An edge of G from node j to node i
is denoted by the ordered pair (j, i), where node j is said to be a
neighbor of node i. A directed path from node i1 to node ik is an
ordered sequence of distinct nodes i1, . . . , ik ∈ V such that the
pairs (i1, i2), . . . , (ik−1, ik) belong to the edge set. A node i is said
to be reachable from another node j if there is a directed path from
node j to node i.G is said to contain a directed spanning tree if there
is at least one node, called the root, from which every other node
is reachable. The weighted adjacency matrix A = [aij]i,j=0,1,...,N
of the graph G is a nonnegative matrix satisfying aii = 0 and
aij > 0 if and only if (j, i) ∈ E, i ≠ j. Associated with adjacency
matrix A, the Laplacian of G is defined by L = [lij]i,j=0,1,...,N with
lii =


j∈V aij and lij = −aij, i ≠ j. Note that self-loops and edges

from followers to the leader are of no interest to our problem. Let
H denote the N × N submatrix obtained by removing the first row
and column of the LaplacianL of G. Note that under Assumption 1,
all the eigenvalues of H have positive real parts. We refer to [32]
for more details on graph notations used in the paper.
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