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a b s t r a c t

In this paper, we propose and then analyze two generalized Deffuant–Weisbuch (DW)
models. The generalized models extend the conventional DW model by taking multiple
choices in two different ways. First, we demonstrate the almost sure convergence of the
agent opinions for the short-range multi-choice DW dynamics when only the opinions
within confidence regions may be count in. Then we analyze dynamical behavior about
the long-range multi-choice DW model when some opinions out of the confidence ranges
are considered with a weighted combination. Moreover, both theoretical and simulation
results show that the dynamical behaviors of the two models are totally different.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Recent years have witnessed a steady increase in the study of social networks and opinion dynamics [1–5] due to many
potential applications in various disciplines. Various models such as the Hegselmann–Krause (HK) model [6] and the Def-
fuant–Weisbuch (DW) model [7] were proposed in order to understand the evolution of opinions in a group.

Due to the complexity in opinion dynamics, most of the existing results were obtained mainly based on some descrip-
tions and simulations, but the mathematical results on convergence analysis were relatively few. Based on the zero-entries
symmetry of the adjacency matrices, Ref. [8] proved the stability of one class of agent-based opinion dynamics models, in-
cluding the discrete-time homogeneous HKmodel and the symmetric homogeneous DWmodel. Then [9] developed simple
methods to show the convergence of theHKmodel, while [10] discussed empirical opinion density using the system’smean-
field dynamics as the population size of the agents becomes sufficiently large. From the viewpoint of infinite flow stability
of certain randommatrices, Ref. [11] provided a new proof about the convergence of the HK model and gave a convergence
termination time bound for this model.

Consensus and convergence phenomenon of multi-agent systems have been studied widely [12–16]. However, many
techniques for the analysis of multi-agent systems (with switching topologies described by a given random switching signal
function [17]) cannot apply to the DWmodel, because the switching topologies in the DWmodel are state-dependent.
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The conventional DW model is a class of bounded confidence opinion dynamics, in which each agent randomly selects
one learning object (LO) to update its opinion and update by their weighted average value if the distance between these two
agents’ opinions is not larger than the fixed bounded confidence. However, in practice, several LOs’ opinions may be chosen
to update the opinion at each time.

In the paper, two multi-choice DWmodels are proposed to cover various opinion phenomena that may not be described
by the conventional DW model. In other words, both short-range and long-range multiple choices are considered in the
opinion update by selecting a group of LOs for each agent. The almost sure convergence of the short-range multi-choice
DW model is discussed. What is more, the long-range multi-choice DW model is proposed to characterizing the ‘‘trust’’
between agents maybe with different opinions and its dynamical behavior is discussed. Then simulations are given to show
the dramatic difference between the two generalized DW opinion dynamics.

2. Multi-choice DWmodels

In this section, we propose two multi-choice DWmodels.
Because the DW model is stochastic, we introduce some notations of probability theory. A probability space is usually

defined as (Ω, F , P), where Ω is a space and P is a normalized measure on a σ -algebra F of subsets of Ω (referring to
Ref. [18]). The set A ∈ F is called an event. P(A) denotes the probability of the event A. For any sequence {At , t ≥ 1} of sets,
we take the abbreviation ‘‘i.o’’. for ‘‘infinitely often’’, namely,

{ω : ω ∈ At , i.o.} = {∩
∞

t=1 ∪
∞

k=t Ak}.

The conventional DWmodel proposed in Ref. [7] is formulated as follows. Agent i has an opinion value xi(t) ∈ R at time t .
Without loss of generality, the initial opinions, xi(t0), 1 ≤ i ≤ n, are limited in [0, 1] (noting that the discussion can be easily
extended in any set in R). Denote ε0 as the confidence radius. Then the conventional DWmodel in Ref. [7] is described as

xi(t + 1) = xi(t) + γ01{|xj(t)−xi(t)|≤ε0} · (xj(t) − xi(t)),
xj(t + 1) = xj(t) + γ01{|xj(t)−xi(t)|≤ε0} · (xi(t) − xj(t)),

(1)

where i, j are equally random selected from V at time t , γ0, ε0 ∈ (0, 1) and 1 is the indicator function, that is, 1{ω} = 1 if ω
holds and 1{ω} = 0 otherwise.

In fact, we can generalize the conventional DWmodel into the following asymmetric form,

xi(t + 1) = xi(t) + γi1{|xri(t)(t)−xi(t)|≤ε0} · (xri(t)(t) − xi(t)), 1 ≤ i ≤ n, t ≥ t0 = 0 (2)

where γi ∈ (0, 1) is the combination weight of agent i, i ∈ V . In other words, when agent i selects agent j, agent j may not
select agent i as in the symmetric DWmodel (1).

Note that each agent in both (1) and (2) can only take one LO at each time, whose dynamics are based on ‘‘single-choice’’
opinion update. However, in many cases, each agent may learn from several LOs at the same time. For example, in ameeting
or debate, a person may choose opinions from several LOs before updating his/her opinion. Therefore, we go further to
provide multi-choice DWmodels.

The Short-rangeMulti-choice DW (SMDW)model is proposed to study the following scenario: each agent can selectmore
than one agent as its LOs at each time, and make a weighted evaluation for its opinion update after removing the opinion
not located in its confidence region, which can be expressed as

xi(t + 1) = xi(t) + γi

ci
j=1

αij1{|x
r(j)i (t)

(t)−xi(t)|≤ε0} · (xr(j)i (t)(t) − xi(t)) (3)

for 1 ≤ i ≤ n, 1 ≤ j ≤ ci, t ≥ t0 = 0, where γi ∈ (0, 1) is the same as in (2), and ci ∈ V is the choice number of agent i.
r (j)
i (t) denotes the index of the LO of agent i at its j-th choice, which is a random variable uniformly distributed in V . {r (j)

i (t)}
are uncorrelated with the index sets {i, i ∈ V}, {j, 1 ≤ j ≤ ci} and t = 0, 1, 2, . . .. αij satisfies

ci
j=1 αij = 1 and 0 < αij < 1,

i ∈ V . Clearly, if ci = 1, αij = 1, then SMDW becomes DW (2).
However, in reality, peoplemayupdate their opinions based onnot only similar opinions but also quite different opinions.

Hence, we propose anothermodel called the Long-rangeMulti-choice DW (LMDW)model. In thismodel, each agent collects
some selected LOs’ opinions and makes a weighted summary of those opinions, and then updates its own opinion if the
weighted opinion is located in its confidence region, which can be expressed as

xi(t + 1) = xi(t) + γi1{|
ci

j=1 αijxr(j)i (t)
(t)−xi(t)|≤ε0}

·


ci
j=1

αijxr(j)i (t)(t) − xi(t)


(4)

for 1 ≤ i ≤ n, 1 ≤ j ≤ ci, t ≥ t0 = 0, where the notations are the same as those in the SMDW model. Although LMDW
looks like DW or SMDW, it is totally different from them because opinions outside the confidence range of an agent may
influence its opinion.
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Fig. 1. Opinion evolution of 100 agents for (3).

The interaction between agents can be described by graphs. A graph G = (V, E) consists of a finite set V = {1, 2, . . . , n}
of vertexes (or regarded as agents here) and an edge set E (referring to Ref. [19]). Note that the edge set E is time-varying
during the opinion evolution. Let {Ft} be a filtration on (Ω, F ), where the sample space Ω is composed by all the agents’
selection processes {ri(t), ∀t ∈ N, i ∈ V}. |X | denotes the number of vertexes (or agents) in a set X ⊂ V .

For ω ∈ Ω , both (3) and (4) can be written in a compact form as x(t + 1, ω) = W (t, ω)x(t, ω), whereW (t, ω) = (Wij(t,
ω))1≤i,j≤n denotes the matrix corresponding to the graph describing the interconnection between agents, and x(t, ω) =

(x1(t, ω), . . . , xn(t, ω))T denotes the vector of these opinion values at time t . Define the infinite flow graph of {W (t, ω)}
as G∞

: Ω → G(V) or G∞(ω) = (V, E∞(ω)) with the vertex set V and the edge set E∞(ω) = {(i, j)|


∞

t=0(Wij(t, ω) +

Wji(t, ω)) = ∞, i ≠ j ∈ V}. In the sequel, when there is no confusion, we will simply write xi(t), x(t), and Wij(t) instead
of xi(t, ω), x(t, ω), and Wij(t, ω). Additionally,W (t : s) denotesW (t − 1)W (t − 2) · · ·W (s).

Definition 1. x(t) ∈ Rn is convergent a.s. to x∗ if P(limt→∞ x(t) = x∗) = 1. Furthermore, x(t) achieves consensus a.s. if all
the agents’ opinions convergent a.s. to a common opinion value.

3. Opinion evolution of the SMDWmodel

In this section, we analyze the convergence for the SMDWmodel (3).
Fig. 1 shows that 100 agents evolve their opinions under protocol (3), where initial values are equally distributed in

[0, 1] and the confidence radius is 0.2. In this simulation, the opinions of these agents converge to three different values
eventually.

Before the analysis of the SMDW model, we give some concepts about W (t) (referring to Refs. [11,1]). {W (t)} is an
adapted random chain (with respect to {Ft}) if {W (t)} is measurable with respect to Ft+1, or equivalently,Wij(t) is measur-
able with respect to Ft+1 for i, j ∈ V and t ≥ 0. An adapted random chain {W (t)} has the feedback property if Wii(t) ≥ γ
a.s. for a constant γ > 0 with t ≥ 0 and i ∈ V . A random vector process {π(t)} is an absolute probability process for {W (t)}
if E[π T (t + 1)W (t)|Ft ] = π T (t) for k ≥ 0, and π(t) is a stochastic vector (that is,

n
i=1 πi(t) = 1, πi(t) ≥ 0, i ∈ V) a.s.

for t ≥ 0. In addition, {W (t)} is balanced if there is a constant α > 0 such that the expected chain {E[W (t)|Ft ]} satisfies
E[WSS̄(t)|Ft ] ≥ αE[WS̄S(t)|Ft ] for any non-empty S ⊂ V and t ≥ 0, where S̄ ⊂ V is the complementary set of S and
E[WSS̄(t)|Ft ] =


i∈S,j∈S̄ E[Wij(t)|Ft ].

The following result is useful in our analysis [11].

Lemma 1. Let {W (t)} be a random adapted chain having an absolute probability process {π(t)} such that π(t) ≥ κ a.s. for
some scalar κ > 0 and for all t ≥ 0, with the feedback property and balance property of its sample paths. Then {W (t)} is infinite
flow stable namely, {x(t)} achieves convergence a.s. for any initial condition (t0, x(t0)) and limt→∞(xi(t) − xj(t)) = 0, a.s. for
{i, j} ∈ E∞(ω).

Denote

η+
= max

i∈{1,2,...,n}


γi

ci
j=1

αij


, η−

= min
i∈{1,2,...,n}

min
j∈{1,2,...,ci}

{γiαij}.

Consider a non-trivial S ⊂ V and define dt(S, S̄) = mini∈S,j∈S̄ |xi(t) − xj(t)|.
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• If dt(S, S̄) ≤ ε0, then

E[WSS̄(t)|Ft+1] =


i∈S,j∈S̄

E[Wij(t)|Ft+1] =


(i,j)∈Et ,i∈S,j∈S̄

E[Wij(t)|Ft+1]

≥


(i,j)∈Et ,i∈S,j∈S̄

η−
=


(i,j)∈Et ,i∈S,j∈S̄

η+
η−

η+
≥

η−

η+
E[WS̄S(t)|Ft+1].

• If dt(S, S̄) > ε0, then maxi∈S,j∈S̄ E[Wij(t)|Ft+1] = 0 because S and S̄ are disconnected. Hence,

E[WSS̄(t)|Ft+1] =


i∈S,j∈S̄

E[Wij(t)|Ft+1] ≥
η−

η+
E[WS̄S(t)|Ft+1].

Because Wii(t) ≥ 1 − η+ > 0 for i ∈ V and t ≥ 0, {W (t)} is a balanced random chain with the feedback property and
uniformly bounded positive entries, that is,Wij(t) ≥ min{1 − η+, η−

} ≥ δ for Wij(t) > 0.
Then we have the following result.

Lemma 2. {W (t)} has an absolute probability sequence {π(t)}, uniformly bounded by δn−1 with δ =
η−

nη+ min{1 − η+, η−
}.

Proof. Denote Sk(t) = {i ∈ V|E[Wik(t : 0)|Ft ] > 0} and µk(t) = mini∈Sk(t) E[Wik(t : 0)|Ft ]. Clearly, Sk(0) = {k} for
W (0 : 0) = I and µk(0) = 1.

In fact, by

E[Wij(t + 1 : 0)|Ft+1] ≥ minWii(t)E[Wij(t : 0)|Ft ] ≥ δµj(t) > 0,

i ∈ Sj(t + 1) if i ∈ Sj(t + 1). Hence, Sk(t) ⊂ Sk(t + 1).
Then we will prove µk(t) ≥ δ|Sk(t)|−1 for all k ∈ V and t ≥ 0 by induction.
Suppose µk(t) ≥ δ|Sk(t)|−1. Consider µk(t + 1) in the following cases.
Case 1: If E[WSk(t)S̄k(t)(t)|Ft+1] = 0, Sk(t) is disconnected with other agents at t . By


j∈V Wij(t) =


j∈Sk(t)

Wij(t) = 1
for i ∈ Sk(t),

E[Wik(t + 1 : 0)|Ft+1] ≥ µk(t)


s∈Sk(t)

E[Wis(t)|Ft+1] = µk(t), ∀i ∈ Sk(t). (5)

Because E[Wij(t)|Ft+1] = E[Wji(t)|Ft+1] and E[WSk(t)S̄k(t)(t)|Ft+1] = 0, E[WS̄k(t)Sk(t)(t)|Ft+1] = 0. Then, for i ∈ S̄k(t),
we have

0 ≤ E[Wik(t + 1 : 0)|Ft+1]

≤


s∈Sk(t)

E[Wis(t)|Ft+1]E[Wsk(t : 0)|Ft ] + max
s∈S̄k(t)

{Wis(t)}


s∈S̄k(t)

E[Wsk(t : 0)|Ft ] = 0,

where E[Wsk(t : 0)|Ft ] = 0 due to s ∈ S̄k(t).
Hence, Sk(t) = Sk+1(t), and by (5), µk(t + 1) ≥ µk(t). According to

µk(t) ≥ δ|Sk(t)|−1
= δ|Sk(t+1)|−1,

we have µk(t + 1) ≥ δ|Sk(t+1)|−1.
Case 2: If E[WSk(t)S̄k(t)(t)|Ft+1] > 0, then

E[WS̄k(t)Sk(t)(t)|Ft+1] ≥
η−

η+
E[WSk(t)S̄k(t)(t)|Ft+1] > 0,

which implies E[WS̄k(t)Sk(t)(t)|Ft+1] > 0 since {W (t)} is balanced. Due to the uniform boundedness of the positive entries
of E[W (t)|Ft+1], there are j ∈ S̄k(t) and l ∈ Sk(t) such thatWjl(t) ≥ δ. Therefore,

E[Wjk(t + 1 : 0)|Ft+1] ≥ δE[Wlk(t : 0)|Ft ] ≥ δµk(t) ≥ δ|Sk(t)|.

Thus, j ∈ Sk(t + 1), which implies |Sk(t + 1)| ≥ |Sk(t)| + 1. Also µk(t + 1) ≥ δ|Sk(t)| ≥ δ|Sk(t+1)−1.
As a result, 1

n1
TE[W k(t : 0)|Ft ] ≥

1
n |Sk(t)|δ

|Sk(t)|−1 for i ∈ V , where W k(t) denotes the k-th column of W (t). By δ < 1
n ,

we obtain 1
n1

TE[W (t : 0)|Ft ] ≥ δn−11T .
By Theorem 4.1 in Ref. [11], for the stochastic matrices {W (t)}, there exists a subsequence {tr} of non-negative integers

such that Q (t) = limr→∞ W (tr : t) ∈ Rn×n exists. Further, by Theorem 4.2 in Ref. [11], the vector π(t) =
1
n1

TQ (t) is a



J. Zhang, Y. Hong / Physica A 392 (2013) 5289–5297 5293

(a) DW dynamics. (b) SMDW dynamics.

Fig. 2. Comparison between the DW dynamics (2) and the SMDW dynamics (3).

uniformly bounded absolute probability sequence for {W (t)}, where

1
n
1TQ (t) =

1
n

lim
r→∞

1TW (tr : t) ≥ δn−11T

which implies the conclusion. �

Then we have the almost sure convergence result.

Theorem 1. Given any initial opinions x0 ∈ [0, 1]n, one of the following two results holds almost surely for i, j ∈ V:
(i) limt→∞ |xi(t) − xj(t)| = 0,
(ii) limt→∞ |xi(t) − xj(t)| > ε0.

Proof. By Lemmas 1 and 2, {W (t)} is infinite flow stable in anymeasurable subset ofΩ . In otherwords, all agents are almost
surely convergent and moreover, agents i, j in the same infinite flow subgraph of (V, E) converge to the same value a.s.

If i, j are not in the same infinite flow subgraph, we claim limt→∞ |xi(t) − xj(t)| > ε0 a.s. Otherwise, without loss of
generality, there exist i ∈ G∞

1 and j ∈ G∞

2 where G∞

1 ,G∞

2 are different infinite flow subgraphs for event ω ∈ Ω . In fact, if
mini∈G∞

1 ,j∈G∞
2

|xi(tk)−xj(tk)| ≤ ε0 for some subsequence {tk}, then by the Borel–Cantelli Theorem (Theorem3.2.1 in Ref. [18])

and P(r (1)
i (tk) = j) = n−1 > 0, P(r (1)

i (tk) = j, i.o.) = 1. In other words, there exists an infinite subsequence {tkl} ⊂ {tk}
almost surely such that

∞
t=0

(Wij(t) + Wji(t)) ≥

∞
l=1

(Wij(tkl) + Wji(tkl)) ≥

∞
l=1

δn−1
= ∞,

indicating that i, j are in the same infinite flow graph, which leads to a contradiction. Thus, the conclusion follows. �

Remark 1. Since the conventional DW model (1) and the DW model (2) are special cases of the SMDW model (3), the
convergence result also holds for (1) and (2). In fact, the method has been used in the convergence analysis of the HKmodel
in Ref. [11].

A simulation is given for a comparison between the SMDWmodel (3) and the DWmodel (2). We conduct the simulations
on 10 agents, whose initial opinions are equally distributed in the interval [0, 1]. Fig. 2 shows that the convergence of the
agents’ opinions in the SMDW dynamics becomes slower to achieve agreements than that in the DW dynamics, mainly be-
cause too many choices may influence the opinion updates. However, on the other hand, the opinion change of each agent
in the SMDW model in Fig. 2(b) is much smoother than that in the DW model in Fig. 2(a). Clearly, those phenomena are
consistent with the common sense.

4. Dynamics and consensus of the LMDWmodel

The SMDWmodel is like the conventional DWmodels,where each agent is quite narrow-minded. Although SMDWallows
agents to collect more opinions, it only keeps the opinion values within the confidence ranges and discards those that are
quite different. Therefore, the agents tend to formopinion groups and keep their opinionswithin their own groups. However,
this may not be true in reality when some agents like to see the opinions quite different from theirs before updating their
opinion. In this section, we analyze the dynamic behavior for the LMDWmodel (4), which provides a long-range interaction
mechanism to count in some opinions outside the confidence range.

Denote Mt = maxi{xi(t)} and mt = mini{xi(t)}. We first introduce the following lemma, whose proof is simple and
therefore, omitted.
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Fig. 3. Opinion oscillation for LMDW (4) with a small confidence bound.

Fig. 4. Opinion evolution of 50 agents for LMDW (4).

Lemma 3. For LMDW (4) and each event ω ∈ Ω , non-decreasing sequence {mt} converges to m ∈ [0, 1], and non-increasing
sequence {Mt} converges to M ∈ [0, 1].

Clearly,m ≤ M for any given sample.
Although the dynamics of SMDW and LMDW look similar, their behaviors are very different. The agents in LMDW are

quite social with long-range concerns: they collect various opinions, including those within their confidence region or
outside the region, and then make a summary for all the opinions; then they make new opinions based on if the weighted
summary are located in their confidence. Therefore, the agents in LMDW strongly interact with each other with such a long-
range interaction. Two simulations in Fig. 3 display that 10 agents evolve their opinions by (4) with a confidence bound
ε0 = 0.05. Different from the SMDW model, opinion values of LMDW (4) cannot converge a.s., but may keep fluctuating
instead, alongwith several straight lines, as shown in the two simulations in Fig. 3. In fact, the agentwith the constant opinion
(in the form of straight line) is isolated, when any weighted combination of its collected opinions is out of its confidence
region for a sufficient small ε0. Therefore, there are two kinds of the agents in such a case: the isolated agent (that sticks
to its own opinion) and the fluctuating agent (that keeps changing its opinion value). It is worthwhile to point out that the
fluctuation/oscillation comes from the influence of isolated constant opinions.

However, the fluctuation may disappear when we increase the confidence radius ε0 to increase the long-range opinion
exchange. As shown in Fig. 4, 50 agents evolve their opinions under LMDW dynamics (4), whose initial values are located in
the interval [0, 1], max1≤i≤n min1≤j≤ci αij = 0.32 and ε0 = 0.41.

Wemaywonder if there is a value of ε0 to guarantee the consensus. Actually, the next result shows almost sure consensus
for the LMDWmodel.

Theorem 2. For any initial values x0 ∈ [0, 1]n in (4) with ci > 1 (i = 1, . . . , n), if

ε0 ≥ max
1≤i≤n

min
1≤j≤ci

αij,

then the opinion consensus can be achieved almost surely.
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Proof. The conclusion is obvious with initial conditionM0 − m0 ≤ ε0. We focus on the case whenM0 − m0 > ε0.
In this case, we will prove by contradiction that P(m < M) > 0 does not hold.
Conditioned onm < M , we take

β =
1
2

min
1≤i≤n

min
1≤j≤ci

γiαij min{M − m, 1 − M + m} > 0 (6)

for givenm and M . By Lemma 3, there exists a (stopping) time T > 0 such that

0 < max{m − mt ,Mt − M} < β, t > T . (7)

Denote ζi = {j : min1≤j≤ci αij} and Is = {1, . . . , cs} for s ∈ V .
Because n is a finite number, by Lemma 3 there must be at least one agent whose opinion values are infinitely often

located in [0,m]. Denote X = {i ∈ V : xi(t) ∈ [0,m] i.o.} and Y = {j ∈ V : xj(t) ∈ [M, 1] i.o.}, which are non-empty
(random) subsets of V . Denote a sample set {ΩX,Y } as:

ΩX,Y = {(x1(t), . . . , xi1(t), . . . , xi|X |
(t), . . . , xj1(t), . . . , xj|Y |

(t), . . . , xn(t)), t ≥ 0,

X = {i1, . . . , i|X |}, Y = {j1, . . . , j|Y |}}. (8)

Ω = ∪{ΩX,Y } because there always exist agents in [0,m] and [M, 1]. Then we can discuss this problem in the following
two cases:

Case 1: |X | = 1 or |Y | = 1.
Without loss of generality, we assume that X = {1} and Y is a given non-empty set, and therefore, |Y | ≥ 1 and Ω{1},Y is

not empty. By (7) and (8), agent 1’s opinion value is taken infinitely often in (m − β,m] when t > T for any given event ω
(in fact, if ε0 < β , we can replace (m − β,m] by (0,m]). In other words, x1(t) ∈ (m − β,m] when t > T . By c1 > 1, we
denote

Q̌1(t) = {r (ζ1)
1 (t) ∈ Y , r (k)

1 (t) = 1, ∀k ∈ I1/{ζ1}, t > T }

with τ0 = mint>0{t : 1
{ω∈Q̌1(t)}

= 1}.
We claim

P(τ0 < ∞) = 1. (9)

In fact, when t > T , agent 1’s opinion value sequences will keep their values in [0,m] for any event ω ∈ Ω{1},Y . By
P(r (k)

1 (t) = k) =
1
n > 0 for k ∈ V and the independence of {r (k)

1 (t)}, we get

P(Q̌1(t)) ≥
1
nc1

≥
1
nn

> 0.

Hence,


∞

t=1 P(Q̌1(t)) = ∞. Thus, (9) holds by the Borel–Cantelli Theorem (Theorem 3.2.1 in Ref. [18]).
In fact, conditioned on Q̌1(τ0), by min1≤j≤c1 α1j > −1 and (6), we have

β ≤
1
2

min
1≤i≤n

γi min
1≤j≤c1

α1j(M − m) ≤
1
2

min
1≤j≤c1

α1j(M − m)

≤

min
1≤j≤c1

α1j

1 − min
1≤j≤c1

α1j
(M − m) <

min
1≤j≤c1

α1j

1 − min
1≤j≤c1

α1j
(1 + M − m), (10)

and then
c1
s=1

α1sxr(s)1 (τ0)
(τ0) − x1(τ0) ≥ min

1≤j≤c1
α1jM +


1 − min

1≤j≤c1
α1j


(m − β) − m

= min
1≤j≤c1

α1j(M − m) −


1 − min

1≤j≤c1
α1j


β ≥ − min

1≤j≤c1
α1j ≥ −ε0. (11)

Similarly, by (6) and min1≤j≤c1 α1j < 1, we have

β ≤
1
2

min
1≤i≤n

γi min
1≤j≤c1

α1j(1 − M + m)

≤
1
2

min
1≤j≤c1

α1j(1 − M + m) <

min
1≤j≤c1

α1j

1 + min
1≤j≤c1

α1j
(1 − M + m),
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and then
c1
s=1

α1sxr(s)1 (τ0)
(τ0) − x1(τ0) ≤ min

1≤j≤c1
α1j(M + β) +


1 − min

1≤j≤c1
α1j


m − (m − β)

= min
1≤j≤c1

α1j(M − m) +


1 + min

1≤j≤c1
α1j


β ≤ min

1≤j≤c1
α1j ≤ ε0. (12)

Therefore, |
c1

s=1 α1sxr(s)1 (τ0)
(τ0) − x1(τ0)| ≤ ϵ0 when ε0 ≥ max1≤i≤n min1≤j≤ci αij conditioned on Q̌1(τ0). Moreover, by (6)

and min1≤i≤n γi(1 − min1≤j≤c1 α1j) < 1 −
1
2 min1≤j≤c1 α1j, we obtain

x1(τ0 + 1) − x1(τ0) = γ1


c1
s=1

α1sxrs1(τ0)(τ0) − x1(τ0)



≥


min
1≤i≤n

γi


min

1≤j≤c1
α1jM +


1 − min

1≤j≤c1


(m − β) − m


=


min
1≤i≤n

γi


min

1≤j≤c1
α1j(M − m) − β


1 − min

1≤j≤c1
α1j



≥

1 −

min
1≤i≤n

γi


1 − min

1≤j≤c1
α1j


2 − min

1≤j≤c1
α1j

 min
1≤i≤n

γi min
1≤j≤c1

α1j(M − m)

≥
1
2

min
1≤i≤n

γi min
1≤j≤c1

α1j min{M − m, 1 − M + m} ≥ β (13)

which implies no agent in [0,m] at time τ0 + 1 and leads to a contradiction with Lemma 3. By (9), Q̌1(τ0) happens a.s. for
each ω ∈ Ω{1},Y and then P(m < M|ω ∈ Ω{1},Y ) = 0.

Case 2: |X | > 1 and |Y | > 1.
Without loss of generality, we take X = {1, 2} and any non-empty set Y with |Y | ≥ 2.
By (7) and (8), opinion values of agents 1 and 2 are infinitely often in (m − β,m] when t > T for each given event ω,

since β > 0 is a parameter independent of each agent (noting that, if ε0 < β , we can replace (m − β,m] by (0,m]). Similar
to Case 1, we denote

Q̌1,2(t) = {r (ζi)
i (t) ∈ Y , r (k)

i (t) ∈ X, ∀k ∈ Ii/{ζi} and i ∈ X, t > T }

with τ0 = mint>0{t : 1
{ω∈Q̌1,2(t)}

= 1}.
Using the same method, we can prove P(τ0 < ∞) = 1. Similarly, we can calculate

ci
s=1

αisxr(s)i (τ0)
(τ0) − xi(τ0)

 ≤ ϵ0 for i, j ∈ {1, 2},

conditioned on Q̌1,2(τ0), and moreover, according to (4),

x1(τ0 + 1) − x1(τ0) ≥ β, x2(τ0 + 1) − x2(τ0) ≥ β (14)

which implies that there is no agent in [0,m] about the event ω ∈ Ω{1,2},Y at time τk + 1. This contradicts Lemma 3. Hence,
P(m < M|ω ∈ Ω{1,2},Y ) = 0.

For general X = {i1, i2, . . . , ik} and Y = {j1, j2, . . . , jl} with 1 < k, l < n, we can still apply the above ideas to get the
results similar to (9) and (14).

In sum, there are T1 and T2 such that mT1 > m or MT2 < M a.s., which contradict the definitions of m and M . Hence,
P(m < M) = 0. Thus, the conclusion holds. �

Clearly, Theorem2 is consistentwith the phenomena given in Fig. 4, where the opinions of these agents tend to consensus
with long-range opinion exchange. In the LMDWmodel, the weighted opinion x̄i in the function 1{|x̄i−xi(t)|<ε0} can drive the
agents out of the neighbor of agent i into the LO set of agent i if the confidence bound ε0 is large enough. Therefore, the
almost sure consensus occurs more easily when ε0 is larger because the agents are more open to different opinions.

The proposed LMDW model may explain the interesting opinion phenomena that the HK or DW (and SMDW) models
cannot demonstrate. When long-range opinions are taken into consideration, we see two extreme phenomena from sim-
ulations: with a large confidence radius, agents are quite open to different weighted opinions and then tend to achieve
agreement; with a small confidence radius, agents do not trust others’ opinions though the long-range opinions will influ-
ence agents somehow. Therefore, they either become isolated or fluctuate without any fixed opinion.
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Fig. 5. Opinion difference R(t) of the LMDW dynamics change with ε0 .

The opinion difference of x(t) is defined as R(t) = maxi xi(t) − mini xi(t). In Fig. 5, we show two numerical simulations
for 10 agents with initial opinions randomly distributed in the interval [0, 1]. The LMDWmodel evolves with ci = 5 and all
αij = 0.2. As the confidence radius ε0 changes from0.01 to 1with the step 0.01, R(t) changes from almost 1 to almost 0when
ε0 > 0.2. The simulation result verifies Theorem 2, where all the opinions of (4) achieve consensus when ε0 is larger than a
certain ‘‘threshold’’ value. Further we can see the co-existence of oscillation the straight lines in the evolution. Therefore, for
some initial conditions, there may not be isolated agents (and then no fluctuating agents), which explains why there may
be consensus sometimes even when the radius is small in Fig. 5.

5. Conclusions

In the paper, we proposed twomulti-choicemodels to generalize the conventional DWmodels and then investigated the
dynamical behaviors of two generalized DW opinion dynamic models. We first proved the almost sure convergence of the
SMDW model, and the almost sure consensus of the LMDW model under some mild conditions. We also demonstrated the
differences between the SMDWand LMDWmodelswith numerical simulations. However,many opinion dynamics problems
such as phase transitions for the LMDW model and the convergence rate estimation of the opinion models remain to be
solved.
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