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Abstract

In this paper, we consider a leader-following consensus problem of a group of autonomous agents with time-varying

coupling delays. Two different cases of coupling topologies are investigated. At first, a necessary and sufficient condition is

proved in the case when the interconnection topology is fixed and directed. Then a sufficient condition is proposed in the

case when the coupling topology is switched and balanced. Numerical examples are also given to illustrate our results.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Recent years have witnessed steadily increasing recognition and attention of coordinated motion of mobile
agents across a broad range of disciplines. Applications can be found in many areas such as biology or ecology
(e.g., aggregation behavior of animals in Refs. [1–3]), physics (e.g., collective motion of particles in Refs. [4,5]),
and engineering (e.g., formation control of robots in Refs. [6–9]). The studies of multiple autonomous agents
focus on understanding the general mechanisms and interconnection rules of cooperative phenomena as well
as their potential applications in various engineering problems.

In a multi-agent system, agents are usually coupled and interconnected with some simple rules including
nearest-neighbor rules [4,8]. A computer graphics model to simulate collective behavior of multiple agents was
presented in Ref. [10]. With a proposed simple model and neighbor-based rules, flocking and schooling were
successfully simulated and analyzed for self-propelled particles in Ref. [4]. Also, self-organized aggregation
behavior of particle groups with leaders becomes more and more interesting. The coordinated motion of a
group of motile particles with a leader has been analyzed in Ref. [11], while leader-follower networks have
been also considered in Ref. [12]. Recently, to design distributed flocking algorithms, Olfati-Saber has
introduced a theoretical framework including a virtual leader/follower architecture, which is different from
conventional leader/follower architecture [9].
e front matter r 2006 Elsevier B.V. All rights reserved.
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Sometimes, the coupling delays between agents have to be taken into consideration in practical problems
[8,13,14]. For example, Earl and Strogatz [13] proposed a stability criterion for a network of specific oscillators
with time-delayed coupling. In Ref. [8], the authors studied consensus problems of continuous-time agents
with interconnection communication delays. The dynamics of each agent is first order and the graph to
describe the interconnection topology of these agents is undirected.

In this paper, a leader-following consensus problem for multiple agents with coupling time delays is
discussed. Here the considered dynamics of each agent is second order, coupling time delay is time varying,
and the interconnection graph of the agents is directed. The convergence analysis of the consensus problem
with directed graphs (or digraph for short) is more challenging than that of undirected graphs due to the
complexity of directed graphs. The analysis becomes harder if time delay is involved. For time-delay systems,
modeled by delayed differential equations, an effective way to deal with convergence and stability problems is
Lyapunov-based; Lyapunov–Krasovskii functionals or Lyapunov–Razumikhin functions are often used in the
analysis [15].

The paper is organized as follows. Section 2 presents the multi-agent model and some preliminaries. Then,
two cases, fixed coupling topology and switched coupling topology, are considered. The leader-following
convergence of two models in the two cases are analyzed in Sections 3 and 4, respectively. Here,
Lyapunov–Razumikhin functions are employed, along with the analysis of linear matrix inequalities. Finally,
some concluding remarks are given in Section 5.

By convention, R and Zþ represent the real number set and the positive integer set, respectively; In is an
n� n identity matrix; for any vector x, xT denotes is its transpose; k � k denotes Euclidean norm.
2. Model description

We consider a group of nþ 1 identical agents, in which an agent indexed by 0 is assigned as the ‘‘leader’’
and the other agents indexed by 1; . . . ; n are referred to as ‘‘follower-agents’’ (or ‘‘agents’’ when no confusion
arises). The motion of the leader is independent and the motion of each follower is influenced by the leader
and the other followers. A continuous-time model of the n agents is described as follows:

€xi ¼ ui; i ¼ 1; . . . ; n, (1)

or equivalently,

_xi ¼ vi;

_vi ¼ ui;

(
(2)

where the state xi 2 Rm can be the position vector of agent i, vi 2 Rm its velocity vector and ui 2 Rm its
coupling inputs for i ¼ 1; . . . ; n. Denote

x ¼

x1

x2

..

.

xn

0
BBBB@

1
CCCCA; v ¼

v1

v2

..

.

vn

0
BBBB@

1
CCCCA; u ¼

u1

u2

..

.

un

0
BBBB@

1
CCCCA 2 Rmn.

Without loss of generality, in the study of leader-following stability, we take m ¼ 1 for simplicity in the
sequel. Then (2) can be rewritten as

_x ¼ v;

_v ¼ u 2 Rn:

�
(3)

The dynamics of the leader is described as follows:

_x0 ¼ v0 2 R, (4)

where v0 is the desired constant velocity.
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If each agent is regarded as a node, then their coupling topology is conveniently described by a simple graph
(basic concepts and notations of graph theory can be found in Refs. [16,17,8]). Let G ¼ ðV;E;AÞ be a
weighted digraph of order n with the set of nodes V ¼ f1; 2; . . . ; ng, set of arcs E �V�V, and a weighted
adjacency matrix A ¼ ½aij� 2 Rn�n with nonnegative elements. The node indexes belong to a finite index set
I ¼ f1; 2; . . . ; ng. An arc of G is denoted by ði; jÞ, which starts from i and ends on j. The element aij associated
with the arc of the digraph is positive, i.e., aij403ði; jÞ 2 E. Moreover, we assume aii ¼ 0 for all i 2 I. The
set of neighbors of node i is denoted by Ni ¼ fj 2V : ði; jÞ 2 Eg. A cluster is any subset J �V of the nodes
of the digraph. The set of neighbors of a cluster J is defined by NJ ¼

S
i2JNi ¼ fj 2V : i 2 J; ði; jÞ 2 Eg.

A path in a digraph is a sequence i0; i1; . . . ; if of distinct nodes such that ðij�1; ijÞ is an arc for
j ¼ 1; 2; . . . ; f ; f 2 Zþ. If there exists a path from node i to node j, we say that j is reachable from i.
A digraph G is strongly connected if there exists a path between any two distinct nodes. A strong component of
a digraph is an induced subgraph that is maximal, subject to being strongly connected. Moreover, ifP

j2Ni
aij ¼

P
j2Ni

aji for all i ¼ 1; . . . ; n, then the digraph G is called balanced, which was introduced in Refs.
[8,17].

A diagonal matrix D ¼ diagfd1; . . . ; dng 2 Rn�n is a degree matrix of G, whose diagonal elements di ¼P
j2Ni

aij for i ¼ 1; . . . ; n. Then the Laplacian of the weighted digraph G is defined as

L ¼ D� A 2 Rn�n. (5)

To study a leader-following problem, we also concern another graph Ḡ associated with the system
consisting of n agents and one leader (labeled 0). Similarly, we define a diagonal matrix B 2 Rn�n to be a leader
adjacency matrix associated with Ḡ with diagonal elements bi ði 2 IÞ, where bi ¼ ai0 for some constant ai040
if node 0 (i.e., the leader) is a neighbor of node i and bi ¼ 0, otherwise. For Ḡ, if there is a path in Ḡ from every
node i in G to node 0, we say that node 0 is globally reachable in Ḡ, which is much weaker than strong
connectedness.

Example 1. As shown in Figs. 1 and 2, both Ḡ1 and Ḡ2 are not strongly connected, but they have a globally
reachable node 0. Suppose that the weight of each arc is 1 in both cases. Obviously, G2 with V ¼ f1; 2; 3; 4g is
balanced.

Laplacians of G1 and G2 as well as the leader adjacency matrices B1; B2 are easily obtained as follows:

L1 ¼

1 �1 0 0

�1 1 0 0

0 0 0 0

0 �1 �1 2

0
BBB@

1
CCCA; L2 ¼

1 �1 0 0

�1 1 0 0

0 0 1 �1

0 0 �1 1

0
BBB@

1
CCCA; B1 ¼ B2 ¼

1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

0
BBB@

1
CCCA.

The following lemma was obtained in Refs. [6,18].

Lemma 1. A digraph G ¼ ðV;E;AÞ has a globally reachable node if and only if for every pair of nonempty,
disjoint subsets V1;V2 �V satisfies NSi

S
NSj

a;.

Remark 1. Let S1;S2; . . . ;Sp be the strong components of G ¼ ðV;EÞ and NSi
be the neighbor sets for

Si; i ¼ 1; . . . ; p; p41. From Lemma 1, a digraph G has a globally reachable node if and only if every pair of
1

2

3

4

0

Fig. 1. Ḡ1 and G1.
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Fig. 2. Ḡ2 and G2.
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Si;Sj satisfies NSi

S
NSj

a;. If the graph is strongly connected, then each node is globally reachable from
every other node.

The next lemma shows an important property of Laplacian L [6].

Lemma 2. The digraph G has a globally reachable node if and only if Laplacian L of G has a simple zero

eigenvalue (with eigenvector 1 ¼ ð1; . . . ; 1ÞT 2 Rn).

Due to the coupling delays, each agent cannot instantly get the information from others or the leader. Thus,
for agent i ði ¼ 1; . . . ; nÞ, a neighbor-based coupling rule can be expressed as follows:

uiðtÞ ¼
X

j2NiðsÞ

aijðxjðt� rÞ � xiðt� rÞÞ þ biðsÞðx0ðt� rÞ � xiðt� rÞÞ þ kðv0 � viðtÞÞ; k40, (6)

where the time-varying delay rðtÞ40 is a continuously differentiable function with

0orot, (7)

s : ½0;1Þ ! IG ¼ f1; . . . ;Ng (N denotes the total number of all possible digraphs) is a switching signal that
determines the coupling topology. The set G ¼ fG1; . . . ;GNg is a finite collection of graphs with a common
node set V. If s is a constant function, then the corresponding interconnection topology is fixed. In addition,
NiðsÞ is the index set of neighbors of agent i in the digraph Gs while aij ði; j ¼ 1; . . . ; nÞ are elements of the
adjacency matrix of Gs and biðsÞ ði ¼ 1; . . . ; nÞ are the diagonal elements of the leader adjacency matrix
associated with Ḡs.

With (6), (2) can be written in a matrix form:

_x ¼ v;

_v ¼ �ðLs þ BsÞxðt� rÞ � kðv� v01Þ þ Bs1x0ðt� rÞ;

(
(8)

where Ls is Laplacian of Gs and Bs is the leader adjacency matrix associated with Ḡs.
In the sequel, we will demonstrate the convergence of the dynamics system (8); that is, xi ! x0; vi ! v0 as

t!1.

3. Fixed coupling topology

In this section, we will focus on the convergence analysis of a group of dynamic agents with fixed
interconnection topology. In this case, the subscript s can be dropped.

Let x̄ ¼ x� x01, v̄ ¼ v� v01. Because �ðLþ BÞxðt� rÞ þ B1x0ðt� rÞ ¼ �ðLþ BÞx̄ðt� rÞ (invoking
Lemma 2), we can rewrite system (8) as

_� ¼ C�ðt� rÞ þ E�ðtÞ, (9)

where

� ¼
x̄

v̄

� �
; C ¼

0 In

0 �kIn

 !
; E ¼

0 0

�H 0

� �
; H ¼ Lþ B.
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Before the discussion, we introduce some basic concepts or results for time-delay systems [15]. Consider the
following system:

_x ¼ f ðxtÞ; t40;

xðyÞ ¼ jðyÞ; y 2 ½�t; 0�;

(
(10)

where xtðyÞ ¼ xðtþ yÞ;8y 2 ½�t; 0� and f ð0Þ ¼ 0. Let Cð½�t; 0�;RnÞ be a Banach space of continuous functions
defined on an interval ½�t; 0�, taking values in Rn with the topology of uniform convergence, and with a norm
kjkc ¼ maxy2½�t;0� kjðyÞk. The following result is for the stability of system (10) (the details can be found in
Ref. [15]).

Lemma 3 (Lyapunov–Razumikhin theorem). Let f1;f2, and f3 be continuous, nonnegative, nondecreasing

functions with f1ðsÞ40;f2ðsÞ40;f3ðsÞ40 for s40 and f1ð0Þ ¼ f2ð0Þ ¼ 0. For system (10), suppose that the

function f : Cð½�t; 0�;RnÞ ! R takes bounded sets of Cð½�t; 0�;RnÞ in bounded sets of Rn. If there is a continuous

function V ðt;xÞ such that

f1ðkxkÞpV ðt;xÞpf2ðkxkÞ; t 2 R; x 2 Rn. (11)

In addition, there exists a continuous nondecreasing function fðsÞ with fðsÞ4s; s40 such that

_V ðt;xÞjð10Þp� f3ðkxkÞ if V ðtþ y;xðtþ yÞÞofðV ðt; xðtÞÞÞ; y 2 ½�t; 0�, (12)

then the solution x ¼ 0 is uniformly asymptotically stable.

Usually, V ðt;xÞ is called Lyapunov–Razumikhin function if it satisfies (11) and (12) in Lemma 3.

Remark 2. Lyapunov–Razumikhin theorem indicates that it is unnecessary to require that _V ðt;xÞ be non-
positive for all initial data in order to have stability of system (10). In fact, one only needs to consider the
initial data if a trajectory of Eq. (10) starting from these initial data is ‘‘diverging’’ (that is, V ðtþ y;xðtþ
yÞÞofðV ðt;xðtÞÞÞ for all y 2 ½�t; 0� in (12)).

A matrix A is said to have property SC [19] if, for every pair of distinct integers _; ‘ with 1p_; ‘pn, there is
a sequence of distinct integers _ ¼ i1; i2; . . . ; ij�1; ij ¼ ‘; 1pjpn such that all of the matrix entries
ai1i2 ; ai2i3 ; . . . ; aij�1ij

are nonzero. In fact, it is obvious that, if G is strongly connected, then its adjacency
matrix A has property SC. Moreover, a matrix is called a positive stable matrix if its eigenvalues have positive
real-parts. Note that H ¼ Lþ B plays a key role in the convergence analysis of system (9). The following
lemma shows a relationship between H and the connectedness of graph Ḡ (as defined in Section 2).

Lemma 4. The matrix H ¼ Lþ B is positive stable if and only if node 0 is globally reachable in Ḡ.

Proof (Sufficiency). Based on Ger�sgorin disk theorem [19], all the eigenvalues of H are located in the union of
n discs:

GerðHÞ ¼
[n
i¼1

z 2 R2 : jz� di � bijp
X
jai

aij

( )
.

However, for the graph G, di ¼
P

jaiaij . Thus, every disc with radius di will be located in the right half of the
complex plane, and then H has either zero eigenvalue or eigenvalue with positive real-part. Since node 0 is
globally reachable, there exists at least one bi40. Therefore, at least one Ger�sgorin circle does not pass through
the origin.

The following two cases are considered to prove the sufficient condition:
Case (i): G has a globally reachable node. Let S1; . . . ;Sp (p 2 Zþ) be the strong components of G. If p ¼ 1, G

is strongly connected. Then its adjacency matrix A has property SC. Since Dþ B is a diagonal matrix with
nonnegative diagonal entries, H still has property SC. By better theorem [19], if zero is an eigenvalue of H, it is
just a boundary point of GerðHÞ. Therefore, every Ger�sgorin circle passes through zero, which leads to a
contradiction. Hence, zero is not an eigenvalue of H.
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If p41, then there is one strong component, say S1, having no neighbor set by Lemma 1. We rearrange the
indices of n agents such that the Laplacian of G is taken in the form

L ¼
L11 0

L21 L22

 !
, (13)

where L11 2 Rk�k ðkonÞ is Laplacian of the component S1. From Lemma 2, zero is a simple eigenvalue of L11

and L, while L22 is nonsingular. Since node 0 is globally reachable, then the block matrix B1a0 with
B ¼ diagfB1;B2g. Similar to the case when p ¼ 1, we conclude that zero is not an eigenvalue of L11 þ B1, and is
also not an eigenvalue of H.

Case (ii): G has no globally reachable node. Let S1; . . . ;Sp be the strong components with NSi
¼ ;; i ¼

1; . . . ; p; p41 by Lemma 1. Since
Sp

i¼1VðSiÞ �VðGÞ, Laplacian associated with G can be transformed to the
following form:

L ¼

L11

. .
.

Lpp

Lpþ1;1 � � � Lpþ1;p Lpþ1;pþ1

0
BBBBB@

1
CCCCCA, (14)

where Lii is the Laplacian associated with Si for i ¼ 1; . . . ; p. One can easily verify that Lpþ1;pþ1 is nonsingular.
Since node 0 is globally reachable, then Bia0 for i ¼ 1; . . . ; p where Bi, corresponding to Lii, are diagonal
blocks of B. Similar to the proof in Case (i), we can obtain that zero is not eigenvalue of Hi or H.

(Necessity). If node 0 is not globally reachable in Ḡ, then we also have:
Case (i): G has a globally reachable node. As discussed before, assume S1 has no neighbor set, and then we

have (13), where L11 2 Rk�k ðk 2 ZþÞ is the Laplacian of S1. Invoking Lemma 2, zero is a simple eigenvalue of
L11 and L, while L22 is nonsingular. By the assumption that node 0 is not globally reachable in Ḡ, the block
matrix B1 ¼ 0 with B ¼ diagfB1;B2g. Therefore, zero is a simple eigenvalue of L11 þ B1, and is also a simple
eigenvalue of H. This leads to a contradiction.

Case (ii): G has no globally reachable node. As discussed before, we have (14). Since node 0 is not globally
reachable in Ḡ, there exists at least one Bi ¼ 0 for i ¼ 1; . . . ; p where Bi, corresponding to Lii, are diagonal
blocks of B. Thus, Hi and H have more than one zero eigenvalues. This implies a contradiction. &

Therefore, if node 0 is globally reachable in Ḡ, H is positive stable, and from Lyapunov theorem, there exists
a positive definite matrix P̄ 2 Rn�n such that

P̄H þHTP̄ ¼ In. (15)

Let m̄ ¼ maxfeigenvalues of P̄HHTP̄g and let l̄ be the smallest eigenvalue of P̄. Now we give the main result
as follows.

Theorem 1. For system (9), take

k4k� ¼
m̄
2l̄
þ 1. (16)

Then, when t is sufficiently small,

lim
t!1

�ðtÞ ¼ 0, (17)

if and only if node 0 is globally reachable in Ḡ.
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Proof (Sufficiency). Since node 0 is globally reachable in Ḡ, H is positive stable and P̄ is a positive definite
matrix satisfying (15). Take a Lyapunov–Razumikhin function V ð�Þ ¼ �TP�, where

P ¼
kP̄ P̄

P̄ P̄

 !
ðk41Þ

is positive definite.
Then we consider _V ð�Þjð9Þ.
By Leibniz– Newton formula,

�ðt� rÞ ¼ �ðtÞ �

Z 0

�r

_�ðtþ sÞds

¼ �ðtÞ � C

Z 0

�r

�ðtþ sÞds� E

Z �r

�2r

�ðtþ sÞds.

Thus, from E2 ¼ 0, the delayed differential equation (9) can be rewritten as

_� ¼ F�� EC

Z 0

�r

�ðtþ sÞds,

where F ¼ C þ E.
Note that 2aTbpaTCaþ bTC�1b holds for any appropriate positive definite matrix C. Then, with a ¼

�CTETP�; b ¼ �ðtþ sÞ and C ¼ P�1, we have

_V jð9Þ ¼ �
TðFTPþ PF Þ�� 2�TPEC

Z 0

�r

�ðtþ sÞds

p�TðFTPþ PF Þ�þ r�TPECP�1CTETP�þ

Z 0

�r

�Tðtþ sÞP�ðtþ sÞds.

Take fðsÞ ¼ qs for some constant q41. In the case of

V ð�ðtþ yÞÞoqV ð�ðtÞÞ; �tpyp0, (18)

we have

_Vp� �TQ�þ r�TðPECP�1CTETPþ qPÞ�,

where

Q ¼ �ðFTPþ PF Þ ¼
In HTP̄

P̄H 2ðk � 1ÞP̄

 !
.

Q is positive definite if k satisfies (16), according to Lemma 4 and Schur complements theorem [19]. Let lmin

denote the minimum eigenvalues of Q. If we take

rot ¼
lmin

kPECP�1CTETPk þ qkPk
, (19)

then _V ð�Þp� Z�T� for some Z40. Therefore, the conclusion follows by Lemma 3.
(Necessity). Since system (9) is asymptotically stable, the eigenvalues of F have negative real-parts, which

implies that H is positive stable. By Lemma 4, node 0 is globally reachable in Ḡ. &

Remark 3. In the proof of Theorem 1, we have obtained a finite bound of the considered time-varying delay,
that is, t in (19), though ‘‘t is sufficiently small’’ is mentioned in Theorem 1.

Remark 4. Obviously, (17) still holds if the time delay is constant. Moreover, if the system (2) is free of time-
delay (that is, r 	 0), then the coupling rule (6) becomes

uiðtÞ ¼
X

j2NiðsÞ

aijðxjðtÞ � xiðtÞÞ þ biðsÞðx0ðtÞ � xiðtÞÞ þ kðv0 � viðtÞÞ,

which is consistent with the nearest-neighbor rules in Ref. [8].
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For illustration, we give an numerical example with the interconnection graph given in Fig. 1. It is not hard
to obtain

m̄ ¼ 0:3139; l̄ ¼ 0:1835; k� ¼ 2:7106,

lmin ¼ 0:3325; q ¼ 1:0500; t ¼ 0:0334,

P̄ ¼

0:5379 0:5758 0:0439 0:0227

0:5758 1:1667 0:1091 0:0909

0:0439 0:1091 0:5833 0:0833

0:0227 0:0909 0:0833 0:2500

0
BBB@

1
CCCA.

Take k ¼ 3 and the time-varying delay rðtÞ ¼ 0:0300j cosðtÞj in the simulation.
Fig. 3 shows the simulation results for both position errors and velocity errors, while Fig. 4 demonstrates

that the trajectories of the four agents and the one of the leader.

4. Switched coupling topology

Consider system (8) with switched coupling topology. Still taking x̄ ¼ x� x01; v̄ ¼ v� v01, we have

_� ¼ C�ðt� rÞ þ Es�ðtÞ, (20)

where s is the switching signal as defined in Section 2, and

Es ¼
0 0

�Hs 0

 !
; Hs ¼ Ls þ Bs.

At first, we study the matrix Hs ¼ Ls þ Bs.

Lemma 5. Suppose Gs is balanced. Then Hs þHT
s is positive definite if and only if node 0 is globally reachable

in Ḡ.

Proof (Necessity). The proof is quite trivial and omitted here.
(Sufficiency). Because Gs is balanced, it is strongly connected if it has a globally reachable node. Then from

Theorem 7 in Ref. [8], 1
2
ðLs þ LT

s Þ is a valid Laplacian matrix with single zero eigenvalue. After some
manipulations, it is not difficult to obtain that 1

2
ðLs þ LT

s Þ þ Bs is positive definite (the details can be found in
Ref. [7]) and so is Hs þHT

s .
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Fig. 3. Leader-following errors of four agents with the coupling topology shown in Fig. 1.
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Fig. 4. Trajectories of four agents and the leader with the coupling topology shown in Fig. 1.
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If Gs has no globally reachable node, then there is no arc between every pair of distinct strong components
and we can renumber the nodes so that Laplacian associated with Gs has the form

Ls ¼

L11ðsÞ

L22ðsÞ

. .
.

LppðsÞ

0
BBBBB@

1
CCCCCA, (21)

where each LiiðsÞ is Laplacian associated with a strong component Si for i ¼ 1; . . . ; p; p41. By the assumption
that node 0 is globally reachable in Ḡs, each diagonal block matrix BiðsÞ, corresponding to LiiðsÞ, is nonzero.
Then, it is easy to see that 1

2
ðLiiðsÞ þ LiiðsTÞÞ þ BiðsÞ is positive definite and therefore, Hs þHT

s is positive
definite. &

Based on the balanced graph Gs (with Lemma 5) and the fact that the set IG is finite, both ~l ¼
minfeigenvalues of Hs þHT

s g40 and ~m ¼ maxfeigenvalues of HsHT
s g40 can be well defined.

Theorem 2. For system (20) with balanced graph Gs, take

k4k� ¼
~m

2~l
þ 1. (22)

If node 0 is globally reachable in Ḡs and t is sufficiently small, then

lim
t!1

�ðtÞ ¼ 0.

Proof. Take a Lyapunov–Razumikhin function V ð�Þ ¼ �TF�, where

F ¼
kIn In

In In

 !
ðk41Þ

is positive definite.
Similar to the analysis in the proof of Theorem 1, we can obtain

_Vp�TðFT
sFþ FFsÞ�þ r�TFEsCsF�1CT

sET
sF�þ

Z 0

�r

�Tðtþ sÞF�ðtþ sÞds.

Take fðsÞ ¼ qs for some constant q41. In the case of

V ð�ðtþ yÞÞoqV ð�ðtÞÞ; �tpyp0, (23)
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Fig. 5. Leader-following errors with two switching graphs given in Figs. 1 and 2.
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we have

_Vp� �TQs�þ r�TðFEsCsF�1CT
sET

sFþ qFÞ�,

where

Qs ¼ �ðF
T
sFþ FFsÞ ¼

HT
s þHs HT

s

Hs 2ðk � 1ÞIn

 !
.

Qs is positive definite for any value of s and then _V ð�Þ is negative definite if we take (22) and

rot ¼
lmin

ð2k=ðk � 1ÞÞ ~mþ 1
2
qðk þ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk � 1Þ2 þ 4

q
Þ

, (24)

where lmin denotes the minimum eigenvalue of all possible Qs. Thus, the conclusion is obtained according to
Lemma 3. &

In the switching case, the assumption of balanced graph Gs is not necessary in Theorem 2. The following
numerical example shows that the stability can be obtained even if the coupling topology graph is not
balanced sometimes.

Here we consider there are two coupling topologies, given in Figs. 1 and 2, switching between each other,
with the following switching order: fḠ1; Ḡ2; Ḡ1; Ḡ2; . . .g. With simple calculations, we have

~l ¼ 0:5028; ~m ¼ 7:9257; k� ¼ 7:8816,

lmin ¼ 0:4781; q ¼ 1:0500; t ¼ 0:0174.

Take k ¼ 9 and the time-varying delay rðtÞ ¼ 0:0150j cosðtÞj. Then the simulation results are shown in Fig. 5.
5. Conclusions

This paper addressed a coordination problem of a multi-agent system with a leader. A leader moves at the
constant velocity and the follower-agents follow it though there are time-varying coupling delays. When the
coupling topology was fixed and directed, a necessary and sufficient condition was given. When the coupling
topology was switched and balanced, a sufficient condition was presented. Moreover, several numerical
simulations were shown to verify the theoretical analysis.
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