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Abstract

This Letter introduces some new chaotic attractors in striped rectangular shapes. The chaotic attractors are cons
adding bounded and non-smooth feedback control to the Rössler system. The shape of a generated chaotic attra
adjusted by changing some control parameters. Moreover, the dynamical behavior of the considered system is invest
some estimations for characteristics of this attractor are given.
 2005 Elsevier B.V. All rights reserved.
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Chaotic dynamics and chaos control have been
vestigated in the last four decades[1–3], with many
chaotic attractors such as Lorenz attractor[4] and
Rössler attractor[5] found.

Lately, from engineering viewpoints, by circuit im
plementation and feedback control technique, m
chaotic attractors were generated (for example, Ch
circuit [6] and Chen’s system[7]). Using feedback
control technique to generate new chaotic attrac
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is called anti-control of chaos[1], which can be quite
effective in increasing the complexity of the origin
dynamic system. Existing works have shown that e
a simple feedback control mechanism can genera
variety of chaotic attractors with different structur
having, for example, multi-scrolls[8], or butterfly-
shapes[9].

The motivation of this Letter also follows the ide
of controlling a dynamical system to generate s
cial patterns so as to meet some design speci
tions. Here, a new kind of chaotic attractors in strip
rectangular forms are generated via control from
Rössler systems. The created chaotic attractors
sist of quite “unusual” multiple stripes in rectangu
.
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Fig. 1. The system orbit generated by(1).

shapes. The shape and size of an attractor can be
controlled by adjusting some system parameters.

Here, we consider a Rössler-like system:

(1)




ẋ = −(y + z) + ε1(f + rec(ex)),

ẏ = x + ay + ε2(f + rec(ey)),

ż = z(x − c) + b,

which can be viewed as the well-known Röss
system with added feedback control inputsε1(f +
rec(ex)) andε2(f + rec(ey)), where rec(·) is a rectan-
gular wave generating function described as follow

rec(x) =
{

1 2kπ � x < 2kπ + π,

0 2kπ + π � x < 2kπ + 2π.

Hereεi � 0, i = 1,2 are the control gains, ande > 0
(representing the frequency of a periodic wave),
f � 0 (describing a constant translation) are “contr
parameters.

Because the two feedback controllers in the fi
and second equations are bounded, they play a
little role whenx, y, z are sufficiently large. Clearly
they could not spoil the existence of the generated
tractor, which roots in the unforced Rössler syste
Moreover, system(1) is by nature a non-smooth sy
tem, with switching planes located at{(x, y, z)|ex =
kπ, k = 0,±1,±2, . . .} and {(x, y, z)|ey = kπ, k =
0,±1,±2, . . .}.

Fig. 1shows that system(1) generates a chaotic a
tractor of a striped rectangular shape, by taking
system parameters

(2)a = 0.05, b = 0.20, c = 10.0,

and the “control” parameter as

(3)e = 2, f = 0.4, ε1 = ε2 = 40.
ll Fig. 2.x–y projection of the attractor ofFig. 1.

Both Euler method and Runge–Kutta method h
been used in the numerical studies. The numera
sults with the two methods are almost the same
what follows, the simulation results are obtained
ing Runge–Kutta method with the step length tak
as 0.01. This new attractor seems quite different fro
most well-known chaotic attractors: it consists of s
eral parallel stripes and the distance between two
jacent stripes is almost a constant; it is in the for
of a group of “rectangles” (not in the form of circles
It seems quite regular and simple if one only take
quick glance atFig. 2. However, if one checks it care
fully, its intrinsic complex behavior can be found
illustrated inFig. 3.

The maximum Lyapunov exponent (MLE) is ve
useful in the study of chaotic dynamics. However,
a non-smooth system, the calculation of MLE is n
straightforward. Recently, some estimation method
MLE for non-smooth dynamical systems have be
reported in some papers such as[10,11]. Here, with
parameters setting(2) and (3), the estimation of MLE
of system(1) with the method given in[10] is 0.0282,
while that with the method presented in[11] is 0.0234.
Because both the estimated values of MLE are p
itive, the considered attractor is actually irregular a
chaotic. In fact, the chaotic behaviors are hidden in
“regular” stripes.

The amplitudes of trajectoriesx(t), y(t) and z(t)

are roughly classified into several distinguishable l
els, according to the “regularity” of the stripes. Ta
z(t) as an example. The values of its amplitud
belong to three separated intervals; that is, [0,
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Fig. 3. Two enlarged parts in the dashed boxes of the first figure ofFig. 2.
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[10, 20], and [45, 65], as shown inFig. 4. In addition,
z(t) evolves intermittently.

Now let us consider the relationships between
characteristics of the generated chaotic attractors
the “control” parametersf, e, ε1, andε2.

It can be seen thatz(t) of the attractor generate
by system(1) stays near zero most of the time wh
the attractor moves in the regular “straight-line” orb
To simplify the analysis, assume thatz ≈ 0 andż ≈ 0
roughly hold in most of the “straight-line” parts of th
attractor of system(1). Then, system(1) approxima-
tively reduces to:

(4)




ẋ ≈ −y + ε1(f + rec(ex)),

ẏ ≈ x + ay + ε2(f + rec(ey))

whenż ≈ 0, z ≈ 0.

When the trajectory in the attractors moves alo
the straight-line part of an stripe paralleled with a
y, ẋ ≈ 0. Then, from(4),

(5)y ≈ ε1
(
f + rec(ex)

)
.

Because the range of functionε1(f + rec(ex)) is
[ε1f, ε1(1+f )], the “straight-line” orbit may be main
tained betweeny = ε1f and y = ε1(1 + f ) in gen-
eral. In other words, when the stripes of the attr
tor take the form of straight lines parallel to axisy,
owing to ẋ ≈ 0, they mainly appear in an interv
with y ∈ [ε1f, ε1(1+ f )]. Therefore, the length of th
straight-line part of the stripes (of the left edge in
“rectangular” form) parallel to axisy is approximately
ε1. A larger value ofε1 produces longer straight-lin
Fig. 4. Time series ofz(t) of system(1).

stripes parallel to axisy. However, whenε1 = 0, the
lengths of the straight-line parts of the stripes para
to axisy becomes 0; namely, the stripes are no lon
paralleled to axisy, as shownFig. 5 with (2) and
e = 3, f = 0.4, ε1 = 0, ε2 = 40. On the other hand, a
for the right edge of the “rectangular” form,z(t) is not
around 0, the above analysis based on the assum
of z ≈ 0 is not valid.

Similarly, take ẏ ≈ 0 to describe the straight-lin
orbit in the attractor parallel to axisx. Then, from(4),
we have

(6)x ≈ −ay − ε2
(
f + rec(ey)

)
.

As a result,x is roughly in[−ε2(1+f )−ay,−ε2f −
ay] with y as the coordinates of certain stripes p
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Fig. 5.x–y projection of the attractor withε1 = 0.

Fig. 6.x–y projection of the attractor withε1 = 10.

allel to axisx. Therefore, the length of the straigh
line parts of the stripes parallel to axisx is approxi-
matelyε2.

Based on the above analysis, the ranges of stra
lines in the attractors directly depend on the se
tion of εi (i = 1,2) and f . For example, we con
sider the change of the strengthε1 with fixing (2),
e = 2, f = 0.4, andε2 = 40.Figs. 6 and 2illustrate the
cases withε1 = 10 andε1 = 40, respectively. There
fore, the ranges for the stripes in the form of strai
lines parallel to axisy are, respectively,y ∈ [4,14]
(when ε1 = 10), y ∈ [16,56] (when ε1 = 40), which
are consistent with(5).

It is now to analyze the influence off on the dy-
namics. By fixing(2), ε1 = ε2 = 40, ande = 2, Figs. 7
and 2show the attractors of system(1) with f = 0.2
andf = 0.4, respectively. The ranges for the stripes
the form of straight lines parallel to axisy are, respec
tively, y ∈ [8,48] (whenf = 0.2), y ∈ [16,56] (when
f = 0.4). Furthermore, fix(2), ε1 = 0, ε2 = 10, and
Fig. 7.x–y projection of the attractor withf = 0.2.

Fig. 8. Bifurcation diagram with parameterf .

e = 4, and a bifurcation diagram (x vs.f ) based on a
Poincaré map with a cross sectionΣ1 = {(x, y, z)T ∈
R3 | y = 0} is shown inFig. 8. There are two main
branches.Fig. 9 shows some details for the upp
branch ofFig. 8, whereBf ≈ 68 is a bifurcation value

Then, the role ofe is investigated. Since rec(ex)

is a function of period 2π/e, its keeps the right-han
side of the first equation unchanged whenx moves to
x ± 2π/e. Similar discussion can be given to rec(ey).
Therefore, one may guess that, if these parallel str
exist, the distance between those stipes can be
mated asD = 2π/e. In this sense,e is a parameter tha
directly affects the inter-stripe distance. Setting(2)and
ε1 = ε2 = 40, f = 0.4, Figs. 2 and 10demonstrate th
attractors of system(1) with e = 2 ande = 4, respec-
tively. Moreover,Fig. 11 illustrates a bifurcation dia
gram with parametere based on a Poincaré map w
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Fig. 9. The upper bifurcation branch.

Fig. 10.x–y projection of the attractor withe = 4.

Fig. 11. Bifurcation diagram with parametere.

surfaceΣ2 = {(x, y, z)T ∈ R3 |y = 30} (as discussed
with the chosen parameters, takingy = 30∈ [16,56]
for Σ2 ensures that the stripes parallel to axisy cross
Σ2 transversely). In addition to the comparison
tweenFigs. 2 and 10, Fig. 11 also shows that an in
creasinge is narrowing the inter-stripe distance.

Finally, the equilibria and their stability of syste
(1) are discussed. Set

(7)∆1(t) =
{

ε1(f + 1) if sin(ex) � 0,

ε1f if sin(ex) < 0,

and

(8)∆2(t) =
{

ε2(f + 1) if sin(ey) � 0,

ε2f if sin(ey) < 0.

Then, system(1) can be rewritten as

(9)




ẋ = −(y + z) + ∆1,

ẏ = x + ay + ∆2,

ż = z(x − c) + b.

The equilibria of system(9) can be easily obtaine
by solving the equationṡx = ẏ = ż = 0. Therefore, if

(∆2 + c + a∆1)
2 − 4ab � 0,

then system(9) has two groups of equilibria as fo
lows:

(10)S+:




−∆2+c−a∆1−
√

(∆2+c+a∆1)
2−4ab

2

−∆2−c+a∆1+
√

(∆2+c+a∆1)
2−4ab

2a

∆2+c+a∆1−
√

(∆2+c+a∆1)
2−4ab

2a




and

(11)S−:




−∆2+c−a∆1+
√

(∆2+c+a∆1)
2−4ab

2

−∆2−c+a∆1−
√

(∆2+c+a∆1)
2−4ab

2a

∆2+c+a∆1+
√

(∆2+c+a∆1)
2−4ab

2a




or, in a compact form,S± = (x±, y±, z±). Note that
eitherS+ or S− represents a group of equilibria.

To discuss the stability of these equilibria, consi
the Jacobian of system(8) at these two groups of equ
libria:

J± =
( 0 −1 −1

1 a 0
z± 0 x± − c

)
.
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To obtain the eigenvalues ofJ±, consider the char
acteristic equations:

f (λ) = λ3 + (−x± + c − a)λ2

+ (ax± + z± − ac + 1)λ

(12)− az± − x± + c.

By virtue of the Hurwitz criterion[12], all the real
parts of the rootsλ of (12)are negative if and only if

(13)




−x± + c − a > 0,

ax± + z± − ac + 1− −az±−x±+c
−x±+c−a

> 0,

−az± − x± + c > 0.

Consider the following two cases:S+ = (x+, y+,

z+) andS− = (x−, y−, z−). Notice that−az− − x− +
c = −√

(c + a∆1 + ∆2)2 − 4ab � 0; that is,(13)can-
not be satisfied, which implies the instability of all t
equilibria in the case ofS−. Thus, we only need t
check the stability of the equilibria in the case ofS+
for a given system. All the real parts of the roots
(12) in the case ofS+ are negative if and only if

a∆1 + ∆2 + c − 2a

(14)+
√

(c + a∆1 + ∆2)2 − 4ab > 0,

ax+ + z+ − ac + 1

(15)−
√

(c + a∆1 + ∆2)2 − 4ab

−x+ + c − a
> 0,

(16)
√

(c + a∆1 + ∆2)2 − 4ab > 0.

Let us check system(1) with parameters setting(2)
and (3). Obviously,(∆2 + c + a∆1)

2 − 4ab > 0, and
therefore, system(1) has equilibria. As mentioned, w
only need to check the stability of the equilibria in t
case ofS+. With (2), c > 2a and then(14) and (16)
hold naturally. However, it is not hard to find that(15)
fails to be satisfied after some calculations. Thus, th
are no stable equilibria for system(1) with (2) and (3).

In conclusion, we have considered a new cha
attractor with a striped rectangular shape generate
a Rössler-like system. Some characteristic feature
the chaotic attractor has been estimated, and its s
control by simply adjusting suitable parameters
been discussed. From these rich complex phenom
one can see that a variety of chaotic behaviors ca
created via simple feedback control techniques.
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