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Abstract

This Letter introduces some new chaotic attractors in striped rectangular shapes. The chaotic attractors are constructed by
adding bounded and non-smooth feedback control to the Rdssler system. The shape of a generated chaotic attractor can be
adjusted by changing some control parameters. Moreover, the dynamical behavior of the considered system is investigated and
some estimations for characteristics of this attractor are given.

0 2005 Elsevier B.V. All rights reserved.

Chaotic dynamics and chaos control have been in- is called anti-control of chadd], which can be quite
vestigated in the last four decadgs-3], with many effective in increasing the complexity of the original
chaotic attractors such as Lorenz attradi4f and dynamic system. Existing works have shown that even
Réssler attractdb] found. a simple feedback control mechanism can generate a

Lately, from engineering viewpoints, by circuitim-  variety of chaotic attractors with different structures
plementation and feedback control technique, more having, for example, multi-scroll§8], or butterfly-
chaotic attractors were generated (for example, Chua'’s shapeg$9].
circuit [6] and Chen’s systenfi’]). Using feedback The motivation of this Letter also follows the idea
control technique to generate new chaotic attractors of controlling a dynamical system to generate spe-

cial patterns so as to meet some design specifica-
— _ tions. Here, a new kind of chaotic attractors in striped

This work was supported by the NNSF of China under Grants rectangular forms are generated via control from the
60425307, 10472129 and 10475009. . .

Rossler systems. The created chaotic attractors con-
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Fig. 1. The system orbit generated (dy. —80 ) —40 —50 0 20

shapes. The shape and size of an attractor can be well
controlled by adjusting some system parameters.
Here, we consider a Réssler-like system:

Fig. 2.x—y projection of the attractor dfig. 1

Both Euler method and Runge—Kutta method have

x=—(y+2) +e(f +redex)), been used in the numerical studies. The numeral re-
y=x+ay+ea(f +redey)), (1) sults with the two methods are almost the same. In
t=z(x —c)+ b, what follows, the simulation results are obtained us-

ing Runge—Kutta method with the step length taken

as Q01. This new attractor seems quite different from

most well-known chaotic attractors: it consists of sev-

eral parallel stripes and the distance between two ad-
jacent stripes is almost a constant; it is in the forms

1 27 <x<2kn+m, of a group of “rectangles” (not in the form of circles).

0 2km+7m<x<2km—+27. It seems quite regular and simple if one only takes a
Heree; >0, i = 1, 2 are the control gains, and> 0 quick glance aFig. 2 However, if one checks it care-

(representing the frequency of a periodic wave), and fully, its intrinsic complex behavior can be found as

f > 0 (describing a constant translation) are “control” illustrated inFig. 3 :
parameters. The maximum Lyapunov exponent (MLE) is very

Because the two feedback controllers in the first Useful in the study of chaotic dynamics. However, for

and second equations are bounded, they play a very® n(_)n-smooth system, the calculat_ion Qf MLE is not
little role whenx, y, z are sufficiently large. Clearly, straightforward. Recently, some estimation methods of

they could not spoil the existence of the generated at- MLE for non-smooth dynamical systems have been
tractor, which roots in the unforced Rossler system. '€Ported in some papers such[a,11} Here, with
Moreover, systengl) is by nature a non-smooth sys- parameters settin@) and (3) the estimation of MLE

tem, with switching planes located &, v, z)|ex = of system(1) with the method given if10] is 0.0282,
kr, k=0,+1,+2, ...} and{(x, y, 2)ley =k, k = while that with the method presentediri] is 0.0234.

0,+1,+2,...). Because both the estimated values of MLE are pos-
itive, the considered attractor is actually irregular and
chaaotic. In fact, the chaotic behaviors are hidden in the
“regular” stripes.
The amplitudes of trajectories(z), y(¢) and z(z)

a = 0.05, b =0.20, ¢ =10.0, (2 are roughly classified into several distinguishable lev-
els, according to the “regularity” of the stripes. Take

z(t) as an example. The values of its amplitudes
e=2, f=04, €1 = €2 =40. 3) belong to three separated intervals; that is, [0, 2],

which can be viewed as the well-known R&ssler
system with added feedback control inputs f +
redex)) andex(f +redey)), where re¢) is a rectan-
gular wave generating function described as follows:

reax) = {

Fig. 1shows that systerfl) generates a chaotic at-
tractor of a striped rectangular shape, by taking the
system parameters

and the “control” parameter as
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Fig. 3. Two enlarged parts in the dashed boxes of the first figuirégo

[10, 20], and [45, 65], as shown Kig. 4. In addition,
z(t) evolves intermittently.

Now let us consider the relationships between the
characteristics of the generated chaotic attractors and
the “control” parameterg, e, €1, andes.

It can be seen thai(¢) of the attractor generated
by system(1) stays near zero most of the time when
the attractor moves in the regular “straight-line” orbit.
To simplify the analysis, assume that 0 andz ~ 0
roughly hold in most of the “straight-line” parts of the
attractor of systenfl). Then, systen{l) approxima-
tively reduces to:

x~ —y+e(f +redex)),
y R x +ay+ef+redey))
whenz ~ 0,z ~0.

When the trajectory in the attractors moves along
the straight-line part of an stripe paralleled with axis
v, X ~ 0. Then, from(4),

4

y~e1(f +redex)). (5)

Because the range of function(f + redex)) is
[e1f, e1(1+ f)], the “straight-line” orbit may be main-
tained betweery = ¢1f andy = ¢1(1 + f) in gen-
eral. In other words, when the stripes of the attrac-
tor take the form of straight lines parallel to axis
owing to x ~ 0, they mainly appear in an interval
with y € [e1 f, e2(1 + f)]. Therefore, the length of the
straight-line part of the stripes (of the left edge in the
“rectangular” form) parallel to axis is approximately
€1. A larger value ofe; produces longer straight-line
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Fig. 4. Time series of(¢) of system(1).

stripes parallel to axis. However, where; = 0, the
lengths of the straight-line parts of the stripes parallel
to axisy becomes 0; namely, the stripes are no longer
paralleled to axisy, as shownFig. 5 with (2) and
e=3, f =0.4,¢1 =0, e2 =40. On the other hand, as
for the right edge of the “rectangular” formgz) is not
around 0, the above analysis based on the assumption
of z~ 0 is not valid.

Similarly, takey ~ 0 to describe the straight-line
orbit in the attractor parallel to axis Then, from(4),
we have

x~ —ay — e2(f +redey)). (6)

As aresulty is roughly in[—ex(1+ f) —ay, —ea f —
ay] with y as the coordinates of certain stripes par-
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Fig. 6.x—y projection of the attractor with; = 10.

allel to axisx. Therefore, the length of the straight-
line parts of the stripes parallel to axisis approxi-
matelye,.
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Fig. 8. Bifurcation diagram with parametgr

Based on the above analysis, the ranges of straighte = 4, and a bifurcation diagram (vs. f) based on a

lines in the attractors directly depend on the selec-

tion of ¢, (i = 1,2) and f. For example, we con-
sider the change of the strength with fixing (2),

e =2, f =0.4, ande; = 40.Figs. 6 and 2lustrate the
cases withe; = 10 ande; = 40, respectively. There-
fore, the ranges for the stripes in the form of straight
lines parallel to axisy are, respectivelyy € [4, 14]
(wheney = 10), y € [16, 56] (whene; = 40), which
are consistent wit(b).

It is now to analyze the influence g¢f on the dy-
namics. By fixing(2), e1 = €2 = 40, ande = 2, Figs. 7
and 2show the attractors of systefth) with f = 0.2
and f = 0.4, respectively. The ranges for the stripesiin
the form of straight lines parallel to axjsare, respec-
tively, y € [8, 48] (when f =0.2), y € [16, 56] (when
f = 0.4). Furthermore, fiX2), €1 = 0,¢2 = 10, and

Poincaré map with a cross sectiéh = {(x, y,z)! €
R3| y =0} is shown inFig. 8 There are two main
branchesFig. 9 shows some details for the upper
branch ofFig. 8 whereB ~ 68 is a bifurcation value.
Then, the role of is investigated. Since réex)
is a function of period 2/e, its keeps the right-hand
side of the first equation unchanged whemoves to
x =+ 27 /e. Similar discussion can be given to (eg).
Therefore, one may guess that, if these parallel stripes
exist, the distance between those stipes can be esti-
mated aD = 27 /e. In this sense; is a parameter that
directly affects the inter-stripe distance. Settjagand
€1=¢€2 =40, f =0.4,Figs. 2 and 1@emonstrate the
attractors of systerfil) with e = 2 ande = 4, respec-
tively. Moreover,Fig. 11illustrates a bifurcation dia-
gram with parametes based on a Poincaré map with
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Fig. 11. Bifurcation diagram with parameter

surfaceX, = {(x, v, z)" € R®|y = 30} (as discussed,
with the chosen parameters, taking= 30 € [16, 56]
for X, ensures that the stripes parallel to axisross
XY transversely). In addition to the comparison be-
tweenFigs. 2 and 1QFig. 11 also shows that an in-
creasing is narrowing the inter-stripe distance.
Finally, the equilibria and their stability of system
(1) are discussed. Set

e1(f+1) if sin(ex) >0,
AL) = { ' oy ™
erf if sin(ex) <O,
and
ex(f+1) if sin(ey) >0,
Aa(t) = { 2 . ®)
erf if sin(ey) <O.
Then, systen{l) can be rewritten as
x=—(y+2) + Ay,
y=x-+ay+ Ay, (9)

z=2z(x —c)+b.

The equilibria of systenf9) can be easily obtained
by solving the equations = y = z = 0. Therefore, if
(Ao +c+aAy)? —4ab >0,

then system9) has two groups of equilibria as fol-
lows:

—Astc—aA1—A/ (Ap+c+aAr)?2—4ab

2

. _ _ 2_
S+_ Ap C+aA1+«/£jz+C+aA1) 4ab (10)
AptctaAi—+/(Ap+c+aAr)2—bab
2a

and

—Apt+c—alA1++/ (Ap+c+aAr)2—dab
2
S_: —Ap—c+aAi—A/ (Ap+c+aAr)2—dab (11)
2a
AptctaAi++/(Ar+c+aAr)2—bab
2a

or, in a compact formSy = (x4, y+, z+). Note that
eitherS_. or S_ represents a group of equilibria.

To discuss the stability of these equilibria, consider
the Jacobian of syste(B) at these two groups of equi-
libria:

0 -1 -1
Ji=<1 a 0 )
I+ 0 X+ —¢C
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To obtain the eigenvalues df., consider the char-
acteristic equations:

F) =234 (—xx + ¢ —a)A?
+ (ax+ +z4 —ac+ DA
—az+ — X+ +c. (12)

By virtue of the Hurwitz criterior{12], all the real
parts of the rootg of (12) are negative if and only if

—Xx++c—a>0,

axi+zi—ac+1—__‘lﬁ;ﬁ>0, 13)

—az+ —x++c¢>0.

Consider the following two cases$: = (x1, y4,
z+)andS_ = (x_, y_, z—). Notice that-az_ —x_ +
c=—/(c+aA1+ Ar)2 — 4ab < 0; that is,(13) can-

not be satisfied, which implies the instability of all the

equilibria in the case of_. Thus, we only need to
check the stability of the equilibria in the case $f

for a given system. All the real parts of the roots of

(12)in the case of,. are negative if and only if

aAL+ Ax+c—2a
+V(c+ad1+ A2)2 —4dab > 0, (14)
axy+z4 —ac+1
A1+ A2)% —4dab
_\/(c~|—a 1+ A2) -0 (15)
—X++c—a

V(c+ad1+ A2)2 — 4ab > 0. (16)

Let us check systerfl) with parameters settin@)
and (3) Obviously,(A2 + ¢ + aA1)? — 4ab > 0, and

therefore, syster(iL) has equilibria. As mentioned, we

only need to check the stability of the equilibria in the
case ofS,. With (2), ¢ > 24 and then(14) and (16)
hold naturally. However, it is not hard to find that)
fails to be satisfied after some calculations. Thus, there
are no stable equilibria for systefh) with (2) and (3)

In conclusion, we have considered a new chaotic
attractor with a striped rectangular shape generated by
a Rossler-like system. Some characteristic features of
the chaotic attractor has been estimated, and its shape
control by simply adjusting suitable parameters has
been discussed. From these rich complex phenomena,
one can see that a variety of chaotic behaviors can be
created via simple feedback control techniques.
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