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Abstract

In this paper, the analysis of second-order stochastic fluid models, where the fluid rate is dependent on the fluid level, is
addressed. The boundary conditions are presented for the fluid models under consideration, which have extended previous
work with only reflecting barrier assumptions. To obtain the transient solution of the fluid dynamics, a finite difference
solution method is presented, which confirms to the boundary conditions and satisfies the normalization condition at the
same time. With our approach, the modeling power of second-order fluid models is directly extended to include the case with
fluid-dependent rates. As an application example, a statistical multiplexing problem is analyzed with our proposed method.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Stochastic fluid models, as an important category of the analytic models, have drawn considerable
attention in such applications as the performance analysis of communication systems (see[1,2] and
references therein). The strength of fluid modeling paradigm over discrete modeling methods lies in the
fact that the fluid modeling complexity is not as sensitive to the transmission speed and the buffer size
as of its discrete counterpart. This property has made fluid methods particularly attractive in modeling
high speed communication system with large buffers, like ATM networks, where the discrete modeling
methods may meet the so-called “state-space explosion” problem. Furthermore, fluid models can be
conveniently applied to study the hybrid systems consisting of both discrete part and continuous part.

In general, two classes of fluid flow models are used, i.e., first-order models (described by first moments
alone) and second-order models (also involving Brownian motion). In[1], the first-order fluid flow
models were applied in the analysis of the ATM multiplexing problem with on–off fixed rate sources,
and the steady-state solution was provided. Following that, the transient solution was treated by Ren and
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Kobayashi in[3] with Laplace transform method. Sericola[4] proposed a non-transform-based approach,
known asrandomization(or uniformization). Wolter [5] studied the transient analysis of fluid models
with reflecting boundaries by finite difference method.

When the fluctuation in the fluid flow rate cannot be neglected as it exhibits certain “noisy” nature,
first-order models employed to approximate the fluid flow may fail to achieve the desired modeling
accuracy, as observed by Ang and Barria in[6]. In such cases, second-order fluid flow models come to
play an important role as a more fine-grained modeling technique. In second-order models, the queue
length/buffer content process is represented as a diffusion process (or Brownian motion) with drift and
variance modulated by a finite state Markov chain. Karandikar and Kulkarni[7] have presented the system
of partial differential equations (PDEs) describing the model dynamics. They addressed the infinite buffer
case with fluid-independent flow rates, and used reflecting condition to describe the diffusion process
behavior at lower and upper boundaries. They also gave a matrix decomposition/factorization method to
obtain the steady-state solution.

The aforementioned research efforts on second-order flow models only consider the fluid-independent
flow rate case, i.e., the flow rate associated with a certain discrete state does not change with the occupied
buffer level. In the models where fluid rates are independent of fluid levels, boundaries are formed when
fluid buffer is empty and when fluid level approaches either buffer limit (in finite buffer case) or infinity
(in infinite buffer case). In these cases, the reflecting barrier may be an appropriate assumption. However,
boundary conditions can become more complicated if fluid rates depend on the fluid levels. As will be
seen in the following sections, additional boundaries may be formed between the upper and lower limits
where reflecting barrier assumption is not appropriate to describe the fluid behavior at these boundaries.
This class of fluid models is important in modeling buffer management problems in communication
system design, where congestion control schemes are employed to adjust the data rate according to the
buffer levels.

To fill this gap between fluid modeling theory and applications, we study the solution of second-order
fluid models with fluid-dependent flow rates in this paper. According to the underlying fluid behavior
at the boundaries, the environmental states (discrete states of the modulating CTMC) are classified as
fluid reflecting states, fluid absorbing states, fluid emitting states, andfluid isolating states. For each
class of states, a PDE is derived from the general governing equations to describe the fluid behavior at
the boundary. By putting together the PDEs for all four classes of fluid states at the boundary with the
governing equations, a system of coupled PDEs is derived for the model.

Next, we present a finite difference method to solve the system of coupled PDEs. One major obstacle in
this approach is the conservation of probability mass, i.e., the probability mass of the whole system need to
be 1 in each iteration from timet to t+�t . In [5], the normalization condition is explicitly incorporated into
the system of PDEs, requiring a system of linear equations to be solved. In our approach, we incorporate
the normalization condition implicitly in the construction of the finite difference approximation around
the boundary, so that the probability mass is conserved in each iteration. In this way, we do not need to
solve the system of linear equations as in[5] and thus simplify the computations.

By solving the PDEs, transient measures of the system may be obtained. This technique may be used
in the transient analysis of communication systems. As a numerical example, we show the application of
the technique in the transient study of ATM statistical multiplexing problem, for such measures as system
overshoot[8] and recovery time[9] under system overload or failures.

This paper is organized as follows. InSection 2, the concepts and governing equations of second-order
fluid models with fluid-dependent flow rates are presented.Section 3is devoted to the discussion of
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the boundary conditions for both intermediate boundaries, formed by thresholds given in the middle of
the buffer under consideration, and upper/lower boundaries. For every boundary condition, a system of
PDEs is derived to depict the dynamic behavior of the Markov modulated diffusion process. Following
that, a solution method of the system of coupled PDEs based on finite difference method is presented
in Section 4. The application of second-order fluid models in the transient analysis of the statistical
multiplexing problem in ATM networks is demonstrated inSection 5, with numerical results exhibited.
Finally, Section 6concludes the paper.

2. Fluid model and basic results

2.1. Basics

In this paper, a Markov modulated stochastic fluid process, denoted byF(t) = (X(t),M(t)) on
state-space [0,∞) × E, is considered. The fluid levelX(t) is assumed to be a non-negative continuous
random variable whose variation rate depends on the discrete state modulating processM(t), which is a
continuous-time Markov chain (CTMC) with a finite state-spaceE = {0, . . . , K} (the number of states
in E is K + 1). This formulation has been commonly used to study different Markovian models such as
Markov modulated rate process (MMRP) and Markov modulated regulated Brownian motion (MMRBM)
(for example,[1,7,6]). Let the infinitesimal generator matrixQ of the{M(t)} process be

Q =




q00 q01 · · · q0K

q10 q11 · · · q1K
...

...
. . .

...

qK0 qK1 · · · qKK


 , (1)

whereqij denotes the transition rate from statei to statej for statesi, j ∈ E, i 
≡ j , with qii = −∑j 
≡i qij .
We consider the second-order stochastic fluid model. As per the Brownian motion theory[10], the

incrementX(t + h)−X(t) in the{X(t), t ≥ 0} process over [t, t + h] under a given environmental state
k is assumed to be normally distributed with meanrk and varianceσ 2

k . In other words, whileM(t) stays
in statek, theX(t) process is a Brownian motion with driftrk and varianceσ 2

k , k ∈ E. To this end, we
define the drift and variance parameters as

lim
h→0

E[X(t + h) − X(t)|M(t) = k]

h

∣∣∣∣
X(t)=x

= rk(x), (2)

lim
h→0

Var[X(t + h) − X(t)|M(t) = k]

h

∣∣∣∣
X(t)=x

= σ 2
k (x). (3)

Define the cumulative distribution function (CDF) of the fluid process(X(t),M(t)) as

P(t, x, k) = Pr{X(t) ≤ x and M(t) = k}, (4)

and letP(t, x) = [P(t, x, k), k ∈ E] be a row vector of CDFs of all discrete statesk ∈ E.
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Similarly, at points where the CDFP(t, x, k) is differentiable, the probability density function (pdf) is
defined as

p(t, x, k) = lim
�x→0

Pr{x < X(t) ≤ x + �x,M(t) = k}
�x

= ∂P (t, x, k)

∂x
,

andp(t, x) = [p(t, x, k), k ∈ E] is a row vector of pdf’s for all the discrete states.
It is worthwhile to point out that probability mass may be accumulated at certain pointb under discrete

environmental statem, and will result in discontinuities in CDFP(t, b, k), which can be expressed as
P(t, b−, k) 
≡ P(t, b+, k). At these points,(∂/∂x)P (t, x, k) does not exist. To this end, we use the
probability mass function (pmf) to show this difference, which is denoted by

c(t, b, k) = Pr{X(t) = b,M(t) = k} = P(t, b+, k) − P(t, b−, k).

Let

g(t, x, k) = p(t, x, k) +
∑

c(t,ζ,k)>0

c(t, x, k)δ(x − ζ ), (5)

whereδ(·) is the Dirac delta function. Then, integration ofg(t, x,m) produces

P(t, x, k) =
∫ x

−∞
g(t, x, k) =

∫ x

−∞
p(t, x, k)dx +

∑
ζ≤x

c(t,ζ,k)>0

c(t, ζ, k).

2.2. Governing equation

The behavior of the second-order fluid flow model is described by the corresponding Kolmogorov
forward differential equation (or the Fokker–Planck equation) as stated in the following proposition,
which can be derived in a way proposed in many references like[7].

Proposition 1. For each statei ∈ E, the functiong(t, x, i) is governed by

∂g(t, x, i)

∂t
+ ∂(g(t, x, i)ri(x))

∂x
= 1

2

∂2(g(t, x, i)σ 2
i (x))

∂x2
+
∑
j∈E

g(t, x, j)qji (x). (6)

In vector form, (6) can be written as

∂g(t, x)
∂t

+ ∂(g(t, x)R(x))

∂x
= ∂2(g(t, x)S(x))

∂x2
+ g(t, x)Q(x), (7)

whereg(t, x) = [g(t, x, i), i ∈ E], R(x) = diag[ri(x), i ∈ E] is the mean flow rate matrix, and
S(x) = diag[σ 2

i (x)/2, i ∈ E] is the flow rate variance matrix. The quantityf(t, x) = g(t, x)R(x) −
∂g(t, x)S(x)/∂x is called the probability density flux, since this measure represents the amount of prob-
ability density“flowing” through levelx per unit time. The boundary conditions for the PDE(7) will be
addressed in later sections.

Although the governing equations are given byProposition 1, they are not amenable to direct numerical
solution due to the delta functions ing(t, x). For this reason, we treat the pmf’s separately from the pdf’s.
By integrating both sides of(6), we obtain the following theorem.
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Theorem 1. The pmfc(t, x) is governed by

∂c(t, x, i)

∂t
+ ∂c(t, x, i)ri(x)

∂x
+ p(t, x+, i)ri(x

+) − 1

2

∂(p(t, x+, i)σ 2
i (x

+))
∂x

− p(t, x−, i)ri(x
−)

+1

2

∂(p(t, x−, i)σ 2
i (x

−))
∂x

=
∑
j∈E

c(t, b, j)qji (b) ∀i ∈ E, (8)

wherex+ = lim�x→0(x + �x), andx− = lim�x→0(x − �x).
Equivalently, we have

∂c(t, x)
∂t

+ ∂cR
∂x

p(t, x+)R(x+) − ∂(p(t, x+)S(x+))
∂x

− p(t, x−)R(x−)

+ ∂(p(t, x−)S(x−))
∂x

= c(t, x)Q(x), (9)

wherec(t, x) = [c(t, x, i), i ∈ E] andp(t, x) = [p(t, x, i), i ∈ E].
If c(t, x) = 0, the pdfp(t, x) is given by

∂p(t, x)
∂t

+ ∂(p(t, x)R(x))

∂x
= ∂2(p(t, x)S(x))

∂x2
+ p(t, x)Q(x). (10)

Proof. First note that the probability mass can only exist at discrete points. To determine the equation
for c(x), integrate(6) from x− to x+, i.e.,∫ x+

x−

∂g(t, x)
∂t

dx+
∫ x+

x−

∂

∂x
(g(t, x)R(x))dx

=
∫ x+

x−

∂2(g(t, x)S(x))
∂x2

dx +
∫ x+

x−
g(t, x)Q(x)dx. (11)

Substitute all theg(t, x) with h(t, x) andc(t, x) by (5), the equation becomes(9).
If c(t, x) = 0, g(t, x) = p(t, x). After substitutingg(t, x) with p(t, x) in (7), we getEq. (10). �

By letting c(t, x, i) = 0, i ∈ E in (8), we have the following corollary.

Corollary 1. When no probability mass is accumulated at fluid level x, the probability density flux at this
point is continuous, which is

p(t, b+, k)rk(b+) − 1

2

∂(p(t, b+, k)σ 2
k (b

+))
∂x

=p(t, b−, k)rk(b−)− 1

2

∂(p(t, b−, k)σ 2
k (b

−))
∂x

, (12)

where

∂

∂x
(p(t, b+, k)σ 2

k (b
+)) = ∂

∂x
(p(t, x, k)σ 2

k (x))

∣∣∣∣
x↓b

,

and

∂

∂x
(p(t, b−, k)σ 2

k (b
−)) = ∂

∂x
(p(t, x, k)σ 2

k (x))

∣∣∣∣
x↑b

.
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Corollary 1is of critical importance in the treatment of those points where the fluid flow of some discrete
states changes in magnitude but not in direction. In such a case, no probability mass is accumulated, and
the property of continuity in probability density flux is applied to obtain the probability density after the
change.

As mentioned before, to study practical problems, the boundary conditions have to be taken into
consideration for the solution to the governing PDEs inTheorem 1.

3. Boundary conditions

In this section, the problem of boundary conditions is discussed. When the buffer capacity is constrained,
its lower and upper boundaries are formed naturally by the fact that the fluid inside the buffer cannot
exceed these levels. Meanwhile, boundaries can also form in the middle of the buffer level, where the
flow rates change their values or directions abruptly. In this paper,rk andσk are regarded as the functions
of the fluid level, denoted byx. For simplicity of presentation, we only consider the case where the
flow rate is assumed to be a piecewise constant function ofx. The set of boundary points,Z, is then
defined as

Z = {x|∃k ∈ E, rk(x
+) 
≡ rk(x

−),X0 ≤ x ≤ Xm},
whereX0 andXm are the lower and upper boundaries, respectively. This means that the boundaries are
formed at those points where the fluid flow of any of the environmental states changes rate.

Second-order fluid flows with only lower and upper boundaries have been investigated, where reflecting
behavior is assumed for all the environmental states[5–7]. Other than reflecting boundaries, sticky or
absorbing boundaries[10–12] are also used to better approximate realistic applications. Nevertheless,
reflecting boundary assumption is most commonly used due to its simplicity.

For the problem under investigation in this paper, i.e., when intermediate boundaries exist, the re-
flecting behavior is then no longer an appropriate assumption. As an illustrative example, consider an
environmental statek where the fluid rate associated with this environmental state,(rk(x), σk(x)), only
changes value but does not change direction across the intermediate boundary. Under reflection boundary
assumption, the probability that the fluid process associated with this environmental state flowing across
the boundary is zero, since it is “reflected” on the boundary. However, this is not true in reality. To this
end, more complex type of boundaries need to be adopted to better reflect the physical behavior of the
system.

As will be discussed later, intermediate boundaries may exhibit very different properties to different
environmental states, according to the fluid rate associate with them. For this reason, we classify the
environmental states according to their mean flow rates around the boundary. A graphical illustration of
this classification is shown inFig. 1. The mean flow rate around the boundary of a given environmental
state may exhibit the four different patterns represented by S1–S4. We assumex = X0 andXm are the
lower and upper boundaries, respectively, andx = b is an intermediate boundary. The downward arrow
is used to represent a negative mean flow rate at the corresponding fluid level, and the upward arrow is
used to represent a positive mean flow rate at the corresponding fluid level. As an example, the mean flow
rate for environmental states belonging to pattern S1 is negative when the fluid levelb < x < Xm, and
is positive when the fluid levelX0 < x < b. Note that the upper boundary is a special case of boundary
x = b where for each discrete statek ∈ E, rk(b+) = 0 andrk(b−) 
≡ 0 with σk(b

+) = 0. Similarly,
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Fig. 1. The fluid behavior around the boundary.

the lower boundary is a special case of boundaryb where for each discrete statek ∈ E, rk(b−) = 0 and
rk(b

+) 
≡ 0 with σk(b
−) = 0.

In the following sections, we will show that the boundaryx = b may exhibitabsorbingor isolating
behavior for environmental states with flow rates satisfying conditions S1 and S4, and may exhibitemitting
behavior for environmental states with flow rates satisfying conditions S2 and S3. For this reason, at
each boundary, the environmental states, rather than the boundary itself, are classified. Specifically, at
each boundary we classify the environmental states as fluid absorbing states, fluid emitting states, fluid
reflecting states, and fluid isolating states. The wordfluid is added to distinguish these states from the
terminologies in Markov chain theory.

Based onrk andσk, we define the following partition ofE:

E1+(x) = {k ∈ E : σ 2
k (x) > 0, rk(x) > 0}, E10(x) = {k ∈ E : σ 2

k (x) > 0, rk(x) = 0},
E1−(x) = {k ∈ E : σ 2

k (x) > 0, rk(x) < 0}, E0+(x) = {k ∈ E : σ 2
k (x) = 0, rk(x) > 0},

E00(x) = {k ∈ E : σ 2
k (x) = 0, rk(x) = 0}, E0−(x) = {k ∈ E : σ 2

k (x) = 0, rk(x) < 0}. (13)

Denote

E1(x) = E1+(x) ∪ E10(x) ∪ E1−(x), E0(x) = E0+(x) ∪ E00(x) ∪ E0−(x), (14)

whereE1(x) is the set of all discrete states with non-zero variance in flow rates, andE0(x) the set of all
discrete states with zero variance in flow rates.

We also have observed that fluid behavior at upper/lower boundary is different from that at the boundary
in between. For clarity of representation, these boundaries are treated separately. For this purpose, we
define both the upper and lower boundaries asterminal boundaries, and the boundaries formed inside the
buffer asintermediate boundaries.

3.1. Intermediate boundaries

Consider the boundary pointsb ∈ Z with X0 < b < Xm as well asrk(b−) andrk(b+) non-zero for all
k ∈ E, where the conventional Brownian motion model is no longer applicable to describe the diffusion
process behavior near the boundary because of the abrupt change of flow rates across the boundary.

To simplify the solution of this problem when intermediate boundaries exist, the environmental states
are classified into the following three boundary states according to the fluid behavior near the boundary:
fluid absorbing states, fluid isolating states, and fluid emitting states.
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3.1.1. Absorbing states
Consider condition S1 inFig. 1, which indicates that the mean flow rate of a discrete state is positive

(incoming flow) when the buffer level is less thanb, and is negative (outgoing flow) when the buffer
level is larger thanb.1 In this situation, the fluid level is pushed from both upper and lower sides of the
boundary.

Assume the flow rate at the boundary of absorbing states is

rk(b) = 0 and σ 2
k (b) = 0 if k : rk(b

−) > 0 and rk(b
+) < 0,

which means that the fluid has to stay at the boundary once it has reached there. With this assumption,
the probability mass is accumulated on the boundary, andabsorbingproperty is exhibited, because the
fluid is pushed from both sides of the boundary.

Therefore, the set of absorbing states is defined as

Ka(b) = {k|rk(b−) > 0 and rk(b
+) < 0}.

Note that the following analysis is limited only for the second-order case for simplicity of presentation,
that is,k ∈ E1−(b+) ∩ E1+(b−).2

The probability mass accumulated on the boundary is represented as

c(t, b, k) = Pr{X(t) = b,M(t) = k} > 0 ∀k ∈ Ka(b).

With the assumption that the boundary location does not change with fluid level in the buffer, from(8)
we have

∂c(t, b, k)

∂t
=

1︷ ︸︸ ︷∑
i∈E

c(t, b, i)qik(b) −

2︷ ︸︸ ︷
p(t, b+, k)rk(b+) + 1

2

∂(p(t, b+, k)σ 2
k (b

+))
∂x

+

3︷ ︸︸ ︷
p(t, b−, k)rk(b−) − 1

2

∂(p(t, b−, k)σ 2
k (b

−))
∂x

,

p(t, b−, k) = p(t, b+, k) = 0 ∀k ∈ Ka(b). (15)

An intuitive explanation of(15) is that the contribution to the changes in the probability mass constitutes
two parts: one is the transfer of probability mass among different states (item 1 on the r.h.s. of(15)), and
the other is the probability mass flowing into (item 2 on the r.h.s. of(15)) or out of this boundary (item 3
on the r.h.s. of(15)).

3.1.2. Emitting states
For the discrete statek whose mean fluid raterk does not change direction and satisfies condition S2 or

S3, there is no probability mass accumulated at the boundary, and the probability mass transferred from
other states are converted to changes in probability densities.

1 Such a control mechanism is employed to avoid congestion in the ATM multiplexing problem, where the incoming fluid flow
is restricted when the cells in the buffer exceed a certain threshold[1].

2 The discussion of absorbing states in the first-order case is given in[13].
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The set of emitting states is defined as

Ke(b) = {k|rk(b−)rk(b+) > 0}.
Since the fluid level cannot stay at the boundary, no probability mass can accumulate at these points
(referring to[11]).

Again, applying(8) gives

p(t, b+, k)rk(b+) − 1

2

∂(p(t, b+, k)σ 2
k (b

+))
∂x

− p(t, b−, k)rk(b−) + 1

2

∂(p(t, b−, k)σ 2
k (b

−))
∂x

=
∑
i /∈Ke

c(t, b, i)qik(b), c(t, b, k) = 0 ∀k ∈ Ke(b), (16)

which shows that the variation in the probability density flux of the emitting states at boundaryb equals
the probability mass transferred from other states.

3.1.3. Isolating states
The discrete state whose rate around the boundaryb satisfies condition S4 is called anisolating state,

since the queue levels become divergent in this state atx = b.
Then the set of isolating states can be given as

Ki(b) = {k|rk(b−) < 0 and rk(b
+) > 0}.

In this state, the probability mass transferred from other states cannot be converted to probability density
flux, and it just stays at the boundary. Since there is no contribution from the probability density flux to
the variation of the probability mass, the boundary condition is derived from(8) as

dc(t, x, k)

dt
=
∑
i∈E

c(t, b, i)qik(b) + 1

2

∂(p(t, b+, k)σ 2
k (b

+))
∂x

− 1

2

∂(p(t, b−, k)σ 2
k (b

−))
∂x

,

p(t, b+, k) = p(t, b−, k) = 0 ∀k ∈ Ki(b). (17)

3.2. Terminal boundaries

At terminal boundaries, discrete states where flow rates have non-zero variance (that is,σk 
≡ 0 for
givenk) can be viewed asreflecting statesas was done in many references, while the discrete states with
zero variance in the associated flow rates can be classified intoabsorbing statesandemitting states. The
discussion of the last two cases where the fluid model becomes first-order due to zero variance may also
be found in the references such as[13].

3.2.1. Reflecting states
This class of states has been well treated in the literature. An equivalent description of the behavior

of diffusion process at the upper and lower boundaries can be obtained from a diffusion process without
boundary through the imposition of a lower control barrier at the lower boundary and an upper control
barrier at the upper boundary[10]. These control barriers are calledregulators. It is proved in[10] that
when the fluid model can be represented as regulated by the boundary regulators, no probability mass can
accumulate at the boundaries, and its boundaries have the reflection property. This justifies the reflecting
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boundary argument in previous research in this field, such as in[7]. Similar results are obtained by Ang
and Barria[6], who analyzed a second-order fluid flow process having a finite capacity buffer with the
help of two-sided regulators. For this reason, we specify reflecting boundary at the upper and the lower
boundaries for all the discrete states with non-zero variance in flow rate.

The set of reflecting states at boundaryb is defined as

Kr(b) = {k|k ∈ E1(b), b = X0 or b = Xm}.
Since the probability mass cannot accumulate at the boundary of reflecting states, we have the following.

Following (8), the boundary condition can be written as

p(t, b+, k)rk(b+) − 1

2

∂(p(t, b+, k)σ 2
k (b

+))
∂x

− p(t, b−, k)rk(b−) + 1

2

∂(p(t, b−, k)σ 2
k (b

−))
∂x

=
∑
i /∈Kr

c(t, b, i)qik(b), c(t, b, k) = 0 ∀k ∈ Kr(b) (18)

with the fact thatp(t,X−
0 , i) = 0 andp(t,X+

m, i) = 0 by definition.
An intuitive explanation of(18) is that the probability density flux at the boundary of the reflecting

states can only be varied by the injection (transfer) from (to) the probability mass in other states.

3.2.2. Absorbing states
The set of absorbing states is defined as

Ka(b) = {k|k ∈ E0+(b−), b = Xm} ∪ {k|k ∈ E0−(b+), b = X0}.
For the absorbing states at the terminal boundaries, the fluid flow presents first-order behavior. When
the boundary is reached, the fluid stays at that level. Therefore, probability mass is accumulated and
c(t, b, k) > 0∀k ∈ Ka(b).

The governing equation can thus be derived from(15)by lettingσ 2
k (b

+) = σ 2
k (b

−) = 0∀k ∈ Ka(b):

∂c(t, b, k)

∂t
=
∑
i∈E

c(t, b, i)qik(b) − p(t, b+, k)rk(b+) + p(t, b−, k)rk(b−) ∀k ∈ Ka(b). (19)

3.2.3. Emitting states
The set of emitting states is defined as

Ke(b) = {k|k ∈ E0+(b−), b = Xm} ∩ {k|k ∈ E0−(b+), b = X0}.
Again, for the emitting states at the terminal boundaries, the fluid flow presents first-order behavior and
no probability mass can accumulate (i.e.,c(t, b, k) = 0 for all k ∈ Kr(b)). From(8), we have

p(t, b+, k)rk(b+) − p(t, b−, k)rk(b−) =
∑
i∈E

c(t, b, i)qik(b) ∀k ∈ Ka(b). (20)

4. Solution using the finite difference method

In this section, we present algorithms based on the finite difference method to solve the system of
coupled PDEs for the transient analysis of the model. By letting timet approach infinity, steady-state
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results may also be obtained. We have extended the work in[5] by considering the more complex
boundary conditions mentioned in the last section. Moreover, the numerical analysis is simpler because
the normalization condition is incorporated in the construction of finite difference equations, rather than
being treated as an additional constraint.

For simplicity, we only consider the ‘pure second-order’ case in this paper whereσk 
≡ 0 for all
k = 0, . . . , K. The construction of finite difference method for a model where both first-order and
second-order flows are present can be directly derived from the discussion of the second-order case based
on the ideas similar to those proposed here.

4.1. Finite difference approximation

The discretization of(10) is carried out on an equidistant grid with step size�t in time direction and
step size�x in space direction. In this way, the pdfp(t, x, k) is approximated by the discrete function at
the grid point as

un
k,j ≈ p(n�t, j�x, k),

and the rate function is discretized as

rk,j ≈ rk(j�x), σ 2
k,j ≈ σ 2

k (j�x).

The time derivative is discretized with a forward difference quotient

∂

∂t
p(n�t, j�x, k) ≈ un+1

k,j − un
k,j

�t
,

and the first-order space derivative is discretized as follows:

∂

∂x
(p(n�t, j�x, k)rk,j ) ≈




un
k,j rk,j − un

k,j−1rk,j−1

�x
, rk,j > 0,

un
k,j+1rk,j+1 − un

k,j rk,j

�x
, rk,j < 0.

The second derivative is discretized with a central difference

∂2

∂x2
(p(n�t, j�x, k)σ 2

k (j�x)) ≈ un
k,j+1σ

2
k,j+1 − 2un

k,jσ
2
k,j + un

k,j−1σ
2
k,j−1

�x2
.

Then the discrete approximation of(10) is

un+1
k,j − un

k,j

�t
+ un

k,j r
n
k,j − un

k,j−1rk,j−1

�x
− 1

2

un
k,j+1σ

2
k,j+1 − 2un

k,jσ
2
k,j + un

k,j−1σ
2
k,j−1

�x2

=
∑
m∈E

un
m,3qmk, rk,j > 0,

un+1
k,j − un

k,j

�t
+ un

k,j+1r
n
k,j+1 − un

k,j rk,j

�x
− 1

2

un
k,j+1σ

2
k,j+1 − 2un

k,jσ
2
k,j + un

k,j−1σ
2
k,j−1

�x2

=
∑
m∈E

un
m,3qmk, rk,j < 0. (21)
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4.2. Treatment of boundary conditions

In this section, we consider discretization at boundaries. As may be noted, the group of PDEs and ordi-
nary differential equations (ODEs) presented in the last section are not sufficient to obtain the numerical
transient results by finite difference approach. An important but unapplied condition for the solution of
the fluid model is the constraint that the integration of the probability density in all the states equals 1. In
this paper, we apply this condition in the finite difference method byconservation of probability mass,
which is to guarantee that the probability mass will not belost in iterations by the construction of the finite
difference format at the boundaries. In subsequent discussions, the finite difference method for various
states at the boundary is addressed.

Givenb ∈ Z, we useB = (b − X0) mod �x + 1 to represent the segment just below the boundaryb,
andB + 1 is therefore the segment just above the boundaryb. The pdfp(t, b+, k) andp(t, b−, k) around
the boundary is then approximated by the discrete function

un
k,B+1 ≈ p(n�t, b+, k),

and

un
k,B ≈ p(n�t, b−, k).

In the following, we will address the discretization of each boundary discussed in the previous sections.

4.2.1. Reflecting states
The location of the boundary for the reflecting states is either atb = X0 or Xm. First consider the

boundaryb = X0 (and thusB = 1) and reflecting statek with k ∈ Er(X0) and rk(X
+
0 ) > 0 (i.e.,

k ∈ Er(X0) ∩ E1+(X+
0 )). The discretization of the PDE aroundun

k,1 is then

un+1
k,1 − un

k,1

�t
+

1︷ ︸︸ ︷
un
k,1rk,1 −

2︷ ︸︸ ︷
un
k,0+rk,0+

�x
− 1

2

3︷ ︸︸ ︷
un
k,2σ

2
k,2 −

4︷ ︸︸ ︷
2un

k,1σ
2
k,1 +

5︷ ︸︸ ︷
un
k,0+σ

2
k,0+

�x2
=

6︷ ︸︸ ︷∑
m∈E

un
m,1qmk. (22)

Similarly, the discretizations of the PDE aroundun
k,2 andun

k,3 are

un+1
k,2 − un

k,2

�t
+ un

k,2rk,2 −
1︷ ︸︸ ︷

un
k,1rk,1

�x
− 1

2

un
k,3σ

2
k,3 −

3︷ ︸︸ ︷
2un

k,2σ
2
k,2 +

4︷ ︸︸ ︷
un
k,1σ

2
k,1

�x2
=
∑
m∈E

un
m,2qmk, (23)

un+1
k,3 − un

k,3

�t
+ un

k,3r
n
k,3 − un

k,2rk,2

�x
− 1

2

un
k,4σ

2
k,4 − 2un

k,3σ
2
k,3 +

3︷ ︸︸ ︷
un
k,2σ

2
k,2

�x2
=
∑
m∈E

un
m,3qmk. (24)

To conserve the probability mass, the changes inuk,1 from time t to t + �t need to be balanced by the
construction of discretization format around the boundary. Items 1–6 in(22) represents the variations in
probability densityun

k,1 from timen�t to (n+1)�t . Among them, item 1 is cancelled out in(23), item 3 is
cancelled out in(23) and (24), and item 4 is partially cancelled out in(23). Item 6 is the probability density
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transfer from one discrete state to another discrete state, and will not introduce unbalanced probability
mass. However, when there is probability mass accumulated at boundaryb = X0 in other discrete states,
it may be transferred to statek. To conserve the probability mass from timen�t to (n + 1)�t , the total
unbalanced probability mass variation inun

k,1�x should be set equal to the probability mass transferred
from the other discrete states, which produces

un
k,0+rk,0+ − 1

2

un
k,1σ

2
k,1 − un

k,0+σ
2
k,0+

�x
=
∑
m∈E

cnm,0qmk, k ∈ Kr(0) ∩ E1+(0+), (25)

wherecnm,0 ≈ c(n�t, b = X0,m). Note that this equation is in fact the discrete approximation of(18).
This idea to keep probability masses balanced, which will be also used in the following, is actually

equivalent to the normalization condition, that is, the total probability should be 1. Here this condition is
not added as an additional constraint on finite difference approximation equations. Instead, the normal-
ization condition is satisfied in given initial conditions at first, and then at each iterative step, with the
above idea, the sum of all probability masses is kept unchanged. In this way, the normalization condition
naturally holds, which leads to simple algorithms. By similar reasoning, the boundary treatment for other
reflecting states is

un
k,1rk,1 − 1

2

un
k,1σ

2
k,1 − un

k,0+σ
2
k,0+

�x
=
∑
m∈E

cnm,0qmk, k ∈ Kr(0) ∩ E1−(0+), (26)

−un
k,I rk,I + 1

2

un

k,X−
m
σ 2
k,X−

m
− un

k,I σ
2
k,I

�x
=
∑
m∈E

cnm,Xm
qmk, k ∈ Kr(Xm) ∩ E1+(X−

m), (27)

−un

k,X−
m
rk,X−

m
+ 1

2

un

k,X−
m
σ 2
k,X−

m
− un

k,I σ
2
k,I

�x
=
∑
m∈E

cnm,Xm
qmk, k ∈ Kr(Xm) ∩ E1−(X−

m). (28)

4.2.2. Absorbing states
Performing the similar procedure, we have

cn+1
k,b − cnk,b

�t
+ un

k,B+1rk,B+1 − 1

2

un
k,B+1σ

2
k,B+1

�x
−
(
un
k,Brk,B + 1

2

un
k,Bσ

2
k,B

�x

)
=
∑
m∈E

cnm,bqmk, (29)

which can be viewed as the finite difference version of condition(15). As discussed in the analysis of
reflecting states, the finite difference equations for the absorbing states naturally satisfy the normalization
condition.

4.2.3. Emitting states
For emitting states, we have

un
k,b+rk,b+ − 1

2

un
k,B+1σ

2
k,B+1 − un

k,b+σ
2
k,b+

�x
−
(
un
k,Brk,B − 1

2

un
k,b−σ

2
k,b− − un

k,Bσ
2
k,B

�x

)
=
∑
m∈E

cnm,bqmk.

(30)



354 D. Chen et al. / Performance Evaluation 49 (2002) 341–358

The value ofuk,b− is not known beforehand and needs to be calculated. However, the finite difference
approximation of the general PDE(10) cannot be applied here, since the second-order derivative of
p(t, b−, k) does not exist. By assumingσ 2 = 0 at boundaryb, we approximate the second-order behavior
atb− with first-order equations, which is

un+1
k,b− − un

k,b−

�t
+ un

k,b−rk,b− − un
k,Brk,B

�x
=
∑
m∈E

un
m,b−qmk.

In a similar manner, the treatment of statesk ∈ Ke(b) ∩ E1−(b−) ∩ E1−(b+) at the boundary is

un
k,B+1rk,B+1 − 1

2

un
k,B+1σ

2
k,B+1 − un

k,b+σ
2
k,b+

�x
−
(
un
k,b−rk,b− − 1

2

un
k,b−σ

2
k,b− − un

k,Bσ
2
k,B

�x

)

=
∑
m∈E

cnm,bqmk

and

un+1
k,B+1 − un

k,b+

�t
+ un

k,B+1rk,B+1 − un
k,b+rk,b+

�x
=
∑
m∈E

un
m,b+qmk. (31)

This is consistent with condition(16)and the normalization condition.

4.2.4. Isolating states
The finite difference computation for isolating states is

cn+1
k,b − cnk,b

�t
− 1

2

un
k,B+1σ

2
k,B+1

�x
− 1

2

un
k,Bσ

2
k,B

�x
=
∑
m∈E

cnm,bqmk. (32)

It is easy to see that the preceding discussion is consistent with condition(17) and the normalization
condition.

Assume the initial condition att = 0 is p(0, x) = p0(x), c(0, x) = c0(x), the overall finite difference
based algorithm to solve a second-order fluid model is as follows:

(1) [Advance time step]t = t + �t .
(2) [Initialize] p(t, X−

0 ) = p(t, X+
m) = 0.

(3) [Probability densities away from the boundary] Use(21) to obtainp(t + �t, x), wherex /∈ Z.
(4) [Probability densities at the boundary] For each boundaryX0 < b < Xm:

• [Probability densities of non-absorbing states around the boundary] For all non-absorbing states
k at boundaryx = b, obtainp(t, b−, k) andp(t, b+, k) with corresponding boundary equations.

• [Probability densities of absorbing states around the boundary] For all absorbing statesk at bound-
aryb, obtainp(t, b+, k) andp(t, b−, k) using(21).

• [Probability mass accumulated on the boundary] For all absorbing statesk at boundaryx = b,
obtainc(t, b) using(15) for intermediate boundaries, and using(19) for terminal boundaries.

(5) [Termination] Ift > Tmax, stop; else go to step 1.
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5. A numerical example

In this section, an illustrative example of statistical multiplexing problem is given, which may be
relevant with ATM multiplexer design. In our model,K statistically independent and identical on–off
sources multiplexed by a common buffer with capacityXm are considered. The duration of the on and
off periods of each traffic source is exponentially distributed with mean 1/α1 and 1/α0, respectively.
Whenever the source is inonstate, it generatespriority cellswith rateλ0 andmarked cellswith rateλ1.

When the buffer occupancy is less than a thresholdb (0 < b < Xm), all incoming cells are accepted,
and when the buffer occupancy is larger thanb and less thanXm, the marked cells are dropped while the
priority cells are accepted. When the buffer occupancy is 0 (meaning that the buffer is empty), the output
flow rate is 0, and when the buffer occupancy isXm (meaning that the buffer is full), all cells are dropped
and the input flow rate is 0.

Since theseK sources are statistically identical and independent, they could be aggregated and be
represented by a CTMC withK + 1 discrete statesk = 0,1, . . . , K, wherek is the number of sources
that are in theonstate. The infinitesimal generator matrixQ of this CTMC is given by

qij =




iα1, j = i − 1,

(K − i)α0, j = i + 1,

−iα1 − (K − i)α0, j = i.

In statek, the net flow rate into the buffer can be expressed as follows:

rk(x) =




k(λ0 + λ1) − c, 0 < x < b,

kλ0 − c, b < x < Xm,

0, x = b,

max(k(λ0 + λ1) − c,0), x = 0,

min(kλ0 − c,0), x = Xm,

(33)

wherex is the fluid level of the buffer.
Take two independent traffic sources, i.e.,K = 2 for the following numerical solution. The transition

rate fromoffstate toonstateα0 is chosen to be 1, whileα1 = 0.4. When a source is inonstate, it generates
priority cells at rateλ0 = 1 Mbits/s and marked cells at rateλ1 = 0.5 Mbits/s. The channel capacityc =
1.2 Mbits/s, and the variance of the channel service rate isσ 2 = 0.1 Mbits/s. The buffer sizeXm is chosen
to be 10 Mbits, while the threshold valueb is chosen to be 3 Mbits. The rate matrixR is therefore

R =
{

diag[−1.2,0.3,1.8], 0 < x < b,

diag[−1.2,−0.2,0.8], b < x < Xm,

and the variance matrixΣ is

Σ =
{

diag[0.1,0.1,0.1], 0 < x < b,

diag[0.1,0.1,0.1], b < x < Xm.
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Fig. 2. Snapshot ofp(t, x) at timet = 5 s.

At the boundaryx = 0 (the lower boundaryX0), we have thatσ0(0+) = σ1(0+) = σ2(0+) = 0.1.
Therefore, atx = 0, statesk = 0,1,2 are reflecting states. Similarly, atx = Xm (the upper boundary),
statesk = 0,1,2 are also reflecting states.

At boundaryx = b (the intermediate boundary),r1(b
−) > 0 andr1(b

+) < 0, and hence statek = 1 is
an absorbing state. Further note thatr0(b

−) < 0, r0(b
+) < 0, andr2(b

−) > 0 andr2(b
+) > 0. Therefore,

statesk = 0,2 are emitting states.
Above discussions lead to the following pmfc(t, x):

c(t, x) =




[0,0,0], X = 0,

[0, c(t, b,1),0], X = b,

[0,0,0], X = Xm.

Suppose that the initial buffer level is 0.2, and both of the traffic sources are inoff state initially.Fig. 2
shows a snapshot ofp(t, x) at t = 5 s. It is obvious from this figure that there is a jump in the probability
densityp(t = 5, x, k = 1) andp(t = 5, x, k = 3) at the locationx = 3 Mbits. This result verifies the
discussion on the boundary conditions that the probability mass accumulated under one environmental
state will introduce abrupt changes of the probability density in other environmental states due to the
transfer of probability mass.

By solving the equations forc(t, x) together with the equations forp(t, x), and integrating overx, we can
get the CDFP(t, x). Fig. 3shows a snapshot ofP(t, x) att = 5 s. Due to the probability mass accumulated

Fig. 3. Snapshot ofP(t, x) at timet = 5 s.
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Fig. 4. Variation ofc(t, b = 3,1) with time t .

atx = 3 Mbits under environmental statek = 1, there is an abrupt change inP(5, x,1) atx = 3 Mbits.
For environmental states,k = 0 and 2, no probability mass is accumulated and therefore there is no
abrupt change forP(5, x,0) andP(5, x,2). However, since there is an abrupt change in their probability
densities atx = 3 Mbits (refer toFig. 2), the slopes ofP(5, x,0) andP(5, x,2) change at this point.

Finally, Fig. 4 shows the transient behavior of the probability mass accumulated at boundaryx = 3
under environmental state 1, which isc(t, b = 3, k = 1). The “overshoot” behavior shown in this figure
is important in determining the system performance during transient overload conditions[9].

6. Conclusion

In this paper, boundary conditions of second-order stochastic fluid models and corresponding transient
analyses are discussed. First, the boundary conditions are proposed in several typical cases. Then an
algorithm based on finite difference method for the transient study of fluid models with intermediate
boundaries is given. Finally, the application of this class of models in the statistical multiplexing problems
is shown with the results given numerically.
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