
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL
Int. J. Robust Nonlinear Control 2016; 26:1353–1375
Published online 12 May 2015 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/rnc.3353

Semi-global output consensus of a group of linear systems in the
presence of external disturbances and actuator saturation:

An output regulation approach

Zhiyun Zhao1, Yiguang Hong2 and Zongli Lin3,*,†

1Department of Automation, and Key Laboratory of System Control and Information Processing of the Ministry of
Education, Shanghai Jiao Tong University, Shanghai 200240, China

2Key Laboratory of Systems and Control, Academy of Mathematics and Systems Science, Chinese Academy of Sciences,
Beijing 100190, China

3Charles L. Brown Department of Electrical and Computer Engineering, University of Virginia, Charlottesville,
VA 22904-4743 USA

SUMMARY

This paper studies the problem of semi-global leader-following output consensus of a multi-agent system.
The output of each follower agent in the system, described by a same general linear system subject to external
disturbances and actuator saturation, is to track the output of the leader, described by a linear system, which
also generates disturbances as the exosystem does in the classical output regulation problem. Conditions on
the agent dynamics are identified, under which a low-gain feedback-based linear state-control algorithm is
constructed for each follower agent such that the output consensus is achieved when the communication
topology among the agents is a digraph containing no loop, and the leader is reachable from any follower
agent. We also extend the results to the non-identical disturbance case. In this case, conditions based on both
the agent dynamics and the communication topology are identified, under which a low-gain feedback-based
linear state-control algorithm is constructed for each follower agent such that the leader-following output
consensus is achieved when the communication topology among the follower agents is a strongly connected
and detailed balanced digraph, and the leader is a neighbor of at least one follower. In addition, under some
further conditions on the agent dynamics, the control algorithm is adapted so as to achieve semi-global
leader-following output consensus for a jointly connected undirected graph and the leader reachable from at
least one follower. Copyright © 2015 John Wiley & Sons, Ltd.

Received 15 November 2014; Revised 2 March 2015; Accepted 14 April 2015

KEY WORDS: Output regulation; output consensus; actuator saturation; multi-agent systems; low-gain
feedback; external disturbance; jointly connected graph

1. INTRODUCTION

The consensus problem for multi-agent systems has drawn much attention in recent years because
of its many applications, such as cooperative control [1, 2], energy consumption control in smart
grids [3], and formation of vehicles [4], and in part to the theoretical challenges it poses. In a leader-
following output consensus problem, the output of each follower agent is required to track that of
the leader agent through the use of information of its neighbors. This is different from the general
leader-following consensus problem (see, for example, [5–10]), where the full state, not just the
output, of each follower agent is required to track that of the leader agent.
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Several results have been obtained from the solution of the output consensus problem [11–15]. In
particular, reference [11] proposes both a dynamic state feedback-control algorithm and a dynamic
measurement output feedback-control algorithm by devising a distributed observer network. It is
proven that, under certain conditions on the agent dynamics, the proposed control algorithms achieve
output consensus over a jointly connected communication topology. Reference [12] considers robust
output consensus for a class of heterogeneous uncertain linear multi-agent systems. It establishes
the solvability of the problem and follows an internal model approach to construct both a dynamic
state feedback-control law and a dynamic output feedback-control law. These feedback laws achieve
leader-following output consensus when the communication topology among the agents is a digraph
that contains no loop, and the leader is globally reachable. Reference [13] studies the leaderless
output consensus problems for the same agent dynamics as in [11]. Reference [14] points out that the
synchronized output regulation problem of a multi-leader system can be decoupled into an output
regulation problem and an asymptotic stability problem. A distributed synchronous protocol is then
constructed to solve the problem. Reference [15] considers the problem of output synchronization
for heterogeneous networks of non-introspective agents, which have no knowledge of their own
state or output separate from what is received from the network.

A feature that is largely missing from the existing work on output consensus is the consideration
of actuator saturation, which has been extensively studied in the context of individual systems.
In particular, the semi-global output regulation problem of an individual system has been studied
in [16]. It is known that a linear system subject to input saturation cannot achieve global output
regulation. The conditions are identified under which the semi-global output regulation problem is
solvable with both state-feedback and error-feedback laws. However, very few results have been
obtained for output consensus (or regulation) of multi-agent systems subject to actuator saturation.
Only recently has some solvability conditions based on both the agent dynamics the communication
topology among the agents been provided in reference [17].

In this paper, we study the problem of leader-following output consensus of a group of linear
follower agents in the presence of external disturbance and actuator saturation. The linear leader
agent generates the disturbances and the reference output as the exosystem does in the classical
output regulation problem. We establish conditions based on the agent dynamics, under which we
construct a low-gain feedback-based control algorithm for each follower agent. We show that these
control algorithms achieve semi-global leader-following output consensus when the communication
topology among the agents is a digraph containing no loop, and the leader is reachable from any
follower agent.

We then extend the results to the non-identical disturbance case. In this case, we establish condi-
tions based on both the agent dynamics and the communication topology among the agents, under
which we construct a low-gain feedback-control algorithm for each follower agent and show that
these control algorithms achieve semi-global leader-following output consensus when the commu-
nication topology among the agents is a strongly connected and detailed balanced digraph, and the
leader is a neighbor of at least one follower. In addition, we identify further conditions on the agent
dynamics under which the control algorithm can also achieve semi-global output consensus when
the communication topology is a jointly connected undirected graph, and the leader is reachable for
at least one follower.

An outline of this paper is as follows. In Section 2, we state the problem of semi-global leader-
following output consensus of a linear multi-agent system in the presence of external disturbances
and actuator saturation and recall basic definitions and relevant results in graph theory. In Section 3,
we establish the solvability conditions for the problem and construct linear state feedback-control
laws to achieve semi-global output consensus for the identical disturbance case. In Section 4, we
obtain the results for the non-identical disturbance case. In Section 5, we give simulation results to
illustrate the theoretical results. We draw a brief conclusion to the paper in Section 6.
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2. PROBLEM STATEMENT AND PRELIMINARIES

Consider a multi-agent system consisting ofN follower agents and one exosystem (or leader). Each
follower agent is described by the dynamics of a linear system,

Pxi D Axi C B�.ui /CEiw; yi D Cxi ; i D 1; 2; � � � ; N; (1)

where xi 2 Rn, yi 2 Rp , and ui 2 Rm are, respectively, the state, output, and control input of
agent i ; Eiw is the disturbance to be described later; and �.s/ is a saturation function defined as
�.s/ D sign.s/min¹�; jsjº for a constant � > 0. Here, we have slightly abused the notation by
using � to denote both a scalar-valued and a vector-valued saturation function. That is, for s D
Œs1; s2; � � � ; sm�

T , �.s/ D Œ�.s1/; �.s2/; � � � ; �.sm/�T .
Note that the agent dynamics in (1) are, in general, not identical because Ei ; i D 1; 2; � � � ; N ,

may be different. When the agent dynamics are identical, that is, when Ei D E; i D 1; 2; � � � ; N ,
(1) simplifies to

Pxi D Axi C B�.ui /CEw; yi D Cxi ; i D 1; 2; � � � ; N: (2)

In the sequel, we will refer to this case as the identical disturbance case because the disturbances
enter each follower agent in a same way. Correspondingly, the case withEi ; i D 1; 2; � � � ; N , being
not identical, is referred to as the non-identical disturbance case because the disturbances may enter
each follower agent differently.

We make the following assumption on the follower agents.

Assumption 2.1
The pair .A;B/ is stabilizable, and all eigenvalues of A are in the closed left-half plane.

Remark 2.1
Assumption 2.1 is required to achieve semi-global leader-following output consensus, as described
in the succeeding paragraphs. In the absence of this assumption, only local results can be
obtained [18].

The dynamics of the exosystem is also described by a linear system,

Pw D Sw; y D �Qw; (3)

where w 2 Rr and y 2 Rq are the state and output of the exosystem. Let w.0/ 2 W0, where
W0 is a bounded set in Rr . The exosystem generates both the reference signal y, which is sent
for the followers to track via a neighbor-based multi-agent network, and the signals Eiw to disturb
the followers, as an exosystem does in the classical output regulation problem. In the sequel, for
convenience, we will use ‘leader’, instead of ‘exosystem’, to emphasize the tracking of the reference
signal (that is, the output y of the leader) by the followers.

The output consensus problem studied in this paper is stated as follows. Consider a multi-agent
system consisting of the follower agents (2) and the leader (3) operating on an underlying commu-
nication network. Denote ei D yi � y; i D 1; 2; � � � ; N , as the error between the output of agent
i and that of the leader. For any a priori given bounded sets X0 � Rn and W0 � Rr , construct a
linear state feedback-control law ui for each follower, which only uses local information, such that
all these state feedback-control laws together achieve leader-following output consensus, that is, for
all xi .0/ 2 X0; i D 1; 2; � � � ; N , and w.0/ 2W0,

lim
t!1

ei .t/ D lim
t!1

.yi .t/ � y.t// D 0; i D 1; 2; � � � ; N:

Remark 2.2
There are some results on the leader-following consensus with actuator saturation (see [19] and
references therein), but very few results were obtained for the output consensus with actuator satu-
ration. Only recently was the semi-global output consensus problem of linear multi-agent systems
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in the presence of external disturbances and actuator saturation studied in [17]. The results to be
presented in the current paper are different to those in [17] in several ways. First, in the identical
disturbance case, [17] establishes conditions based on the agent dynamics and the communication
topology among agents jointly. Thus, when the topology changes, the coefficients in control law,
calculated from the solvability conditions, have to be recalculated. On the other hand, we establish
conditions based only on the agent dynamics and analyze the trajectory of each agent rather than
that of the whole multi-agent system. Second, in the non-identical disturbance case, [17] requires
the output matrices of the follower agents and the leader to be invertible, which we do not require.
Third, in [17], the communication topology among the follower agents is an undirected switching
graph. In our paper, the topology is a digraph without loop for the identical disturbance case; the
topology among the follower agents is either a strongly connected and detailed balanced digraph
or a jointly-connected undirected graph for the non-identical disturbance case. Note that our jointly
connected undirected graph assumption is much more relaxed than that of [17].

Graphs are often used to represent the communication topology among agents. A digraph (or
directed graph) G consists of a pair .V; E/, where V D ¹�1; �2; � � � ; �N º is a nonempty set of nodes,
each denoting a follower agent, and E 2 V � V is a set of edges, each denoting an ordered pairs of
nodes. An edge .�i ; �j / in a digraph denotes that �j (i.e., agent j ) has access to the information of
�i . When an edge .�i ; �j / exists, �i is said to be a father agent of �j and �j be a child agent of �i .
Denote the set of father agents of �i as Ni D ¹vj W .vj ; vi / 2 Eº. Let jNi j be the cardinality of
the set Ni ; i D 1; 2; � � � ; N . In an undirected graph, .�i ; �j / 2 E implies .�j ; �i / 2 E . A sequence
of edges of the form .�1; �2/; .�2; �3/; � � � ; .�k; �kC1/ in a digraph is called a directed path between
�1 and �kC1. If �1 D �kC1, then such a directed path is called a loop. If there exists a directed
path between �i and �j , then �i is said to be reachable form �j . Let dij be the length of the longest
directed path between �i and agent j . Let the leader agent be labeled as �0 andK D max¹d0iº 6 N .

Let A D Œaij � 2 RN�N be the adjacency matrix associated with G, where aij D 1 if .�j ; �i / 2 E
and aij D 0 otherwise. Here, we assume that ai i D 0 for all i D 1; 2; � � � ; N . Let L D Œlij � 2
RN�N be the Laplacian matrix associated with A, where li i D

P
j¤i aij and lij D �aij when

i ¤ j .
The communication between follower �i and the leader �0 is denoted as ai0, where ai0 D

1 if �i has access to the information of the leader and ai0 D 0 otherwise. Denote L0 D
diag¹a10; a20; � � � ; aN0º. For an integer k 6 N , denote Dk D ¹�i W d0i D kº and jDkj as its
the cardinality.

The communication topology among the follower agents is said to be jointly connected, if
there exist an infinite sequence of contiguous, nonempty and uniformly bounded time-intervals
Œtk; tkC1/; k D 1; 2; � � � ; such that for each time-interval Œtk; tkC1/, there are lk topologies switch-
ing over the time-subintervals

h
t l
k
; t lC1
k

�
; l D 0; 1; � � � ; lk � 1, with t0

k
D tk , t lk

k
D tkC1 and

t lC1
k
� t l

k
> � , for some constant � > 0; in each time-subinterval

h
t l
k
; t lC1
k

�
, the communication

topology among the follower agents is a fixed graph, while in each time-interval Œtk; tkC1/, the union
of the lk graphs over the lk time-subintervals is a connected graph.

We also recall the following property of a parameterized algebraic Riccati equation, which will
be needed in the design of low-gain feedback laws.

Lemma 2.1 ([18])
Let Assumption 2.1 hold. Let � be any given positive scalar. Then, for each " 2 .0; 1�, there exists
a unique matrix P."/ that solves the algebraic Riccati equation (ARE)

ATP C PA � 2�PBBTP C "I D 0: (4)

Moreover, lim"!0 P."/ D 0:

Lemma 2.2
Let X 2 Rn and Y 2 Rm be positive definite matrices. Denote the smallest eigenvalue of X as �X .
Then for any column vector x 2 Rnm and � 2 .0; �X �, we have

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2016; 26:1353–1375
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xT
�
X2 ˝ Y

�
x > �xT .X ˝ Y / x:

Lemma 2.2 is a more general form of Lemma 3 in [19] and can be established based on the same
analysis as in [19].

We will present our output consensus results for the identical disturbance case and non-identical
disturbance case separately in the following two sections.

3. THE IDENTICAL DISTURBANCE CASE

In this section, we consider the semi-global output consensus for system (2), under the following
assumption on the communication topology.

Assumption 3.1
The digraph G contains no loop and agent �0 is reachable from any follower agent �i , i D
1; 2; � � � ; N .

This assumption has been widely used in the study of output consensus (e.g., [12]).
The following two assumptions on the followers and the leader define the solvability of the semi-

global output consensus problem for the multi-agent system (2)–(3).

Assumption 3.2
There exist matrices …, 	 , and H that solve the following linear matrix equations:

…S D A…C B	 CE; C… D �Q; H… D 	: (5)

Assumption 3.3
There exist a positive number ı < � and a T > 0 such that k	wk1;T 6 ı for all w with w.0/ 2
W0, where k	wk1;T WD supt>T k	wk1:

Under Assumptions 2.1 and 3.2, we construct the following state feedback-control algorithm for
each follower agent,

ui D �
1

jNi j
BTP

0
@ X
j2Nin¹0º

aij .xi � xj /C ai0.xi �…w/

1
AC 1

jNi j

0
@ X
j2Nin¹0º

Hxj C ai0	w

1
A ;

i D 1; 2; � � � ; N;
(6)

where …;H , and 	 are a solution to the linear matrix (5), whose existence is guaranteed by
Assumption 3.2, and P WD P."/ is the solution to the ARE (4), with � D 1

2
, as given in Lemma 2.1.

We have the following result on semi-global leader-following output consensus of the multi-agent
system (2)–(3).

Theorem 3.1
Let Assumptions 2.1, 3.1, 3.2, and 3.3 hold. Then, under the linear state feedback control laws (6),
the group of follower agents (2) and the leader agent (3) achieve semi-global leader-following output
consensus. That is, for any a priori given bounded set X0 � Rn, there exists an "� > 0 such that,
for any " 2 .0; "��,

lim
t!1

ei .t/ D 0; i D 1; 2; � � � ; N;

hold for all xi .0/ 2 X0; i D 1; 2; � � � ; N , and w.0/ 2W0.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2016; 26:1353–1375
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Proof
According to the length of the longest directed path between each follower agent and the leader
agent, we classify the follower agents into different sets D1;D2;D3; � � � . We also assume that the
elements in each set Di are listed in the ascending order.

We first consider the evolution of follower agent i , i 2 D1. Recall that D1 consists of follower
agents whose longest directed paths to the leader agent are of length 1. In this case, the leader agent
is the only father agent of each agent in D1; therefore,

ui D �B
TP.xi �…w/C 	w; i 2 D1:

Denoting the error state Nxi D xi �…w; i 2 D1, we have

PNxi D Axi C B�.ui /CHw �…Sw

D A Nxi C B
�
�
�
�BTP Nxi C 	w

�
� 	w

�
; i 2 D1:

(7)

Notice that Nxi .0/ belongs to a bounded set because X0 and W0 are both bounded. Moreover, Nxi .T / 2
U1T ; i 2 D1, for some bounded set U1T , which is independent of ", since Nxi .0/ is bounded and
Nxi .T /; i 2 D1, is determined by a linear differential equation with bounded inputs �.ui / and 	!.

Construct a Lyapunov function,

V1 D
X
i2D1

NxTi P Nxi ;

which is positive definite because P is positive definite.
Let c1 > 0 be a constant such that

c1 > sup Nxi2U1T ;i2D1;"2.0;1�
V1:

Such a c1 exists because U1T is bounded and independent of ".
Let LV1.c1/ WD ¹. Nxi ; i 2 D1/ W V1 6 c1º, where we have used . Nxi ; i 2 D1/ to denote a vector

whose elements Nxi , i 2 D1, are ordered according to the order in D1. Let "1 2 .0; 1� be such that,
for all " 2 .0; "1�, . Nxi ; i 2 D1/ 2 LV1.c1/ implies that���BTP Nxi C 	w��1;T 6 �; i 2 D1:
The existence of such an "1 is due to the facts that lim"!0 P."/ D 0 and k	wk1;T 6 ı:

Hence, for t > T and for . Nxi ; i 2 D1/ 2 LV1.c1/, system (7) can be written as

PNxi D A Nxi � BB
TP Nxi ; i 2 D1; (8)

and the derivative of V1 along the trajectory of (8) inside LV1.c1/ can be evaluated as

PV1 D
X
i2D1

NxTi
�
PAC ATP � 2PBBTP

�
Nxi

D �
X
i2D1

" NxTi Nxi � Nx
T
i PBB

TP Nxi

< 0; 8. Nxi ; i 2 D1/ 2 LV1.c1/ n ¹0º; " 2 .0; "1�:

This implies that limt!1 Nxi .t/ D 0; i 2 D1, which in turn implies that

lim
t!1

ei .t/ D lim
t!1

.yi .t/ � y0.t//

D lim
t!1

C .xi .t/ �…w.t//

D lim
t!1

C Nxi .t/

D 0; i 2 D1:

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2016; 26:1353–1375
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Moreover,

lim
t!1

ui .t/ D lim
t!1

�
�BTP Nxi .t/C 	w.t/

�
D 	w.t/; i 2 D1:

Here and later in the paper, in similar situations, we have, by an abuse of notation, used
limt!1 ui .t/ D 	w.t/ to mean that signal u.t/ approaches 	w.t/ as time passes by, that is,
limt!1.ui .t/ � 	w.t// D 0.

Because limt!1 Nxi .t/ D 0, i 2 D1, for any positive number ı1 < ��ı, there exists a T1."/ > T
such that ��B �H Nxi C BTP Nxi���1;T1 < "2; kH Nxik1;T1 < ı1; i 2 D1;
and hence,

kHxik1;T1 < �; kB.Hxi � �.ui //k1;T1 < "
2; i 2 D1:

We then consider the evolution of agent i 2 D2. Because G contains no loop, besides the leader
agent, all the father agents of agent i; i 2 D2, are in D1, that is, Ni � ¹�0º [D1.

In this case, let

Nxi D
1

jNi j

0
@ X
j2Nin¹0º

.xi � xj /C ai0.xi �…w/

1
A ; i 2 D2:

Then we have

PNxi D A Nxi C B

0
@�.ui / � 1

jNi j

0
@ X
j2Nin¹0º

�.uj /C ai0	w

1
A
1
A ; i 2 D2; (9)

and

ui D �B
TP Nxi C

1

jNi j

0
@ X
j2Nin¹0º

Hxj C ai0	w

1
A ; i 2 D2:

Recall that Nxi .0/ belongs to a bounded set and for . Nxi ; i 2 D1/ 2 LV1.c1/, k � B
TP Nxi C

	wk1;T 6 �, which implies that������
1

jNi j

0
@ X
j2Nin¹0º

�.uj /C ai0	w

1
A
������
1;T

6 �:

Notice that Nxi .T / 2 U2T ; i 2 D2, for some bounded set U2T , which is independent of ", because
Nxi .0/ is bounded and Nxi .T /; i 2 D2 is determined by a linear differential equation with bounded
inputs �.ui / and 1

jNi j

�P
j2Nin¹0º �.uj /C ai0	w

�
.

Construct a Lyapunov function,

V2 D
X
i2D2

NxTi P Nxi ;

which is positive definite because P is positive definite.
Let c2 > 0 be a constant such that

c2 > sup Nxi2U2T ;i2D2;"2.0;1�
V2:

Such a c2 exists since U2T is bounded and independent of ".

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2016; 26:1353–1375
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LetLV2.c2/ WD ¹. Nxi ; i 2 D2/ W V2 6 c2º. Let "2 2 .0; "1� be such that, for all " 2 .0; "2�; . Nxi ; i 2
D2/ 2 LV2.c2/ implies that�������BTP Nxi C

1

jNi j

0
@ X
j2Nin¹0º

Hxj C ai0	w

1
A
������
1;T1

6 �; i 2 D2:

The existence of such an "2 is due to the facts that lim"!0 P."/ D 0, k	wk1;T 6 ı and
kHxik1;T1 < �; i 2 D1:

Let @LV2.c2/ be the boundary of LV2.c2/ and �max.P / be the largest eigenvalue of P . Then, for
. Nxi ; i 2 D2/ 2 @LV2.c2/, we haveX

i2D2

�max.P /k Nxik
2 >

X
i2D2

NxTi P Nxi D c2;

which implies that X
i2D2

k Nxik >
c2

�max.P /
; . Nxi ; i 2 D2/ 2 @LV2.c2/:

Let "�2 2 .0; "2� be such that, for all " 2 .0; "�2�,X
i2D2

k Nxi >
c2

�max.P /

> 4jD2j; . Nxi ; i 2 D2/ 2 @LV2.c2/:

The existence of such an "�2 is due to the fact that lim"!0 P."/ D 0.
Hence, for t > T1 and for . Nxi ; i 2 D2/ 2 LV2.c2/, system (9) can be written as

PNxi D
�
A � BBTP

�
Nxi � ei ; i 2 D2; (10)

where

ei D
1

jNi j � ai0
B

X
j2Nin¹0º

.Hxj � �.uj //; i 2 D2:

Clearly, jei j < "2; i 2 D2, because kB.Hxi � �.ui //k1;T1 < "
2; i 2 D1.

The derivative of V2 along the trajectory of (10) on the boundary of LV2.c2/ can be evaluated as

PV2 D
X
i2D2

NxTi
�
PAC ATP � 2PBBTP

�
Nxi � 2

X
i2D2

NxTi ei

D �
X
i2D2

" NxTi Nxi � Nx
T
i PBB

TP Nxi � 2
X
i2D2

NxTi ei

6 �
X
i2D2

"k Nxik
2 C 2

X
i2D2

k Nxikkeik

6 �
X
i2D2

"k Nxik
2 C

X
i2D2

"

2
k Nxik

2 C
2

"
keik

2

6 �
X
i2D2

�
"

2
k Nxik

2 �
2

"
keik

2

�

< �
X
i2D2

"

2

�
k Nxik

2 � 4"2
�

< 0; 8. Nxi ; i 2 D2/ 2 @LV2.c2/; " 2 .0; "
�
2�;
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where we have used the facts that jei j < "2 and
P
i2D2
k Nxik > 4jD2j;8" 2 .0; "�2�. This implies

that LV2.c2/ is an invariant set, and (10) holds for all t > T1. Because PNxi D
�
A � BBTP

�
Nxi ; i 2

D2 is asymptotically stable and limt!1 Nxi .t/ D limt!1.xi .t/ � …w.t// D 0; i 2 D1, that is,
limt!1.Hxi .t/�	w.t// D 0; i 2 D1, and limt!1 ui .t/ D 	w.t/; i 2 D1, we can conclude that

lim
t!1

Nxi .t/ D 0; i 2 D2;

which implies that

lim
t!1

ei .t/ D lim
t!1

.yi .t/ � y0.t//

D lim
t!1

C .xi .t/ �…w.t//

D lim
t!1

C Nxi .t/

D 0; i 2 D2:

Moreover,

lim
t!1

ui .t/ D lim
t!1

0
@�BTP Nxi .t/C 1

jNi j

0
@ X
j2Nin¹0º

Hxj .t/C ai0	w.t/

1
A
1
A

D 	w.t/; i 2 D2:

Because limt!1 Nxi .t/ D 0; i 2 D2, for any positive number ı2 < � � ı�1 , ı�1 D max¹ı1; ıº,
there exists a T2."/ > T1 such that��B �H Nxi C BTP Nxi���1;T1 < "2; kH Nxik1;T2 < ı2; i 2 D2I
hence,

kHxik1;T2 D

������H Nxi C
1

jNi j

0
@ X
j2Nin¹0º

Hxi C ai0	!

1
A
������
1;T2

< �;

and

kB.Hxi � �.ui //k1;T1 < "
2; i 2 D2:

Following a similar analysis as given for the evolution of agent i 2 D2, we can prove that for
xi ; i 2 Dk; k 6 N , there exists an "�

k
, such that 8" 2 .0; "�

k
�;

lim
t!1

ei .t/ D 0; i 2 Dk;

and limt!1 ui .t/ D 	w.t/, for any i 2 Dk; k 6 N:
Therefore, with "� D "�

k
, we have that, for any " 2 .0; "��;

lim
t!1

ei .t/ D 0; i D 1; 2; � � � ; N:

This completes the proof. �

Remark 3.1
A result related to that in Theorem 3.1 earlier was given in [17]. In [17], the solvability conditions
were based on both the agent dynamics and the communication topology among the agents jointly.
Thus, the coefficients in the control laws need to be recalculated when the communication topology
changes. Moreover, the result in [17] was obtained with matrices C andQ assumed to be invertible.
On the contrary, in our Theorem 3.1, the coefficients in the control laws do not need be recalculated
when the communication topology changes, and no invertibility assumption is required on either
matrix C and Q.
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In the special case when 	 D 0, we can get the following result.

Assumption 3.4
The undirected graph G is connected, and the leader is a neighbor of at least one follower.

Denote M D L C L0. Then we can order the eigenvalues of M as 0 < �1 6 �2 6 � � � 6 �N
because of the following lemma.

Lemma 3.1
[20] Let Assumption 3.4 hold. Then M is symmetric and positive definite.

Theorem 3.2
Let Assumptions 2.1, 3.3, and 3.4 hold. Then, the group of follower agents (2) and the leader agent
(3) achieve semi-global leader-following output consensus under the control only based on relative
measurements:

ui D �B
TP

0
@ NX
jD1

aij .xi � xj /C ai0.xi �…w/

1
A ; i D 1; 2; � � � ; N; (11)

where P is the solution of ARE (4) in Lemma 2.1 with � 6 �1, if there exists a matrix… that solves
the following linear matrix equations:

…S D A…CE; C…CQ D 0: (12)

That is, for any a priori given a bounded set X0 � Rn, there is an "� such that, for any " 2 .0; "��,

lim
t!1

ei .t/ D 0; i D 1; 2; � � � ; N;

hold for all xi .0/ 2 X0; i D 1; 2; � � � ; N , and w.0/ 2W0.

Proof
With Nxi D xi �…w; i D 1; 2; � � � ; N , we have

PNxi D Axi C B�.ui /CEw �…Sw

D A Nxi C B�.ui /; i D 1; 2; � � � ; N:
(13)

Notice that Nxi .0/ belongs to a bounded set because X0 and W0 are both bounded. Therefore, Nxi .T / 2
UT , for some bounded set UT , which is independent of " because Nxi .0/ is bounded and Nxi .T / is
determined by a linear differential equation with a bounded input �.ui /.

Let Nx D
	
NxT1 ; Nx

T
2 ; � � � ; Nx

T
N


T
, then

PNx D .IN ˝ A/ Nx C .IN ˝ B/�
�
�
�
M ˝ BTP

�
Nx
�
: (14)

Construct a Lyapunov function

V. Nx/ D
1

2
NxT .M ˝ P / Nx;

which is positive definite for M and P are positive definite.
Let c > 0 be a constant such that

c > sup Nxi2UT ;iD1;2;��� ;N;"2.0;1�V. Nx/:

Such a c exists because UT is bounded and independent of ".
Let LV .c/ WD

®
Nx 2 RNn W V. Nx/ 6 c

¯
and let "� 2 .0; 1� be such that, for each " 2 .0; "��;

Nx 2 LV .c/ implies that
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������BTP
NX
jD1

aij .xi � xj /C ai0.xi �…w/

������ 6 �; i D 1; 2; � � � ; N:
The derivative of V along the trajectory of (14) insideLV .c/ can be evaluated, in view of Lemmas

2.1, 2.2, and 3.1, as follows:

PV D
1

2
NxT
�
M ˝

�
PAC ATP

��
Nx � NxT

�
M 2 ˝ BBTP

�
Nx

D �
"

2
NxT .M ˝ In/ Nx C � Nx

T
�
M ˝ BBTP

�
Nx � NxT

�
M 2 ˝ BBTP

�
Nx

6 � "
2
NxT .M ˝ In/ Nx;

< 0; 8 Nx 2 LV .c/ n ¹0º; " 2 .0; "
��:

This implies that

lim
t!1

.xi .t/ �…w.t// D lim
t!1

Nxi .t/

D 0; i D 1; 2; � � � ; N:

Therefore, we can conclude that

lim
t!1

ei .t/ D lim
t!1

yi .t/ � y0.t/

D lim
t!1

C.xi .t/ �…iw.t//

D lim
t!1

C Nxi .t/

D 0; i D 1; 2; � � � ; N:

This completes the proof. �

4. THE NON-IDENTICAL DISTURBANCE CASE

In this section, we go further and study output consensus for the non-identical disturbance case.
In the following two subsections, we study the output consensus problem under the communica-
tion topologies represented by two different graphs, the detailed balanced graph, and the jointly
connected graph.

4.1. Output consensus over a directed communication topology

In this subsection, we consider the situation when the communication topology among the follower
agents is a strongly connected and detailed balanced digraph. A digraph is detailed balanced if
there exist some real numbers vi > 0; i D 1; 2; � � � ; N , such that viaij D vjaj i , for all i; j D
1; 2; � � � ; N [21]. Denote vmin D min¹viº, vmax D max¹viº, and R D diag¹v1; v2; � � � ; vN º.

Assumption 4.1
The fixed digraph G is strongly connected and detailed balanced, and the leader is a neighbor of at
least one follower.

Lemma 4.1
Let Assumption 4.1 hold and denote M D L C L0. Then all eigenvalues of M are on the open
right-half plane, and the matrix RM CM TR D 2M TR is positive definite.
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In the aforementioned lemma, the fact that all eigenvalues ofM are on the open right-half plane is
established in [22], and the fact that RM CM TR D 2M TR is positive definite can be established
based on the analysis given in the proof of Lemma 4 in [20]. According to Lemma 4.1, RM and
M TR have the same eigenvalues, which can be ordered as 0 < �1 6 �2 6 � � � 6 �N .

The following two assumptions on the follower agents and the leader define the solvability of the
semi-global output consensus problem for the multi-agent system composing of (1) and (3).

Assumption 4.2
There exist a family of matrices …i and 	i that solve the following linear matrix equations:

…iS D A…i C ai0B	i CEi ; C…i CQ D 0; i D 1; 2; � � � ; N: (15)

Let

… D

2
666664

…1 0 � � � 0

0 …2 � � � 0

:::
:::
: : :

:::

0 0 � � � …N

3
777775 ; 	 D

2
666664

	1 0 � � � 0

0 	2 � � � 0

:::
:::
: : :

:::

0 0 � � � 	N

3
777775 ; E D

2
666664

E1 0 � � � 0

0 E2 � � � 0

:::
:::
: : :

:::

0 0 � � � EN

3
777775 :

Then linear matrix (15) can be written in the following compact form:

….IN ˝ S/ D .IN ˝ A/…C .L0 ˝ B/	 CE; .IN ˝ C/…C .IN ˝Q/ D 0: (16)

Assumption 4.3
There exist a positive number ı < � and a time T > 0 such that k	iwk1;T 6 ı, i D 1; 2; � � � ; N ,
for all w with w.0/ 2W0, where k	iwk1;T WD supt>T k	iwk1.

Under Assumptions 2.1 and 4.2, we construct the following state feedback control algorithm for
each follower agent,

ui D �B
TP

0
@ NX
jD1

aij ..xi � xj / � .…i �…j /w/C ai0.xi �…iw/

1
AC ai0	w; i D 1; 2; � � � ; N;

(17)

where …i and 	i are solutions to the linear matrix (15), whose existence is guaranteed by
Assumption 4.2, and P WD P."/ is the solution to the ARE (4) as given in Lemma 2.1 with
� 2

�
0;min

°
�1
vmax

; �1

±i
.

We have the following result on semi-global leader-following output consensus of the multi-agent
system consisting of the follower agents (1) and the leader agent (3).

Theorem 4.1
Let Assumptions 2.1, 4.1, 4.2, and 4.3 hold. Then, under the linear state feedback control laws (17),
the group of follower agents (1) and the leader agent (3) achieve semi-global leader-following output
consensus. That is, for any a priori given bounded set X0 � Rn, there exists an "� > 0 such that,
for any " 2 .0; "��,

lim
t!1

ei .t/ D 0; i D 1; 2; � � � ; N;

hold for all xi .0/ 2 X0; i D 1; 2; � � � ; N , and w.0/ 2W0.
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Proof
Denote Nxi D xi �…iw; i D 1; 2; � � � ; N ; then we have

PNxi D Pxi �…i Pw

D Axi C B�.ui /CEi �…iSw

D A Nxi C B.�.ui / � ai0	iw/; i D 1; 2; � � � ; N:

(18)

Notice that Nxi .0/; i D 1; 2; � � � ; N , belong to a bounded set because X0 and W0 are both bounded.
Moreover, Nxi .T / 2 UT ; i D 1; 2; � � � ; N , for some bounded set UT , which is independent of ",
because Nxi .0/ is bounded and Nxi .T /; i D 1; 2; � � � ; N , is determined by a linear differential equation
with bounded inputs �.ui / and ai0	i!.

Let Nx D
	
NxT1 ; Nx

T
2 ; � � � ; Nx

T
N


T
, Nw D ŒwT ; wT ; � � � ; wT �T 2 RNr , and u D

	
uT1 ; u

T
2 ; � � � ; u

T
N


T
.

Then, (18) and control law (17) can respectively be written as

PNx D .IN ˝ A/ Nx C .IN ˝ B/.�.u/ � .L0 ˝ 	/ Nw/; (19)

and

u D �
�
M ˝ BTP

�
Nx C .L0 ˝ 	/ Nw: (20)

Construct a Lyapunov function,

V. Nx/ D NxT .RMR˝ P / Nx;

which is positive definite because P , R, and MR are positive definite.
Let c > 0 be a constant such that

c > sup Nxi2UT ;iD1;2;��� ;N;"2.0;1�V. Nx/:

Such a c exists because UT is bounded and independent of ".
Let LV .c/ D

®
Nx 2 RNn W V. Nx/ 6 c

¯
. Let "� 2 .0; 1� be such that, for all " 2 .0; "��, Nx 2 LV .c/

implies that

������BTP
0
@ NX
jD1

aij ..xi � xj / � .…i �…j /w/C ai0.xi �…iw/

1
A � ai0	iw

������
1;T

6 �; i D 1; 2; � � � ; N:

The existence of such an " is due to the facts that lim"!0 P."/ D 0 and k	iwk1;T 6 ı; i D
1; 2; � � � ; N:

Hence, for t > T and for Nx 2 LV .c/, the closed-loop system (19)–(20) can be written as

PNx D .IN ˝ A/ Nx C .IN ˝ B/
�
�
�
M ˝ BTP

�
Nx C .L0 ˝ 	/ Nw � .L0 ˝ 	/ Nw

�
D .IN ˝ A/ Nx �

�
M ˝ BBTP

�
Nx;

(21)

and the derivative of V along the trajectory of (21) inside LV .c/ can be evaluated, in view of
Lemmas 2.2 and 4.1, as follows:

PV D NxT
�
RMR˝

�
ATP C PA

��
Nx � 2 NxT

�
.MR/2 ˝ PBBTP

�
Nx

D �" NxT .RMR˝ IN / Nx C 2� Nx
T
�
RMR˝ PBBTP

�
Nx � 2 NxT

�
.MR/2 ˝ PBBTP

�
Nx

6 �" NxT .RMR˝ IN / Nx

< 0; 8 Nx 2 LV .c/ n ¹0º; " 2 .0; "
��:
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This implies that closed-loop system is asymptotically stable at Nx D 0 with LV .c/ included in the
domain of attraction, and hence,

lim
t!1

Nxi .t/ D 0; i D 1; 2; � � � ; N;

which, in turn, implies that

lim
t!1

ei .t/ D lim
t!1

yi .t/ � y0.t/

D lim
t!1

C.xi .t/ �…iw.t//

D lim
t!1

C Nxi .t/

D 0; i D 1; 2; � � � ; N:

This completes the proof. �

Remark 4.1
In [17], Theorem 1 establishes semi-global output consensus under a switching undirected commu-
nication topology and with the assumption that both matrices C and Q are invertible. Our result in
Theorem 4.1 does not require the invertibility of these two matrices.

4.2. Output consensus over jointly connected undirected graph

In this subsection, we consider the communication topology that satisfies the following assumption.

Assumption 4.4
The communication topology among the follower agents is a jointly connected undirected graph
over time-intervals Œtk; tkC1/; k D 1; 2; � � � , and in any given time-interval Œtk; tkC1/, the leader is
a neighbor of at least one follower with a constant communication weight between each follower
agent and the leader.

Furthermore, under Assumption 4.4, in each time-subinterval
h
t l
k
; t lC1
k

�
, the communication

weight between two distinct follower agents is denoted by aij
�
t l
k

�
; i; j D 1; 2 � � � ; N; l D

0; 1; � � � ; lk � 1, and in each time-interval Œtk; tkC1/, the communication weight between the
follower agent �i and the leader agent �0 is denoted by ai0.tk/; i D 1; 2; � � � ; N . In each time-
subinterval

h
t l
k
; t lC1
k

�
, denote M l

k
D Ll

k
C L0;k , where Ll

k
is the Laplacian matrix associated

with the graph Gl
k

that represents the communication topology in the time-subinterval
h
t l
k
; t lC1
k

�
and L0;k D diag¹a10.tk/; a20.tk/; � � � ; aN0.tk/º. Note that, Gl

k
is fixed in each time-subintervalh

t l
k
; t lC1
k

�
. Denote ƒl

k
D
°
i W �l

k;i
¤ 0; i 2 Œ1; N �

±
, where �l

k;i
> 0; i D 1; 2; � � � ; N , are eigen-

values ofM l
k

. Obviously, �min D min
°
�l
k;i
; i2 ƒl

k
; l D 0; 1; � � � ; lk � 1; k D 1; 2; � � �

±
is a positive

value due to the finite number of all possible graphs and Assumption 4.4. Denote the union graph of
the lk graphs over the lk time-subintervals in Œtk; tkC1/ as Gk , that is, Gk D G0

k

S
G1
k

S
� � �
S

Glk�1
k

,
and the Laplacian matrix associated with Gk as Lk . Then the matrix

Mk D Lk C L0;k;

is a positive definite constant matrix in each time interval Œtk; tkC1/ according to Assumption 4.4
[23]. Thus, the eigenvalues of Mk can be ordered as 0 < �k;1 6 �k;2 6 � � � 6 �k;N . Denote
ƒk D

®
i W �k;i ¤ 0; i 2 Œ1; N �

¯
. Clearly, ƒk D ¹1; 2; � � � ; N º.

The following result was established in [24].

Lemma 4.2
Under Assumption 4.4, for each k D 1; 2; � � � ,
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ƒ0k[ƒ
1
k [ � � � [ƒ

lk�1

k
D ƒk :

The following assumption, which was inspired by [24], requires that each agent is
marginally stable.

Assumption 4.5
There exist a P."/ that satisfies ARE (4) and the following Riccati and Lyapunov inequalities

PAC ATP � 2�minPBB
TP C �minI < 0; (22)

PAC ATP 6 0: (23)

The following two assumptions on the follower agents and the leader agent define the solvability
of the semi-global output consensus problem for the multi-agent system (1)–(3).

Assumption 4.6
For each k D 1; 2; � � � , there exist a family of matrices …i .tk/ and 	i .tk/ that solve the following
linear matrix equations:

…i .tk/S D A…i .tk/C ai0.tk/B	i .tk/CEi ; C…i .tk/CQ D 0; i D 1; 2; � � � ; N: (24)

Let

….tk/ D

2
666664

…1.tk/ 0 � � � 0

0 …2.tk/ � � � 0

:::
:::

: : :
:::

0 0 � � � …N .tk/

3
777775 ; 	.tk/ D

2
666664

	1.tk/ 0 � � � 0

0 	2.tk/ � � � 0

:::
:::

: : :
:::

0 0 � � � 	N .tk/

3
777775 :

Then, linear matrix (24) can be written in the following compact form:

….tk/.IN˝S/ D .IN˝A/….tk/C.L0;k˝B/	.tk/CE; .IN˝C/….tk/C.IN˝Q/ D 0: (25)

Assumption 4.7
There exist a positive number ı < � and a time T > 0 such that, for each k D 1; 2; � � � ,
k	i .tk/wk1;T 6 ı, i D 1; 2; � � � ; N , for all w with w.0/ 2 W0, where k	i .tk/wk1;T WD
supt>T k	i .tk/wk1.

Under Assumptions 2.1, 4.5, and 4.6, we construct the following state feedback control algorithm
for each follower agent:

ui D �B
TP

0
@ NX
jD1

aij

�
t lk

�
..xi � xj / � .…i .tk/ �…j .tk//w/C ai0 .tk/ .xi �…i .tk/w/

1
A

C ai0 .tk/ 	i .tk/w; i D 1; 2; � � � ; N;
(26)

where …i .tk/ and 	i .tk/; i D 1; 2; � � � ; N , are solutions to the linear matrix (24) in time-interval
Œtk; tkC1/, whose existence is guaranteed by Assumption 4.6, and P WD P."/ is the solution to the
ARE (4) and inequalities (22) and (23) as given in Assumption 4.5.
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We have the following result on semi-global leader-following output consensus of the multi-agent
system consisting of the follower agents (1) and the leader agent (3).

Theorem 4.2
Let Assumptions 2.1, 4.4, 4.5, 4.6, and 4.7 hold. Then, under the linear state feedback control laws
(26), the group of follower agents (1) and the leader agent (3) achieve semi-global leader-following
output consensus. That is, for any a priori given bounded set X0 � Rn, there exists an "� > 0 such
that, for any " 2 .0; "��,

lim
t!1

ei .t/ D 0; i D 1; 2; � � � ; N;

hold for all xi .0/ 2 X0; i D 1; 2; � � � ; N , and w.0/ 2W0.

Proof
Within each time-interval Œtk; tkC1/, denote Nxi D xi �…i .tk/w; i D 1; 2; � � � ; N , then we have

PNxi D A Nxi C B .�.ui / � ai0 .tk/ 	i .tk/w/ ; i D 1; 2; � � � ; N:

Notice that Nxi .0/; i D 1; 2; � � � ; N; belongs to a bounded set because X0 and W0 are both
bounded. Moreover, Nxi .T / 2 UT ; i D 1; 2; � � � ; N , for some bounded set UT , which is independent
of ", because Nxi .0/ is bounded and Nxi .T /; i D 1; 2; � � � ; N , is determined by a linear differential
equation with bounded inputs �.ui / and 	i .tk/!.

Let Nx D
	
NxT1 ; Nx

T
2 ; � � � ; Nx

T
N


T
, Nw D

	
wT ; wT ; � � � ; wT


T
2 RNr , and u D

	
uT1 ; u

T
2 ; � � � ; u

T
N


T
,

then in each time-interval Œtk; tkC1/, system (18) and control law (26) can be respectively written as

PNx D .IN ˝ A/ Nx C .IN ˝ B/.�.u/ � .L0;k ˝ 	.tk// Nw/; (27)

and

u D �
�
M l
k ˝ B

TP
�
Nx C .L0;k ˝ 	.tk// Nw; (28)

Construct a Lyapunov function

V. Nx/ D NxT .IN ˝ P / Nx;

which is positive definite because P is positive definite.
Let c > 0 be a constant such that

c > sup Nxi2UT ;iD1;2;��� ;N;"2.0;1�V. Nx/:

Such a c exists because UT is bounded and independent of ".
Let LV .c/ WD

®
Nx 2 RNn W V. Nx/ 6 c

¯
. Let "� 2 .0; 1� be such that, for all " 2 .0; "��, Nx 2 LV .c/

implies that������BTP
0
@ NX
jD1

aij

�
t lk

�
..xi � xj / � .…i .tk/ �…j .tk//w/C ai0 .tk/ .xi �…i .tk/w/

1
A

�ai0 .tk/ 	i .tk/w.t/

�����
1;T

6 �; i D 1; 2; � � � ; N:

The existence of such an " is due to the facts that lim"!0 P."/ D 0 and k	i .tk/wk1;T 6 ı; i D
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1; 2; � � � ; N:

Hence, for t > T and for Nx 2 LV .c/, the closed-loop system (27)–(28) can be written as

PNx D .IN ˝ A/ Nx C .IN ˝ B/
�
�
�
M l
k ˝ B

TP
�
Nx C .L0;k ˝ 	.tk// Nw � .L0;k ˝ 	.tk/ Nw

�
D .IN ˝ A/ Nx �

�
M l
k ˝ BB

TP
�
Nx:

(29)

Notice that for a symmetry matrix M l
k

, there exists an orthogonal matrix T l
k
2 RN�N such that

M l
k D

�
T lk

�T
diag

°
�lk;1; �

l
k;2; � � � ; �

l
k;N

±
T lk ;

where �l
k;1
; �l
k;2
; � � � ; �l

k;N
are eigenvalues of M l

k
.

Let Qx D
�
T l
k
˝ IN

�
Nx; then in each time-interval Œtk; tkC1/, the derivative of V along the

trajectory of (29) inside LV .c/ can be evaluated as

PV . Nx/ D NxT
�
IN ˝

�
ATP C PA

��
Nx � 2 NxT

�
M l
k ˝ PBB

TP
�
Nx

D NxT
��
T lk

�T
T lk ˝

�
ATP C PA

��
Nx

� 2 NxT
��
T lk

�T
diag

°
�lk;1; �

l
k;2; � � � ; �

l
k;N

±
T lk ˝ PBB

TP

�
Nx

D NxT
��
T lk

�T
˝ IN

� �
IN ˝

�
ATP C PA

�� �
T lk ˝ IN

�
Nx

� 2 NxT
��
T lk

�T
˝ IN

��
diag

°
�lk;1; �

l
k;2; � � � ; �

l
k;N

±
˝ PBBTP

� �
T lk ˝ IN

�
Nx

D

lk�1X
lD0

X
i2ƒl

k

QxTi

��
ATP C PA

�
� 2�lk;iPBB

TP
�
Qxi

6
lk�1X
lD0

X
i2ƒl

k

QxTi
��
ATP C PA

�
� 2�minPBB

TP
�
Qxi

6 �
lk�1X
lD0

X
i2ƒl

k

�min Qx
T
i Qxi

6 0;

which implies that the time function V. Nx.t// converges as t ! 1. Consequently, V. Nx.tk// con-
verges as k !1. Thus, by the Cauchy’s convergence criterion, we have that, for any ı > 0, there
exists a positive number mı such that, for any k > mı ,

0 6 V . Nx.tk// � V . Nx.tkC1// D �
Z tkC1

tk

PV . Nx.
//d
 < ı:

Therefore, we have, for each k > mı ,
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ı > �

Z tkC1

tk

PV . Nx.
//d


D �

Z t1
k

t0
k

PV . Nx.
//d
 � � � � �

Z t
lk
k

t
lk�1

k

PV . Nx.
//d


D �

Z t1
k

t0
k

NxT .
/
�
IN ˝

�
ATP C PA

�
� 2M 0

k ˝ PBB
TP

�
Nx.
/d


�

Z t2
k

t1
k

NxT .
/
�
IN ˝

�
ATP C PA

�
� 2M 1

k ˝ PBB
TP

�
Nx.
/d


� � � �

�

Z t
lk
k

t
lk�1

k

NxT .
/
�
IN ˝

�
ATP C PA

�
� 2M

lk�1

k
˝ PBBTP

�
Nx.
/d


> �
Z t0

k
C�

t0
k

NxT .
/
�
IN ˝

�
ATP C PA

�
� 2M 0

k ˝ PBB
TP

�
Nx.
/d


�

Z t1
k
C�

t1
k

NxT .
/
�
IN ˝

�
ATP C PA

�
� 2M 1

k ˝ PBB
TP

�
Nx.
/d


� � � �

�

Z t
lk�1

k
C�

t
lk�1

k

NxT .
/
�
IN ˝

�
ATP C PA

�
� 2M

lk�1

k
˝ PBBTP

�
Nx.
/d
:

In the above derivation, we have used the fact that

IN ˝
�
ATP C PA

�
� 2M l

k ˝ PBB
TP 6 0; l D 0; 1; � � � ; lk � 1; k D 1; 2; � � � :

Recalling that Qx D
�
T l
k
˝ IN

�
Nx, we have, for each l D 0; 1 � � � ; lk � 1,

ı > �

Z t l
k
C�

t l
k

NxT .
/
�
IN ˝

�
ATP C PA

�
� 2M l

k ˝ PBB
TP

�
Nx.
/d


> �
Z t l

k
C�

t l
k

NxT .
/

��
T lk

�T
˝ IN

� �
IN ˝

�
ATP C PA

�� �
T lk ˝ IN

�
Nx.
/d


� 2 NxT .
/

��
T lk

�T
˝ IN

��
diag

°
�lk;1; �

l
k;2; � � � ; �

l
k;N

±
˝ PBBTP

� �
T lk ˝ IN

�
Nx.
/d


> �
Z t l

k
C�

t l
k

X
i2ƒl

k

QxTi .
/
��
ATP C PA

�
� 2�lk;iPBB

TP
�
Qxi .
/d


> �
Z t l

k
C�

t l
k

X
i2ƒl

k

QxTi .
/
��
ATP C PA

�
� 2�minPBB

TP
�
Qxi .
/d


>
Z t l

k
C�

t l
k

X
i2ƒl

k

�min Qx
T
i .
/ Qxi .
/d
;

it follows that, for each l D 0; 1; � � � ; lk � 1; k D 1; 2; � � � ,

lim
t!1

X
i2ƒl

k

�min Qx
T
i .t/ Qxi .t/ D 0:
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Therefore, in a time-interval Œtk; tkC1/, we have

lim
t!1

�min

0
B@X
i2ƒ0

k

QxTi .t/ Qxi .t/C
X
i2ƒ1

k

QxTi .t/ Qxi .t/C � � � C
X

i2ƒ
lk�1

k

QxTi .t/ Qxi .t/

1
CA D 0: (30)

Recalling that, by Assumption 4.4 and Lemma 4.2, we can rewrite (30) as

lim
t!1

NX
iD1

˛i Qx
T
i .t/ Qxi .t/ D 0; (31)

where ˛i ; i D 1; 2; � � � ; N; are some positive scalars.
This implies that, for any Nx.0/ 2 LV .c/,

lim
t!1

Nxi .t/ D 0; i D 1; 2; � � � ; N;

which, in turn, implies that

lim
t!1

ei .t/ D lim
t!1

yi .t/ � y0.t/

D lim
t!1

C.xi .t/ �…i .t/w.t//

D lim
t!1

C Nxi .t/

D 0; i D 1; 2; � � � ; N:

This completes the proof. �

Remark 4.2
In [17], the communication topology among the follower agents needs to be connected all the time.
Here, we only need it to be jointly connected without requiring it to be connected all the time.

5. SIMULATION RESULTS

In this section, we give a few examples to illustrate our results.

Example 1
Consider a group of four follower agents, whose dynamics are given by (2) with

A D

�
�1 0
0 0

�
; B D

�
0

1

�
; E D

�
0 �2 �1
0 2 �1

�
; C D

	
1 0



;

and � D 35. Clearly, Assumption 2.1 is satisfied.
The dynamics of the leader is given by (3) with

S D

2
4 0 1 0

�1 0 0
0 0 0

3
5 ;Q D 	 1 1 1 
 :

The communication topology among the agents is represented by a digraph shown in Figure 1(a),
which satisfies Assumption 3.1. Associated with the communication topology, we obtain the entries
of adjacency matrix with a10 D a30 D 1, a21 D 1, a31 D 1, a41 D 1, a43 D 1, and all others being
zero.

The linear matrix equations in Assumption 3.2 can be solved to obtain the following solution:

… D

�
�1 �1 �1
1 1 �1

�
; 	 D

	
�1 �1 1



; H D

	
0 �1



:

Let Assumption 3.3 be satisfied with T D 0 and ı D 10.
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Figure 1. The communication topologies among agents.

Figure 2. Example 1: The evolution of the agents with " D 0:1.

In the simulation, choose the initial values of each agent as

x.0/ D
	
x1.0/ x2.0/ x3.0/ x4.0/



D

�
�0:1 2:1 2 �14
20 �3 �60 0:3

�
;

and w.0/ D Œ0:1 0:2 0:3�T :

Thus, all assumptions of Theorem 3.1 are satisfied. Letting " D 0:1, we can obtain

P.0:1/ D

�
0:05 0

0 0:3162

�
;

and construct feedback laws according to (6).
Figures 2(a) and (b) respectively show the evolutions of the differences between the outputs of

follower agents and the reference output as specified by the leader agent, and the inputs of follower
agents. In Figure 2(a), we see that output consensus is achieved for the given initial conditions
under the control law (6), as indicated by Theorem 3.1. A large number of simulation results show
that, for arbitrarily large initial conditions, output consensus can always be achieved by sufficiently
decreasing the value of ". This verifies that semi-global output consensus is achieved.

Example 2
Consider a group of 4 follower agents, whose dynamics are given by (1) with

E1 D

�
0 �2 �1
0 2 �1

�
; E2 D

�
0 �2 �1
�1 1 0

�
; E3 D

�
0 �2 �1
�1 2 0

�
; E4 D

�
0 �2 �1
�1 3 0

�
;

and �;A;B , and C as given in Example 1. Let the dynamics of the leader agent be also as given in
Example 1.

The communication topology among the agents is shown in Figure 1(b), which satisfies Assump-
tion 4.1. Associated with the communication topology, we obtain a10 D 1, a20 D a30 D a40 D 0,
and �1 D 0:2215.
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The linear matrix equations in Assumption 4.2 can be solved to obtain the following solution:

…1 D

"
�1 �1 �1

1 1 �1

#
; …2 D

"
�1 �1 �1

1 1 �1

#
; …3 D

"
�1 �1 �1

2 1 �1

#
;

…4 D

"
�1 �1 �1

3 1 �1

#
; 	1 D

h
�1 �1 1

i
; 	2 D 	3 D 	4 D 0:

Let Assumption 4.3 be satisfied with T D 0 and ı D 10.
Thus, all assumptions of Theorem 4.1 are satisfied. Letting � D 0:125 < �1 and " D 0:001,

we obtain,

P.0:001/ D

�
0:005 0

0 0:06325

�
;

and construct feedback laws according to (17).
In the simulation, we choose the initial values of each agent randomly as

x.0/ D
	
x1.0/ x2.0/ x3.0/ x4.0/



D

�
1:09 �20 �1:4 20

40 �3 30 1:3

�
;

and w.0/ D Œ1 2 0:3�T :

Figures 3(a) and (b) respectively show the evolutions of the differences between the outputs of fol-
lower agents and the (reference) output of the leader and the inputs of follower agents. In Figure 3(a),
we see that output consensus is achieved for the given initial conditions under the control law (17),
as indicated by Theorem 4.1. Further simulation shows that, for arbitrarily large initial conditions,
output consensus can always be achieved by sufficiently decreasing the value of ". This verifies that
semi-global output consensus can be achieved.

Example 3
Reconsider the multi-agent system in Example 2 with � D 150, but the communication topology
among the agents switches at time t D 1; 2; � � � between the two graphs G1 and G2 as shown in
Figures 1(c) and (d). It can be easily verified that this topology satisfies Assumption 4.4. Also, it is
clear that Assumption 4.5 is satisfied.

According to the communication topology, we obtain that a10 D 1, a20 D a30 D a40 D 0, and
�min D 0:2679. The same solution …1;…2;…3;…4; 	1; 	2; 	3, and 	4 to the matrix equations in
Assumption 4.6 can be obtained as in Example 2.

Figure 3. Example 2: The evolution of the agents with � D 0:125 and " D 0:001.
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Figure 4. Example 3: The evolution of the agents with � D 0:2 and " D 0:4.

Let Assumption 4.7 be satisfied with T D 0 and ı D 10.
Thus, all assumptions of Theorem 4.2 are satisfied. Letting " D 0:4 and � D 0:2, we have

P.0:1/ D

�
0:4 0

0 0:2

�

and construct feedback laws according to (26).
Figures 4(a) and (b) respectively show the evolutions of the differences between the outputs of

follower agents and the reference output as specified by the leader agent, and the inputs of follower
agents, with the same initial conditions as in the simulation in Example 2. In Figure 4(a), we see
that output consensus is also achieved for the given initial conditions under the control law (26),
as indicated by Theorem 4.2. Further simulation shows that, for arbitrarily large initial condition,
output consensus can always be achieved by sufficiently decreasing the value of ". This verifies that
semi-global output consensus can be achieved.

6. CONCLUSIONS

In this paper, we studied semi-global leader-following output consensus of a group of linear sys-
tems in the presence of external disturbances and actuator saturation. Both the case of disturbance
entering all follower agents the same way, which we referred to as the identical disturbance case,
and the case of disturbance entering the follower agents differently, referred to as the non-identical
disturbance case, are considered. In the identical disturbance case, we established the solvability
conditions based solely on agent dynamics and constructed a linear state feedback control algorithm
by using low-gain feedback design for each follower agent. We provided a new digraph condition
to guarantee semi-global leader-following output consensus. In the non-identical disturbance case,
we established the conditions based on both the agent dynamics and the communication topology
jointly. A family of linear state feedback control algorithms was constructed to achieve semi-global
output consensus when the communication topology is a strongly connected and detailed balanced
digraph and the leader is a neighbor of at least one follower. We also proved that under some further
conditions on the agent dynamics, the control algorithms also achieve semi-global output consen-
sus when the communication topology among the follower agents is a jointly connected undirected
graph, and the leader is a neighbor of at least one follower.
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