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SUMMARY

This paper considers the problem of localization and circumnavigation of a group of targets, which are either
stationary or moving slowly with unknown speed, by a single agent. An estimator is proposed, initially for
the stationary target case, to localize the targets and the center of mass of them as well as a control law that
forces the agent to move on a circular trajectory around the center of mass of the targets such that both the
estimator and the controller are exponentially stable. Then the case where the targets might experience slow
but possibly steady movements is studied. The system inputs include the agent’s position and the bearing
angles to the targets. The performance of the proposed algorithms is verified through simulations. Copyright
© 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A common surveillance problem is to arrange for one or possibly several agents to navigate around
a single or a group of targets on a circular trajectory of prescribed radius. A simple scenario for
such a problem is that there is a single agent whose goal is to circle around a stationary target with
known position. The task is to find a control law that causes the agent to move to and then around
a circle in an agreed sense (i.e., clockwise or counterclockwise) with prescribed radius centered on
the target. There are various ways in which the problem can be made more complex, for example,
when there is a group of agents/targets or when the target(s) is moving. Prior literature dealing with
such problems includes, but is not limited to, [1-6].

When the target(s) has an unknown initial position, an estimator of the target position as well as a
control algorithm that forces the agent to move on the desired circular trajectory are required for the
surveillance task. In such problems, ideas of adaptive control or dual control can appear and with
certain controls, no estimation is in fact possible; this sort of phenomenon is associated with dual
control, and it is the persistence of excitation concept of adaptive control [7, 8], which clarifies what
needs to happen. Simultaneous control and estimation are required, and the quality of estimation
can heavily depend on the control used.

Problems of this type with single-agent or multi-agent collaborative circumnavigation algorithms
have recently been studied. In [9-11], localization and circumnavigation of a moving target have
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MULTI-TARGET LOCALIZATION AND CIRCUMNAVIGATION 2363

been studied when the agent(s) can measure the relative position of the target, that is, its range and
bearing. In some applications, however, it is preferred to employ localization and circumnaviga-
tion algorithms that require less sensed knowledge about the target so that the proposed algorithm
can be used to control a UAV with limited payload capacity (and thus limited sensing capability).
There have been some research efforts to study such localization and circumnavigation problems
using distance-only measurements [13—15], bearing-only measurements [16, 17], and received sig-
nal strength (RSS) measurement [18]. In the scenarios where the agent has to maintain radio silence
for the fear that its position will be detected, it is usually preferred not to use distance measurements.
This is because of the fact that distance measurement techniques are usually active methods in which
the agent must transmit signals. In contrast, RSS measurement techniques and usually bearing mea-
surement techniques are passive methods. RSS-based localization techniques measure the strength
of the received signal and use a log-normal radio propagation model to estimate the distance to
the target. The path loss exponent is a key parameter in the log-normal model, which depends on
the environment in which the sensor is deployed. The problem with this method is that an accurate
knowledge of the path loss exponent is required in order to convert signal strength measurements to
range, and it can be difficult to obtain [19].

The problem of bearings-only target localization has been studied in the literature using statistical
estimators such as extended Kalman filter (EKF) and unscented Kalman filter [20, 21]. It is assumed
in such estimators that the agent knows the system model as well as the noise model. Although these
estimators work well when the agent knows the motion characteristics of the target, they cannot
be used when the target can move freely while the agent is not aware of the target motion. Many
of the current results in the literature assumed that the target is either stationary or moving with a
known constant velocity. We however consider the scenario that the target is allowed to move on
any directions and the agent does not know the motion characteristics of the target.

In this paper, we investigate the case where there is a single agent but multiple targets, which can
be either stationary or moving. We assume that the agent has a single integrator model and propose
estimation and control algorithms using bearing measurements for determining the estimated posi-
tions of the targets and making the agent circle around them. The algorithms proposed in this paper
are inspired by the algorithms in [16], which are for the single target case. However, the algorithms
proposed here are not trivial extensions of the single target case where the target itself acts as the
center of the circle around which the agent moves. In the multiple targets case, the center of the
circle is not naturally or automatically defined; therefore we need to add a center estimation algo-
rithm. This changes the structure of the control algorithm and adds another layer of conceptual and
computational complexity to the problem.

As noted, the algorithms we propose in this paper use bearing but not range measurements
and, as is generally desirable and usual, avoid using derivatives of measurements, that is, do not
measure angular velocity, to avoid high-frequency noise effect. In the stationary target case,
the estimation and control algorithms exhibit exponentially fast convergence. In terms of robust-
ness against noise and system uncertainties, although filtering algorithms like EKF can be applied
when the measurements are noisy or when the target is moving slowly, the proposed method,
without using any filtering algorithm, can tolerate measurement noise and slow movement of the
target. This results from the fact that exponentially stable systems are robust against many types of
system uncertainties.

The rest of this paper is structured as follows. In Section 2, the problem is formally defined,
and the proposed solution is provided in Section 3. Section 4 contains results from Matlab simula-
tions demonstrating the feasibility of the proposed algorithm. Finally, conclusions and proposals for
future work are presented in Section 5.

2. PROBLEM STATEMENT

Suppose there are n targets with unknown positions P, (t) € R2, i e1,2,3,---,n at time ¢ and
there is also an agent moving on a known trajectory p 4(s) € R? for s < t. Until further notice, we
shall assume all pr, (¢) are constant. Both the targets and the agent are assumed to be modellable as
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points. Let ¢, (¢), i = 1,2,---,n be the unit vectors in the direction of the line going from p 4(¢)
to pr, (1), that is,

pr,(t) — pa(t)
Ipr, () — p 4]

9;(t) = ey

and let @; (¢) be the unit vector obtained by 7z/2 clockwise rotation of ¢, (¢). Let pr(¢) be the point
around which the agent is seeking to move. We call this point the virtual target and define it as

Pr©) =13 pr® @)

Also, let p(t) be

p@) = [lpa) — pr@)l| (3)

and pg () be the desired radius of a circle with p4(¢) as the center on which the agent should move.
The value of pg(¢) will be estimated by the agent and should be such that the circle encloses all
targets. Of course, just as the agent does not initially know the positions of the targets, it does not
initially know the position of the virtual target and the radius of the circle. The case s = ¢ where
n = 5 is depicted in Figure 1. Let f’T,— (1) be the estimated position of target i and p,(¢) be the
estimate of p(¢) at time ¢. The discussion on how to calculate ﬁTi (t) and p5(¢) appears in the next
section. We suppose that the agent can measure the bearing angles to all targets and define pg (¢) as

pa(t) = max||pr (1) = by, (O] +d @

where d > 0 is a constant scalar. The constant d makes the desired circle be larger than the maxi-
mum distance of the targets to the center of the circle so that all targets are inside the circle and not
on the perimeter.

There are two tasks to be performed by the agent. The first is to estimate the position of the virtual
target pr(¢) and the radius pg4 (¢) such that the estimation error given in (5) converges exponentially

Py ®
° " ©
o
® Pr
Pid .
P

Figure 1. An illustration of the problem and the relationship between variables.
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fast to zero when the targets are stationary and to a small neighborhood of zero when the targets are
moving slowly:

pr() = pr(t) — pr () ©)

Note that when the target positions pr, (¢) are constant, p7(#) will also be taken as constant. The
second task is to move toward and then on the desired circle around the virtual target such p(z) —
pd4 (t) converges to zero exponentially fast in the stationary target case and to a neighborhood of
zero in the moving target case.

3. PROPOSED SOLUTION

We previously studied the case where there was only one target and one agent [16]. It is shown in
[16] that both estimator and controller are exponentially stable. Before considering the case where
there is more than one target, we first recall the estimator and controller for the case where there is
only one target located at pr, (¢):

Pr,(0) = ke (I —01(D9] (1)) (P4(t) — b7, (1)) (6)

and

pa) = u(t) = (p,(t) — pa(®)) @1 (t) + (1) (N

where pr, (¢) is the estimate of pr, (¢) at time ¢z, I is the 2 x 2 identity matrix, p, (1) = ||p 4(¢) —
Pr, ()], u(?) is the control input, and k. and « are positive constants. When the estimator con-
verges, p,(t) — p, (1) = [|p4(t) — pr, ()| and according to (7), the agent moves toward the
desired circle if p, (t) # pq(t). Once it reaches the circle, it moves with the tangential speed of «
around the target. Note that these equations give exponential convergence when pr, (7) is constant,
and robust behavior for slow motion of the target.

When there is more than one target, the first step is to find the virtual target pr(¢) around which
the agent is going to move and the radius of the circle, p; (¢).

3.1. Stationary targets

We continue to assume that the targets are all stationary. We will later consider the case where the
targets move slowly in Section 3.2. Our first approach is to estimate all target positions at the same
time and then use the individual estimates i’Ti (¢) to calculate p7(¢) as

. I
br()=-3% br,® ®)

Note that when all estimators converge, pr () also converges to pz. Similarly to (6), the estimator
for target i can be written as

Pr.(0) = kew (I — 0: (9] (1)) (P4(t) — b1, (1)) )

and after some calculations, the estimation error dynamics can be written as

Pr, (1) = —kew (I — 0, (0] (1)) Pz, (1)

o Tos (10)
= ~kei (V] (1) P, (1)
where pr. (1) = pr,(t) — pr,(t). Let p(7) and the unit vector ¢(7) be defined as
p(t) = 1p4t) — pr@)l| (11)
Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2015; 25:2362-2374
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Pa(t) (solid blue), Pr, (dashed-dotted black), and Pr, (red +)
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Figure 2. Simulation of a single target case when the controller makes the agent move around the target.

pr(t) —par)

p(t) = = (12)
[pr @) —pa@l
Then the controller for the multi-target case can be written as
pat) =u@) = (p(1) — pa (1)) (1) + ap(r) (13)

where @(¢) is the unit vector obtained by 7/2 clockwise rotation of ¢(#). Note that the unit
vector ¢@(t) is not a measurement of the bearing angle of an actual target, but represents the bear-
ing angle of pr(¢), which is the estimated position of the virtual target pr. The reason why we
use the bearing angle of pr(¢) rather than the bearing angle to an actual target is that we do
not have any measurement from the center of the circle around the targets (virtual target) in the
multi-target case.

There is an important distinction now which should be made. For the single target case, the unit
vector ¢(¢) in (7) always points toward the target, but in the multi-target case explained earlier,
it points to pp(¢) rather than pr(¢). Hence, in the multi-target case with the additional level of
complexity, it is harder to estimate the circle center. This can be seen by comparing Figures 2 and
3. In Figure 2, we simulated a single target case and used the estimator (6) and the controller (7). In
this case, the unit vector ¢ (¢) used in both the estimator and controller points toward the target. In
Figure 3, we used the same initial conditions for the agent and the target estimate, and simulated the
case where the estimator (9) and the controller (13) are used, and there is only a single target. The
value of p;(¢) in both cases is set to 2 as there is only one target and there is no need to estimate
the desired radius of the circle. Thus, the only difference is that in Figure 2, we used the controller
(7) in which the unit vector ¢ (¢) is used and points toward the target, but in Figure 3 we used the
controller (13) in which the unit vector ¢(¢) is used and points toward the target estimate.

It can be seen that the motion of the agent changes a lot when the controller changes from (7) to
(13). Furthermore, the motion of the virtual target estimate also persists for longer, or is a bigger
motion (i.e., the estimate of the center of the target circle wanders more before convergence).

In what follows, we show that by using the estimator (9) and the controller (13), the estimation
error pr(¢) converges to zero exponentially fast. To this end, we recall the following definition and
proposition [7].
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Figure 3. Simulation of a single target case when the controller makes the agent move around the target
estimate.
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Figure 4. An example of the trajectory of the agent along which ¢, (¢) and also @, (¢) are not persistently
exciting.

Definition 1
w(t) : Ry — R™ Vn,r = 1is persistently exciting if there exist some positive a1, &2, § such that

to+§8
al < / w(t)wT(t)dt <apl forallty =0 (14)
11

0

Proposition 1
Consider the differential equation

x=—ww' ()x (15)

where w(t) : Ry — R™ Vn,r = 1 is a regulated matrix function (i.e., one-sided limits
exist for all ¥ € R4). Then (15) is exponentially asymptotically stable if and only if w(¢) is
persistently exciting.

The persistence of excitation condition in (14) requires that w(#) rotates sufficiently in space such
that the integral of the matrix w(¢)w ' (¢) is uniformly positive definite over any interval of some
length § [7, 8]. Consider now the estimation error equation of target i in (10). If the unit vector
@; (1) (or the unit vector @, (¢)) rotates sufficiently in space, that is, if the bearing angle to target i
changes sufficiently fast, then according to Proposition 1, py, converges to zero exponentially fast.
The only situation where @, (¢) does not rotate sufficiently is when the agent moves on a straight
line toward the target i or when it converges to such a straight line. Consider the case shown in
Figure 4. If the agent moves on the dotted line shown in Figure 4, ¢; (#) does not change and is not
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Figure 5. An illustration on how the estimator in (9) works.

persistently exciting. But the other unit vectors ¢ ;(7) to other targets rotate, and therefore, other
I~7T,- (t) converge to zero exponentially fast. The following theorem shows that by using the estimator
(9) and the controller (13), the agent cannot move on such a straight line as shown in Figure 4, and
all of the unit vectors pointing from the agent to the targets are persistently exciting.

Theorem 1

Adopt the notation in the preceding text and assume that all targets are stationary. Then by using
the estimator (9) and the controller (13), the estimation error for each target converges to zero
exponentially fast and consequentially py(¢) has the same property.

Proof

If we show that all pr, () converge to zero exponentially fast, then we can conclude that pr(¢) also
converges to zero exponentially fast. We prove by contradiction and assume that at least for target
i, ¢;(7) is not persistently exciting and therefore pr., (z) does not converge to zero exponentially
fast. Consider Proposition 1 and let w(z) in (14) be w(t) = @, (¢). Note that @, (t)@; (t) T is singular
for all # and the persistency of excitation condition in (14) requires that @; (¢) rotates sufficiently in
space that the integral of the matrix @, (¢)@;(t) is uniformly positive definite over any interval of
some length § > 0. So we consider that the motion of the agent is such that @; () does not change
or changes very slowly that there is no § > 0 such that the integral of the matrix @; (t)@;(t)T over
§ is uniformly positive definite®.

Note that the estimated position of target i always converges to a constant value (which might not
be the correct position of target i ) exponentially fast. This can be seen from (9) and Figure 5, as the
estimator always forces the estimated position of target i to go to the point X shown in Figure 5,
which is on the line passing through the agent and target i.

So the estimated position of the virtual target that is the average of the estimated position of
all targets converges to a constant value exponentially fast. Then according to (13), the agent tries
to move around the estimated position of the virtual target and has a nonzero tangential veloc-
ity equal to «. Thus, the agent cannot keep moving on the straight line shown in Figure 4, and
therefore, @, () also rotates, which ensures that the estimated position of target i converges to its
actual position. O

Having established that the estimation process proceeds satisfactorily, it remains to demonstrate that
the control law achieves the required objective.

Theorem 2
Using the estimator (9) and the controller (13), p(¢) — pgq (¢) converges to zero exponentially fast.

$This means that agent i moves on a straight line toward the target or converges to such a straight line.
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Proof
Considering (11), (12), and (13), one has

. T
(Pa®) = br®) (Pa) = br ()
p(0)
. T
=~ (b4 = br ) ()

= —p(t) + pa(t) + pr () o(t)

p(t) =
(16)

Because the targets are stationary, f)Ti (t) = IL’T,- (¢) and thus the last term on the right-hand side of

the aforementioned equation is —’% ; (¢i (t)(])lTr O pr, (t))—r @(t). Because all pr. (¢) converge to
zero exponentially fast (Theorem 1) and therefore p, () converges exponentially fast to a constant
value, then in the light of (16), p(¢) — pg (¢) converges to zero exponentially fast.

Consider now a triangle with vertices at p 4(¢), pr(¢), and pr(¢). Then by the triangle inequality,

one has

p(t) < p(1) + | pr @)l a7

Because p(7) and || p7(2)|| converge, respectively, to lim;_, pg (¢) and zero exponentially fast, p(z)
also converges to lim; .~ pg(¢) exponentially fast. O

Remark 1

Although we assumed that the bearing angles to all targets are available to the agent at all time,
pr(t) and pgy (¢) still converge to their desired values if the agent is not able to measure the bearing
angle to one or some of the targets for some period. In this case, the convergence rate might be
slower. An example of this scenario is presented in Section 4.

3.2. Slowly moving targets

We have discussed in the previous subsection how the proposed algorithm works when
pr;(t), Vi = 1.--- n are assumed constant. Now we would like to show that when the targets
are moving slowly, the estimation error p4(¢) converges to a neighborhood of zero. To this end, we
recall the following proposition (Theorem 8.3 in [22]):

Proposition 2
If the coefficient matrix A () is continuous for all ¢ € [0, c0) and constants a > 0, b > 0 exist such
that for every solution of the homogeneous differential equation

x()=A@)x (1)
one has
I @Il < bllx(@o)[le ", 0<ip <t <o0

then for each f(¢) bounded and continuous on [0, c0), every solution of the nonhomogeneous
equation

x@)=A@)x@)+ f(), x() =0
is also bounded for z € [0, c0).
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It is also shown in [22] that if || f(z)|| < Ky < oo, for some positive constant K ¢, then the
solution of the perturbed system satisfies

bK
(O < bllx (o) e 1 2L (1 - o7 (18)
a

We make the following assumption on the motion of the targets.

Assumption 1

The trajectories of the targets are such that || p7, (¢)|| Vi = 1,---,n are bounded and piecewise
continuous for 7 = 0 and there exists a sufficiently small & such that || pr, (r)|| < &. Furthermore,
there exists some positive scalar D > 0 such that mljax|| pr@)—pr,@)| < D forallz = 0.

The condition max| p7(#) — p,(t)|| < D guarantees that the distance between the targets is

l
bounded, which is a necessary condition for the agent to circumnavigate the targets. We show in the
following theorem that the estimation and control error converge to a neighborhood of zero when
the targets are moving such that the aforementioned assumption holds.

Theorem 3

Adopt the notation earlier and suppose Assumption 1 holds. Then by using estimator (9) and con-
troller (13), the estimation error p4(¢) and the control error p(t) — p4 (t) converge to neighborhoods
of zero exponentially fast.

Proof

The key assumption in this theorem is that the speed of the targets is sufficiently low and the distance
between any two targets is less than 2D for all # = 0. This assumption should always hold as the
agent should always move significantly faster than the targets and the distance between any two
targets should be bounded so that the agent can circumnavigate the targets. Now when the targets
are moving, the estimation error dynamics for target i changes from (10) to

Pr, (1) = —kewd; (@] () pr. (1) — pr. (1) (19)

Based on the results in the stationary target case, we know that (10) is asymptotically exponentially
stable. Because pr. (7) is bounded and can be regarded as a non-vanishing perturbation applied to
an exponentially stable system, we can conclude according to Proposition 2 that pr, (r) converges
exponentially fast to a neighborhood of the zero. Thus p(¢) also converges to a neighborhood of
zero exponentially fast and the size of this neighborhood is proportional to the maximum speed of
the targets. ) )

~ When the targets are non-stationary, 4() in (16) also changes from p(t) = —p(t) + pa(t) +
pr(®)Te() 0

p(t) = —p(t) + pa(t) + pr () @) + pr ()T o(1). (20)

Because py (¢) is bounded, it can be shown that p(f) — pg(¢) converges to a neighborhood of zero
exponentially fast. Then according to (17), p(¢) — pa () also converges to a neighborhood of zero
exponentially fast. O

4. SIMULATIONS

In this section, we consider two different scenarios corresponding to whether the targets are station-
ary or moving. First, we consider the case where there are three stationary targets at pp, = [2, 47,
pr, =1, 2]T, and rr; =3, 3]T. We assume that the initial target estimates are pr,(0) =[3, 21T,
Pr,(0) = [3, 0]", and Pry(0) = [7, 3]T. We also assume that @ = 5, ko = 5, and d in (4) is

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2015; 25:2362-2374
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Agent trajectory (solid blue) and positions of the targets (+)
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Figure 6. Agent trajectory in X — Y plane, for the case where the targets are stationary.

[|Pr(t)]] (dashed-dotted black line) and p(t) — pa(t) (solid blue line)
3.6 r . .

Pd (f)

10 20 30 40 50 0 10 20 30 40 50
time (sec) time (sec)

Figure 7. The left-hand side figure shows the estimated radius of the circle p4 (¢), and the right-hand side
figure shows || p7(¢)|| and p(t) — pg (¢) for the case where the targets are stationary.

0.5. Simulation results for the case where the bearing angles to all targets are available to the agent
for all t > 0 are shown in Figures 6 and 7. It can be seen that the estimation error exponentially
converges to zero and the circling radius exponentially converges to pg; = 1.91 m. We then sup-
pose that the measurements are taken in segments such that the agent can only measure one bearing
angle at a time and will switch between the targets at intervals of ¢ = 0.05 s. Thus, the estimated
position of only one of the targets is updated at any time. The results are shown in Figures 8 and
9. If we compare the results of segmented and continuous measurement cases, we see that in both
cases the estimation and control errors converge exponentially to zero; however, in the segmented
measurement case, the convergence is slower.

We then consider the case where the bearing angles to the targets are perturbed by normally
distributed random noises. We simulate two different scenarios by applying noises with two different
standard deviations to the bearing measurements. We assume the noises are zero mean with standard
deviation of 0.1 and 0.2. Simulation results for these cases are shown in Figure 10. It can be seen
that the errors go to neighborhoods of zero and that the size of these neighborhoods is larger when
the standard deviation of noise is larger.

Now we consider the case where the targets are moving slowly such that p7, = [2 +.025¢, 4 +
sin(.037) + .0251]7, pr, = [1 + .03¢, 2 + sin(.025¢) + .037], and py, = [3 + .025¢, 3+
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Agent trajectory (solid blue) and positions of the targets (+)
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Figure 8. Agent trajectory in X — Y plane, for the case where the targets are stationary and the bearing
measurements are taken in segments.

[|r(t)]] (dashed-dotted black line) and p(t) — pa(t) (solid blue line)
6 - .

45

pa(t)

0 10 20 %0 40 50 0 10 20 3 40 50
time (sec) time (sec)
Figure 9. The left-hand side figure shows the estimated radius of the circle pg;(¢), and the right-hand side

figure shows ||p7(¢)|| and p(t) — pg(t) for the case where the targets are stationary and the bearing
measurements are taken in segments.

|27 (t)]] (dashed-dotted black line) and p(t) — pa(t) (solid blue line) [|Br(t)]| (dashed-dotted black line) and p(t) — pa(t) (solid blue line)
- 6 -

0 10 20 % 40 50 0 10 20 % 40 50
time (sec) time (sec)
Figure 10. Simulation results for the case where the bearing measurements are noisy. The left-hand side

figure shows the case where the standard deviation of noise is 0.1, while the right-hand side figure is for case
where the standard deviation is 0.2.
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Trajectories of the agent (blue) and the targets (red)
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Figure 11. Agent trajectory in X — Y plane for the case where the targets are moving.

||Pr(t)]| (dashed-dotted black line) and p(t) — pa(t) (solid blue line)
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Figure 12. The left-hand side figure shows the estimated radius of the circle pg(¢), and the right-hand
side figure shows || p7(¢)|| and p(¢) — pg(¢) for the case where the targets are stationary and the bearing
measurements are taken in segments.

sin(.035¢) + .025¢] 7. Simulation results for this case are shown in Figures 11 and 12. Note that
the desired radius of the circle in Figure 12 changes by time as the targets move in different direc-
tions with different speed and thus the radius of the circle changes by time. It can be seen that the
estimation and control error do not converge to zero, but converge to neighborhoods of zero.

5. CONCLUSION AND FUTURE WORK

In this paper, we considered the localization and circumnavigation problem of multiple targets. We
proposed estimator and control algorithms and showed that with stationary targets, the estimation
error and the control error converge to zero exponentially fast. It is shown that for the moving target
case, the estimator and controller can tolerate slow motion of targets with only modest affects on
accuracy. It also appears that the larger the speed of the targets, the larger the estimation error.

Future directions of research include general collision avoidance; considering more realistic agent
models; having three or more agents forming a polygon formation circling a target/multiple targets;
estimating the speed of targets if they are moving at an unknown constant speed; and using methods
like EKF or IPDA-FR [23] to further reduce the effect of noise and to increase accuracy.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2015; 25:2362-2374
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