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Intermittent Phenomena in Switched Systems
With High Coupling Strengths

Qingfei Chen, Yiguang Hong, Senior Member, IEEE, Guanrong Chen, Fellow, IEEE, and David J. Hill, Fellow, IEEE

Abstract—In this paper, one kind of intermittency generated by
a discontinuous system is studied. Although this system, which
is composed of two switched subsystems coupled with a high
strength, is nonsmooth, the mechanism of this kind of intermit-
tency can be analyzed with several explicit relations between the
intermittency characteristics and the system control parameters.
In particular, estimates of “steady-state” values of the system (in
the laminar phases) and a critical value for this intermittency can
be derived, which are helpful in relevant control systems design.
Moreover, some power laws for the observed intermittency are
obtained and discussed.

Index Terms—Discontinuous system, intermittency, power law,
transverse stability.

I. INTRODUCTION

COMPLEX dynamical phenomena, which are very
common among different disciplines, have drawn in-

creasing attention from different research communities over the
last few decades. Intermittency, consisting of laminar phases
and burst phases, is one of the ubiquitous complex phenomena.
In the laminar phase, the system orbits appear to be relatively
regular, while in the burst phase the motion of the considered
system is quite “violent” and “irregular.” Three simple types
of intermittent phenomena (Types I, II, and III) related to
three kinds of bifurcations in lower dimensional maps were
first identified by Pomeau and Manneville [23]. Then, on–off
intermittency, which is related to the transverse instability of
(chaotic) attractors confined to a lower dimensional manifold,
was systematically explored in [13], [21], and [22]. Because of
the low dimension of the manifold, every intermittency exhibits
clear and distinct “regular” laminar phases and “irregular”
burst phases. Moreover, crisis-induced intermittency was also
observed and investigated [20].

New intermittent phenomena similar to on–off intermittency
have been observed in recent years. For instance, “icicle” in-
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termittency was generated in a rotating system [4]; an inter-
esting intermittency generated by four coupled phase-locked
loops (PLLs) was studied thoroughly in [12]; and a new type of
intermittency was obtained for two-dimensional (2-D) Hamil-
tonian systems in the case of large noise strengths [29]. All of
these intermittencies appear to fall into the category of (gener-
alized) in–out intermittency as pointed out in [1], [29]. In–out
intermittency, as a generalized form of the on–off intermittency,
was recently discovered and discussed [1], [2], [25]. It is also
associated with some invariant sets in a lower dimensional man-
ifold, but these invariant sets need not be (minimal) chaotic
attractors as in the on–off intermittency case. In in–out inter-
mittency, system orbits jump out occasionally from the rela-
tively steady laminar phase to the irregular burst phase and then
quickly return to the laminar phase. Consequently, the system
trajectory will “blow out” from the lower dimensional subspace
in a random-like fashion due to the transverse instability.

In addition to physical systems, intermittency studies can also
be applied to other (simple or complex) systems. For example, a
relatively simple intermittent phenomenon in a piecewise-linear
circuit, associated with a saddle-node bifurcation, was studied
in [10]. Both type-I and type-II intermittencies in circuits were
investigated in [3] and [14]. Moreover, intermittency has been
found to be a useful concept not only in the analysis and control
of complex phenomena in bio-systems, in relation to such prob-
lems as balancing mechanism, neuronal spike trains, and visual
information process [5], [18], [24], but also in applications such
as optimization [16] and control of intermittency [19].

More intermittency-related studies are still needed. On the
one hand, discovery and classification of new intermittencies
are to be carried out, and their underlying generation mecha-
nism and the relationships between different intermittencies are
to be investigated. Generally speaking, it is very hard to obtain
explicit relations between intermittent characteristics (i.e., the
mechanism) and system parameters, though these explicit re-
lations may be very important in systems analysis and design.
Moreover, although many intermittent phenomena were gener-
ated by smooth or nonsmooth continuous dynamical systems,
the study of the intermittency generated by continuous-time dis-
continuous systems, which are expressed in groups of differen-
tial equations with discontinuous right-hand sides, is quite un-
derdeveloped, partially because of the lack of effective tools in
nonsmooth analysis and the complexity of many related tech-
nical issues [11], [15]. On the other hand, “engineering” ap-
proaches, differing from conventional physical methods, focus
more on the construction of simply structured systems or the
control mechanisms for various complex phenomena, targeting
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practical applications (including intermittency control and gen-
eration). These engineering viewpoints may help us better un-
derstand the underlying mechanism of intermittent phenomena
in an active way and may also suggest new application oppor-
tunities, for example, to optimize practical engineering systems
or to produce desired dynamical behaviors towards their poten-
tial applications (for example, in neurological systems, complex
spike codings and patterns may be realized by circuits).

With the rapid and continuous growth of scientific knowledge
on nonlinearity and complexity, one tends to take advantage of
them rather than removing them as was done in the past. The
motivation of our research is to show the intermittency gen-
erated by discontinuous systems with simple mechanisms and
to provide related analysis methods for potential intermittency
design. This study is also expected to show that engineering
approaches to analyzing complex dynamical phenomena could
provide new ways for better understanding of system behaviors.
The main results are summarized here.

• New intermittent phenomena generated by discontinuous
dynamics are investigated. More precisely, the mechanism
for generating intermittency from a strongly coupled dis-
continuous system is studied. It is found that intermittency
can be easily generated from two identical switched sub-
systems with a high coupling strength, along a lower di-
mensional manifold constructed by switching structures,
similar to the sliding surface in sliding mode control [28].

• It is hard but important to obtain explicit relations between
intermittent characteristics and system parameters, espe-
cially from engineering viewpoints. In our study, an ap-
proach is developed by taking advantage of the simple
structure of the considered nonsmooth dynamics. A critical
value of a system parameter (that is, ), in relation to the
occurrence of intermittency, is obtained as an explicit func-
tion of system parameters. Moreover, a formula revealing
the relation between laminar state values and system pa-
rameters is also derived. These explicit relations show how
one can change some intermittent behaviors by simply ad-
justing system parameters.

• With the analysis of the transverse stability for two limit
cycles (that is, and ) in a lower dimensional mani-
fold, the observed intermittency is believed to be related
to the in–out intermittency, which is a generalized form
of the on–off intermittency [1], [25], though the existing
results for in–out intermittency were not obtained for dis-
continuous systems. Moreover, several power laws for in-
termittency are confirmed. In addition, the low sensitivity
to noise of this intermittency is also shown.

The remainder of this paper is organized as follows. In
Section II, a new “in–out” intermittency generated by a discon-
tinuous system with coupling and switching is first introduced.
Then, in Section III, the dynamics near the onset of this inter-
mittency are analyzed. Furthermore, a critical value for this
intermittency and a “steady-state” laminar value are estimated
to capture the intermittency characteristics. Following that,
in Section IV, statistical analysis of power laws is provided.
Finally, some concluding remarks are given in Section V.

II. DISCONTINUOUS DYNAMICS AND INTERMITTENCY

Discontinuous dynamics can effectively yield many inter-
esting dynamical phenomena. For example, one may have
already witnessed the significant achievement of control and
generation of various chaotic behaviors in different fields.
Some effective design methods have been developed by
building chaotic systems with simple nonsmooth switching
structures [7]–[9], [17], [26].

In this section, a six-dimensional discontinuous system for
intermittency generation is introduced. This system is com-
posed of two identical switched subsystems with high coupling
strengths. More precisely, consider a system with state vectors

, , 2, respectively, as follows:

(1)

where the vector fields are

if

if

(2)

and the coupling matrix is

if

if

(3)
where , , , , , and are (control) parameters satisfying

(4)
Note that the coupling feedback gain is set to be much larger
than the parameters and in this nonsmooth system. In other
words, system (1) is a strongly coupled system.

System (1) has two simple subsystems with switching struc-
tures, and its coupling control terms dominate the dynamical
behavior most of the time (since ). In the last two
decades, control with switching surfaces has been widely used
in the generation of various chaotic attractors; the switching sur-
faces used in this paper are similar to those used in some chaos
generation control (like the one used in [17]). Here, it is worth-
while to point out that the dominant coupling terms play a key
role in the intermittent behaviors of system (1); they force the
system states to repeatedly move near the switching surfaces,
evoking blowouts unpredictably.

For each subsystem, there are two regions, denoted by

(5)
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for , 2, which are separated by two switching surfaces

Hence, the dynamics of system (1) occur in a six-dimensional
(6-D) space, which is made up of four nonoverlapping regions
and partitioned by two switching hyper-surfaces in

Set

Then, and are the polar coordinates for
and , respectively, and ,

. Based on this, system (1) can be rewritten as
follows.

• If , then

(6)

where

(7)

It is easy to see that , where equality holds if
and only if , .

• If , then

(8)

In the intermittency analysis, laminar and burst magnitudes
(measured by and , , 2) are very useful. The equations
in and , , 2, will be considered in more detail below.

Set the system parameters as

0.03
0.01
2
1
20

(9)

(10)

In all of the numeral simulations of this paper, we adopt the
Runge–Kutta method with step size .

Figs. 1 and 2 show the intermittent behaviors of system (1):
the trajectories of and occasionally burst, thus we
refer to them as the burst state. After that, the trajectories settle

Fig. 1. z ; (i = 1, 2) of system (1).

Fig. 2. R (i = 1, 2) of system (1).

down and stay in this steady state for a relatively long time,
which is referred to as the laminar state. Clearly, and show
burst/laminar phases simultaneously.

Both and ( , 2) demonstrate an inter-
mittency pattern, where ( , 2) and ( , 2) of system
(1) are almost synchronized, respectively, moving around con-
stant real numbers in all laminar phases. These constant num-
bers (denoted by and , respectively) will be determined
in the next section. Moreover, Fig. 2 shows that the intermit-
tency of ( , 2) shares the same timing of that for
( , 2). In fact, and also evolve
“intermittently” in sawtooth waves, which will also be shown
and explained in Section III.

In the laminar phase, the system orbit goes across the
switching surface ( , 2) back and forth almost all of
the time because of the dominant coupling terms in the same
way as occurs in the familiar sliding mode control, where the
controlled system keeps switching back and forth along its
sliding surface [28].
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III. INTERMITTENCY ANALYSIS

Because of the complexity of intermittency, numerical anal-
ysis is widely used for study. It is not easy to formulate simple
yet meaningful relations between its characteristics and system
parameters. Nevertheless, we attempt to analyze the underlying
mechanism of the intermittency generated by the discontinuous
system (1), deriving some explicit characteristics such as the
critical value of this intermittency and the “steady-state” values
(in laminar phases). These results will help better understand
how this intermittency is generated and how its associated
dynamical behaviors can be modified by adjusting control
parameters.

As mentioned above, previous works on intermittency were
mainly concerned with its dynamical behavior near the onset
of the intermittency, that is, a burst will appear when a specific
parameter is (slightly) changed around the critical value of the
intermittency. Here, for system (1), we focus on the control pa-
rameter and denote its critical value by . More precisely, we
focus on the system dynamics around this critical value, partic-
ularly the following two cases.

1) For values near with , and ( ,
2) are synchronized.

2) For values near with , intermittency of
and ( , 2) occurs.

A. Critical Value for Intermittency

There is a certain critical value of a control parameter ( here)
related to intermittency, though its explicit expression is difficult
to derive in general. Although there are few effective methods
for dealing with discontinuous dynamics, based on the special
structure of the nonsmooth system (1), one can estimate the crit-
ical value in a simple way.

Let us focus on the switching surfaces, since the dynamics
move around them most of the time. As mentioned, in the whole
space there are four regions divided by the switching surfaces

, , 2, given as follows:

(11)

where and were defined in (5).
From numerical simulations, we observe that, when both sub-

systems are in the steady state (or in the laminar phase of the
on–off intermittent phenomenon), the system orbit actually goes
through the switching surfaces ( , 2) and the four re-
gions , , 2, 3, 4, frequently in the following sequences:

, or symmetrically,
. Because the two sub-

systems are identical, we only take one of the two sequences to
analyze.

Denote these short duration lengths in regions , , ,
and by , , , and , respectively. Since the two
subsystems are identical, we assume .

Recalling (6) and (8) and noticing
, we have

if

otherwise

(12)

Since the two subsystems are identical, in the
steady state. Therefore, after one round of motion with

, the increment of ( , 2) in this
steady state will approximate 0, i.e.,

which implies that

(13)

Thus

(14)

Set . Then, in the four dif-
ferent regions, we have:

• in , ;
• in ,

;
• in ,

;
• in , .
Consequently, the total increment of after one round of

switching through , , 2, , 2, is

(15)

Combining (14) and (15) gives

(16)

Note that

(17)
or equivalently . Therefore

which implies, according to (13), that

(18)

Next, consider the “steady” state, where remains almost
invariant (or ). To guarantee , we have two choices:

or . Here, we focus on , which
shows a critical relation between and the change of (we
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TABLE I
CRITICAL VALUE 
 VERSUS b

will consider the case of later in the analysis
of dynamical behaviors). Thus, we obtain

(19)

which will be further shown later to be quite accurate for the
intermittent phenomenon in system (1), specifically in the anal-
ysis of the dynamics near and power laws.

As in many previous works, we can also numerically obtain
an estimated critical value (denoted by ) for . For compar-
ison, Table I shows that the numerical values are very close to
the values calculated by (19).

From (19), it is clear that one can change the critical point
easily by adjusting system parameters.

Note that our approach proposed here is mainly based on the
observation that system (1) is almost “linear” if there were no
switching. In other words, the idea of this approach may be
extended to dynamical analysis for the systems consisting of
“linear” systems switching among them.

In the next two subsections, we will consider the intermit-
tency by changing the parameter in a small neighborhood of

. There are two main cases: 1) is slightly smaller than
and 2) is slightly larger than .

B. Case 1):

We first consider the case that is slightly smaller than .
In this case, according to (18), if . So, (and
relevantly, , , 2) increases, and and
of system (1) keep increasing, though and of system (1)
become synchronized. Hence,
will increase until it reaches the maximum value when

equals either or (namely, and
). Because the coupling terms (or ) are much

larger than (or ) , 2, the dynamics of the system
are mainly determined by the coupling terms. More specifically:

• if , then

because , , 2, are negative, which means
will increase quickly until the two subsystems reach the
switching surfaces , , 2, respectively;

• if , then

which implies that will decrease rapidly until the two
subsystems reach , , 2, respectively.

Thus, we can see that the system trajectory converges to the
switching surfaces from both sides.

Denote and as the steady-state values of
and ( , 2), which will be determined as follows.

Let us revisit (6) and (8) by taking in the steady
state.

• If , then

(20)

• If , then

(21)

As mentioned in the previous section, the trajectory of sub-
system crosses back and forth, over and over again, with
a high frequency because of the high-gain coupling. Thus, the
trajectory goes through from to and then come back
to again within a very short time period of time. In other
words, the moment when the trajectory crosses from
to is almost the same as the moment when the system goes
through from to , that is, . Now, we check the
trajectory directions in the two cases in the phase space ,
that is, using (20) and (21), we check the directions defined by

(22)

(23)

By neglecting the tiny difference between and (since
), it is easy to see that would stay invariant if and only

if , , 2. Fig. 3 sketches the system orbits in the
case of . From this observation, we can derive the value
of from , i.e.,

yielding

(24)

This makes the adjustment of the steady-state value easier.
In fact, with the parameter setting given in (9), and

, and then we can have a “simplified” version
of (24):

(25)

Since the system orbits move along the switching surface, we
can obtain the “steady” value as

(26)

or simply

(27)

In this case, we also have

(28)
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Fig. 3. Motions in the cases of (v =v ) = 1, (v =v ) > 1, and (v =v ) < 1 near z = z , i = 1, 2.

Thus, , which means that the trajectory moves
downwards along the switching surface with the value of
decreasing back to . A similar analysis can be given for the
case of with . Fig. 3 shows the system orbits

in three cases: , , and . Therefore, on

the switching surface , there is an “attractive” lower
dimensional manifold for system (1) as

Moreover, since the system orbits move near the switching sur-
faces, we can see that near the value tends to become .
In fact, if with , then, by (25), we have

Furthermore, with (due to ), an
attractor, described by a limit cycle in the form of

is attractive.
With (9), we take

(29)

Denote as the mean value of any variable . Numeral results
show that the average values of ( , 2) are
and , which is equal to the theoretical value

according to (24) [or (25)]. Note that the deriva-
tion of (24) for is based on the assumption that the high-gain
coupling terms keep the system moving near the switching sur-
faces, which may not apply when the value of is substantially
changed. However, when is limited in a moderate range near

, we can see that slight changes of some parameters given in
(9) do not influence the value of . Because , here
we make a comparison between and . From Table II,
one can see that keeps close to the value
when and change in the intervals and

TABLE II
VALUES OF h(z + z )=(2)i WHEN 
 = 0:32

, respectively. In other words, these numerical simula-
tions are consistent with the analysis given above.

Moreover, the mean values of , , 2, are
, roughly equal to .
, and , which shows that the mean

values of , , 2. In addition, the numerical results show
and , which well match the

value calculated from (28).
Figs. 4 and 5 show the numerical results for the projections

of the steady-state trajectory, which basically verify the stability
of set and the relations and
in the steady state (when ). Moreover, the value of
increases rapidly from its initial condition to

. For parameters (9) and
, . Fig. 6 shows the re-

sults with , which confirms the above
analysis.

The dynamics in the set is expressed as

(30)

where

and and were defined in (1). Recalling (6) and (8), we
have

For convenience, denote for .
As , we have and , ,
2, which is consistent with the numeral results .
Therefore, . In other words, the system orbits move
(almost) periodically with a period of since .
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Fig. 4. Two projections of the steady-state trajectory show the limit cycle A.

Fig. 5. x (t) � �x (t), y (t) � �y (t) in the steady state.

Fig. 6. Trajectory d(t).

Thus, the trajectory generated by (30) with parameters (9) and
(29), as verified in Figs. 4 and 5, forms the limit cycle .

C. Case 2):

This subsection studies the intermittency case when is
slightly larger than . Note that in (18) is a monotonously
decreasing function of . Therefore, if , then and
is decreasing and approaching 0 (that is, or, equivalently,

, ).
What is the underlying mechanism that governs the transi-

tions between laminar phases and burst phases? In fact, when
, the two subsystems tend to be completely synchronized.

Define a set for the complete synchronization of the two sub-
systems as

where and are obtained from (24) and (26), respectively.
Similarly, we also have and with and based on (24)
and (26). Clearly, is a limit cycle embedded in the low-di-
mensional manifold .

In fact, is attractive in due to , but it is trans-
versely unstable. In other words, it is an “exit” set of and



CHEN et al.: INTERMITTENT PHENOMENA IN SWITCHED SYSTEMS 2699

Fig. 7. System orbit moves back toM.

Fig. 8. System orbit approachesM and jumps out thereafter.

a blowout will occur near (sketched by the dashed lines in
Figs. 7 and 8). Fig. 8 reveals a jump process from a laminar
phase to a burst phase, while Fig. 7 shows the process when the
system reenters its laminar phase.

In fact, when is not very small and the coupling terms
(or ) are much larger than (or ), , 2, one has

, , 2 and the system orbit stays quietly to form its
laminar phase. However, when (and correspondingly
and , , 2) becomes small enough as , the cou-
pling terms are too weak to stop the subsystems from moving
without switching. The two subsystems tend to be completely
synchronized but the system variables burst before the system
dynamics exactly reaches . Once these state variables jump
out, the coupling terms begin dominating the system again and
it goes back to the laminar phase of , , 2. Thus, one
can expect that the variable (along with , ,

) keeps jumping out suddenly and decreasing monotonously
in a sawtooth fashion. This analysis can be clearly verified by
the numerical results shown in Fig. 10, which demonstrate that

, , , and are all going down (or is going

up because it is negative), when , , 2, stay in the laminar
phase. The bursts of , , 2, can also be explained. When
the system is near and and are not in the same region
or, to be precise, in regions or (without loss of generality,
considering the case , that is, and ), we
have

Take . shows
that diverges very quickly (that is, and are clearly desyn-
chronized), which implies that is unstable in the -direc-
tion (that is, is transversely unstable in ). This is because
the coupling strength from (4), and there is no
crossover on the switching surfaces during bursting (see Fig. 8).

When the coupling terms become dominant (when the system
state is away from ), the manifold becomes “attractive”
again, and the system trajectory moves back to and then to

. Therefore, as shown in Fig. 7, the system orbits gradually
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Fig. 9. Enlarged time series around a burst in z .

Fig. 10. Time series of z , x � x , y � y , � , and d.

move towards the dashed lines (that is, ) and finally get suffi-
ciently close to once again, with another burst coming. In this
way, intermittent blow-outs occur repeatedly. In other words,

, , 2, are quasi-synchronized in the long laminar
phases, while they are desychronized in the short burst phases.

Now, fix the parameters given in (9) and (10), where
. Fig. 9 shows the details near a burst of over time

. Moreover, Fig. 10 records the changes of , , ,
, and over time . Each time after the system orbit enters the

laminar phase, and , , 2, begin to decrease, and, fi-
nally, the system orbit moves to so close that the system en-
ters the burst phase. Thus, the intermittency can be characterized
as follows: the laminar phase with is established repeat-
edly, and then it is broken when and almost
vanish. Therefore, the irregular laminar lengths are, in fact, de-
pending directly on the irregular burst magnitudes of , ,
2 (or, similarly, those of and ) at the bursting
moments, denoted by , , 2 (or, correspondingly,

and ). We can also see a clear re-
lationship between the burst magnitudes and laminar lengths in
the power law analysis to be given in the next section.

In , there are two limit cycles and . As discussed in the
last subsection, limit cycle is a global attractor of system (1) if

Fig. 11. Time series of z , i = 1, 2, when 
 = 0:7.

. However, when , is still stable in the direc-
tion (because the large coupling terms force the system orbits
to approach ), but it is unstable in the -direction (because

, instead of ). However, is different. It is
attractive in the -direction (since ), but it is unstable
in the -direction (that is, it is transversely unstable). In fact,
the intersection of the whole intermittent attractor of the discon-
tinuous system (1) with is not equal to a (minimal) chaotic
attractor in . Instead, it contains a limit cycle , which is
transversely unstable, and another set , which is transversely
stable. This matches the definition of in–out intermittency given
by [1], [2], and [25], and we believe that the generated intermit-
tency here also falls into the category of in–out intermittency, a
generalized form of on–off intermittency, though the analysis of
in–out intermittency has been given for smooth systems and the
intermittency characteristics of smooth systems may somehow
be different from those generated by discontinuous systems.

Of course, if the system parameters are changed significantly,
the above analysis in this section may no longer be valid. For
example, still with selecting parameter (9) but (which
is much different from ), the dynamical behavior
shown in Fig. 11 is completely different from the intermittency
when (quite close to ) shown in Fig. 10.

Before the end of this section, we give a brief discussion about
the influence of noise on the intermittency of system (1). Some-
times, intermittency may be sensitive to noise, and the noise
energy, even if very small, may change significantly the trans-
verse stability of an intermittent system, which may spoil the
occurrence of intermittency. Here, an intermittency is said to be
robust if the occurrence of this intermittency is not easily de-
stroyed by noise. For example, the work reported in [12] shows
that intermittent patterns almost vanish even if the noise magni-
tude is as low as 0.2% of the maximum magnitude of some cor-
responding system variables, which therefore is considered not
robust. However, the numerical results shown in Fig. 12 demon-
strate that the intermittent behavior here can be quite robust.
Take two equations (the first equation on and the third equa-
tion on ) as an example (noticing that the two subsystems are
identical and and are symmetric). As in [12], noise
is added to the right-hand side of the first equation (that is, the
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Fig. 12. Intermittency of z in the following cases: (a) 5% noise added on the right-hand side of the first equation, (b) 10% noise added on the right-hand side of
the first equation, (c) 20% noise added on the right-hand side of the first equation, (d) 5% noise added on the right-hand side of the third equation, (e) 10% noise
added on the right-hand side of the third equation, and (f) 40% noise added on the right-hand side of the third equation.

equation on ) with numerical results shown in Fig. 12(a)–(c),
and the third equation (that is, the equation on ), with nu-
merical results shown in Fig. 12(d)–(f). The noise is a
uniform random signal with maximum magnitude being 5%
[Fig. 12(a) and (d)], 10% [Fig. 12(b) and (e)], 20% [Fig. 12(c)],
or 40% [Fig. 12(f)] of the maximum magnitude of or .
When we added noise with 5% and 10% of the maximum mag-
nitude of (or ) in equation (or ), respectively, the
on–off intermittent patterns of remain prominent. Once the
noise levels approximately become 20% in equation and 40%
in equation , respectively, the intermittent patterns begin to
vanish. Thus, one can see that the occurrence of the intermit-
tency of the discontinuous system (1) is not very sensitive to
noise.

IV. POWER LAW ANALYSIS

In spite of their irregular bursts, many intermittency phe-
nomena display regularities including power laws. Such laws
are used widely to describe natural complex phenomena. There
are some well-known power laws for on–off/in–out intermit-
tency, which have been considered before.

I) The mean laminar length depends on the deviation of the
control parameter from its critical value according to a
power law with exponent 1 [13], [21].

II) In the range of moderate lengths, the distribution of lam-
inar lengths follows a power law with exponent ,
though in the range of large laminar lengths, the distri-
bution exhibits an exponential decay [2], [13], [21].

Fig. 13. Relation between h�i and 
 � (b=a).

III) The burst amplitude satisfies 1 power law when its
value is small (but the amplitude deviates from the power
law when its value is large) [27].

In this section, we show that the intermittent phenomenon of
the discontinuous system (1) also shares some power laws. For
convenience, we denote by the length of the laminar phase.
Then, we can show the relationship between its mean (that is,

) and when is slightly larger than to maintain
the intermittent phenomenon. Fig. 13 shows the change of the
mean laminar length over (with ),
which indicates clearly a power law



2702 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 53, NO. 12, DECEMBER 2006

Fig. 14. Distribution of the laminar lengths.

Since , this relation confirms the power
law I) for the intermittency. From this, we can again verify the
critical value .

Next, we investigate another statistical property; namely, the
distribution of the laminar durations. Numeral analysis shows
that the distribution of also follows a power law

where the exponent is calculated as when the range
of is not large, verifying the power law II). In Fig. 14, the
slope of the dashed line is 1.5. Meanwhile, consistent with
II), numerical results also suggest that the distribution tends to
be exponential in the range of large .

Then, let us check the burst amplitude of , , 2, away
from its mean laminar value . For convenience, we only check

and denote . With parameters chosen as in (9)
and (10), Fig. 15 presents a power law distribution of for
(and the result for is similar) given as

when is small. Numerically, the exponent of
the power law in a small range of is , which is
close to 1 (noting that the slope of the dashed line in Fig. 15
is 1). Therefore, is consistent with the power law III),
which was discussed for on–off intermittency in [27], though
our intermittency is not a conventional on–off intermittency.

As stated in the last section, there are direct relationships
between the laminar lengths and the burst amplitudes of ,

, 2, or (and or ) (referring to Fig. 10).
Here, we confirm this by numerical results from the viewpoint
of power law. In fact, Fig. 16 shows that the data of
(that is, the burst magnitude of ) follow a power law with
exponent 1.43 and the data of with exponent 1.58. In
other words, these power laws are still quite close to the power
law II) for with exponent 1.5.

Thus, the variables or terms are closely related to laminar
durations in the discontinuous system (1), as analyzed in the last
section (referring to Fig. 10), sharing a power law with almost
the same exponent 1.5. In other words, the burst amplitudes

Fig. 15. Distribution of r .

of these variables or terms in the intermittency follow the power
law with exponent 1.5, just like the power law II).

V. CONCLUSION AND REMARKS

Intermittency has drawn increasing attention in recent years,
from many research communities, including physical sciences,
biological sciences, and engineering. Many results on intermit-
tency have been obtained but mostly for smooth systems (or
continuous nonsmooth systems), which depend heavily on nu-
merical simulations due to the very complex dynamical behav-
iors. Very few explicit expressions were given to characterize
the intermittency in discontinuous systems. In this paper, we
have investigated the intermittent phenomenon generated by a
discontinuous system, composing of two simple switched sub-
systems coupled with a high strength, and studied the related
intermittency mechanism. Our analysis of this discontinuous
system has provided a better understanding of how intermit-
tency occurs in nonsmooth systems.

Through the study in this paper, we conclude the following.
1) A new “in–out” intermittency can be generated by the

simple discontinuous system (1), and the lower dimen-
sional manifold for the intermittency results from the
discontinuous switching mechanism.

2) There exist two limit cycles, which are transversely stable
and unstable, respectively, in , and the intermittent
bursts occur just before the two subsystems are almost
completely synchronized (or, in other words, the “exiting”
set in is the set of complete synchronization of all the
state variables).

3) In the analysis of system (1), a simple approach is used,
which is effective mainly because system (1) is simply
constructed by switching between two almost “linear”
systems.

4) The critical value of is closely related to system pa-
rameters, which is estimated as . The intermittent phe-
nomena can be generated when , and a nearly peri-
odic motion can be observed when . In this sense,
one can change or to control the occurrence of the
intermittency.
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Fig. 16. Amplitude distribution of j� j and d in the burst phase.

5) The mean values of and , , 2, in the laminar
phase can be easily adjusted by controlling some parame-
ters according to (24) or (25).

6) Power laws can be found in statistical studies of intermit-
tent trajectories, and some other power laws have also been
confirmed.

More detailed theoretical analysis and practical applications
related to intermittencies produced by simple discontinuous sys-
tems, as well as efficient circuit implementation of various in-
termittencies, will be further investigated in future studies.

ACKNOWLEDGMENT

The authors wish to thank the anonymous reviewers for their
constructive comments.

REFERENCES

[1] P. Ashwin, E. Covas, and R. Tavakol, “Trasverse instability for non-
normal parameters,” Nonlinearity, vol. 12, pp. 563–577, 1999.

[2] ——, “Influence of noise on scalings for in-out intermittency,” Phys.
Rev. E, vol. 64, p. 204, 2001.

[3] M. S. Baptista and I. L. Calda, “Type-2 intermittency in the driven
double scroll circuit,” Phys. D, vol. 132, pp. 325–338, 1999.

[4] J. M. Brooke, “Breaking of equatorial symmetry in a rotating system:
a spiralling intermittency mechanism,” Europhys. Lett., vol. 37, no. 3,
pp. 171–176, 1997.

[5] J. Cabrera and J. Milton, “On-off intermittency in a human balancing
task,” Phys. Rev. Lett, vol. 89, pp. 1587–1590, 2002.
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