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Abstract

In this paper, we consider a multi-agent consensus problem with an active leader and variable interconnection topology. The state of the
considered leader not only keeps changing but also may not be measured. To track such a leader, a neighbor-based local controller together
with a neighbor-based state-estimation rule is given for each autonomous agent. Then we prove that, with the proposed control scheme, each
agent can follow the leader if the (acceleration) input of the active leader is known, and the tracking error is estimated if the input of the leader
is unknown.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, there has been an increasing research interest
in the control design of multi-agent systems. Many results have
been obtained with local rules applied to each agent in a consid-
ered multi-agent system. These neighbor rules for each agent
are based on the average of its own information and that of its
neighbors or its leader (Fax & Murray, 2004; Jadbabaie, Lin,
& Morse, 2003; Lin, Broucke, & Francis, 2004; Olfati-Saber
& Murray, 2004; Savkin, 2004). For example, Jadbabaie et
al. (2003) demonstrated that a simple neighbor rule makes all
agents eventually move in the same direction despite the ab-
sence of centralized coordination and each agent’s set of neigh-
bors changing with time as the system evolves under a joint
connection condition. Also, with a similar technique, Lin et
al. (2004) studied three formation strategies for groups of mo-
bile autonomous agents. The stability analysis of multi-vehicle
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formations was given with a Nyquist-type criterion in (Fax
& Murray, 2004). Moreover, by a Lyapunov-based approach,
Olfati-Saber and Murray (2004) solved the average-consensus
problem with directed interconnection graphs or time-delays.

In reality, some variables of the agents and/or the leader in
a multi-agent system may not be able to be measured. Fax and
Murray (2004) raised this important issue regarding observer
design for multi-agent systems, and first tackled this problem.
However, many works remain to be done for the distributed
observer design of networks of multiple agents.

With this background, we consider a consensus problem
with an active leader with an underlying dynamics. Here, some
variables (that is, the velocity and maybe the acceleration) of
an active leader cannot be measured, and each agent only gets
the measured information (that is, the position) of the leader
once there is a connection between them. In this paper, we
propose an “observer” by inserting an integrator into the loop
for each agent to estimate the leader’s velocity. To analyze the
problem, a Lyapunov-based approach is developed. With the
proposed estimation rule and a selected Lyapunov function, the
leader-following problem can be solved if the leader’s input
is known, while the tracking error can also be analyzed if the
input is unknown.
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2. Problem formulation

To solve coordination problems, graph theory is helpful. An
undirected graph G on vertex set V = {1, 2, . . . , n} contains
V and a set of unordered pairs E = {(i, j) : i, j ∈ V}, which
are called G’s edges. If there is an edge between two vertices,
the two vertices are called adjacent. A graph is simple if it
has no self-loops or repeated edges. If there is a path between
any two vertices of a graph G, then G is connected, otherwise
disconnected. A subgraph X of G is an induced subgraph if
two vertices of V(X) are adjacent in X if and only if they are
adjacent in G. An induced subgraph X of G that is maximal,
subject to being connected, is called a component of G.

Here, we consider a system consisting of n agents and a
leader. In the sequel, the state of agent i is denoted by xi for
i=1, . . . , n. With regarding the n agents as the vertices inV, the
relationships between n agents can be conveniently described
by a simple and undirected graph G, which is defined so that
(i, j) defines one of the graph’s edges in case agents i and j are
neighbors. Ni(t) denotes the set of labels of those agents which
are neighbors of agent i (i = 1, . . . , n) at time t. The weighted
adjacency matrix of G is denoted by A = [aij ] ∈ Rn×n, where
aii=0 and aij =aji �0 (aij > 0 if there is an edge between agent
i and agent j). Its degree matrix D = diag{d1, . . . , dn} ∈ Rn×n

is a diagonal matrix, where diagonal elements di = ∑n
j=1aij

for i = 1, . . . , n. Then the Laplacian of the weighted graph is
defined as

L = D − A, (1)

which is symmetric. In what follows, we mainly concern a
graph Ḡ associated with the system consisting of n agents and
one leader. In fact, Ḡ contains n agents (related to graph G) and
the leader with directed edges from some agents to the leader.
By “the graph, Ḡ, of this system is connected”, we mean that
at least one agent in each component of G is connected to the
leader.

For the multi-agent system under consideration, the rela-
tionships between neighbors (and the interconnection topol-
ogy) change over time. Suppose that there is an infinite se-
quence of bounded, non-overlapping, contiguous time-intervals
[ti , ti+1), i = 0, 1, . . . , starting at t0 = 0.

Denote S = {Ḡ1, Ḡ2, . . . , ḠN } as a set of the graphs with
all possible topologies, which includes all possible intercon-
nection graphs (involving n agents and a leader), and denote
P = {1, 2, . . . , N} as its index set.

To describe the variable interconnection topology, we de-
fine a switching signal � : [0, ∞) → P, which is piecewise-
constant. Therefore, Ni and the connection weight aij (i =
1, . . . , n, j = 1, . . . , n) are time-varying, and moreover, Lapla-
cian Lp (p ∈ P) associated with the switching interconnec-
tion graph is also time-varying (switched at ti , i = 0, 1, . . .),
though it is a time-invariant matrix in any interval [ti , ti+1). In
our problem, we assume that there are fixed positive constants
�ij (i = 1, . . . , n; j = 1, . . . , n) such that

aij (t) =
{

�ij = �ji if agents i and j are connected at t,
0 otherwise.

(2)

Meanwhile, the connection weight between agent i and the
leader, denoted by bi , is time-varying, too. We assume that there
are fixed positive constants �i (i = 1, . . . , n) such that

bi(t) =
{

�i if agent i is connected to the leader at t,

0 otherwise.
(3)

The next lemma was given to check the positive definiteness of
a matrix (Horn & Johnson, 1985).

Lemma 1. Suppose that a symmetric matrix is partitioned as

E =
(

E1 E2

ET
2 E3

)
,

where E1 and E3 are square. E is positive definite if and only
if both E1 and E3 − ET

2 E−1
1 E2 are positive definite.

The following result is well-known in algebraic graph theory
(Godsil & Royle, 2001) and establishes a direct relationship
between the graph connectivity and its Laplacian.

Lemma 2. Let G be a graph on n vertices with Laplacian
L. Denote the eigenvalues of L by �1(L), . . . , �n(L) satisfying
�1(L)� · · · ��n(L). Then �1(L) = 0 and 1 = [1, 1, . . . , 1]T ∈
Rn is its eigenvector. Moreover, if G is connected, �2 > 0.

In this paper, all the considered agents move in a plane:

ẋi = ui ∈ R2, i = 1, . . . , n, (4)

where ui is the control input. The leader of this consid-
ered multi-agent system is active; that is, its state variables
keep changing. Its underlying dynamics can be expressed as
follows:⎧⎨
⎩

ẋ0 = v0,

v̇0 = a(t) = a0(t) + �(t),

y = x0,

x0, v0, � ∈ R2, (5)

where y(t) = x0(t) is the measured output and a(t) is the (ac-
celeration) input. Note that (5) is completely different from
the agent dynamics (4). In other words, the agents will track a
leader with a different dynamics.

In our problem formulation, the input a(t) may not be com-
pletely known. We assume that a0(t) is known and �(t) is
unknown but bounded with a given upper bound �̄ (that is,
‖�(t)‖� �̄). The input a(t) is known if and only if �̄ = 0. On
the other hand, y = x0 is the only variable that can be obtained
directly by the agents when they are connected to the leader.
Our aim here is to propose a decentralized control scheme for
each agent to follow the leader (i.e., xi → x0).

Since v0(t) cannot be measured even when the agents are
connected to the leader, its value cannot be used in the control
design. Instead, we have to estimate v0 during the evolution.
Note that, each agent has to estimate v0 only by the informa-
tion obtained from its neighbors in a decentralized way. The
estimate of v0(t) by agent i is denoted by vi(t) (i = 1, . . . , n).
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Therefore, for each agent, the local control scheme consists of
two parts:

• a neighbor-based feedback law:

ui = − k

⎡
⎣ ∑

j∈Ni(t)

aij (t)(xi − xj ) + bi(t)(xi − x0)

⎤
⎦

+ vi, k > 0, i = 1, . . . , n, (6)

where Ni is the set consisting of agent i’s neighbor agents;
• a dynamic neighbor-based system to estimate v0

v̇i = a0 − �k

⎡
⎣ ∑

j∈Ni(t)

aij (t)(xi − xj ) + bi(t)

× (xi − x0)

⎤
⎦ , i = 1, . . . , n, (7)

for some positive constant � < 1. In fact, (7), can be viewed
as an “observer” in some sense.

Note that ui in (6) is a local controller of agent i, which only
depends on the information from its neighbors, and, in fact,
when v0 = 0, a = 0, the proposed control law (6) is consis-
tent with the one given by Olfati-Saber and Murray (2004). In
addition, with the neighbor-based estimation rule in a form of
observer (7) to estimate the leader’s velocity, each agent re-
lies only on the locally available information at every moment.
In other words, each agent cannot “observe” or “estimate” the
leader directly based on the measured information of the leader
if it is not connected to the leader. In fact, it has to collect the
information of the leader in a distributed way from its neighbor
agents.

Take

x =
⎛
⎝x1

...

xn

⎞
⎠ , v =

⎛
⎝v1

...

vn

⎞
⎠ , u =

⎛
⎝u1

...

un

⎞
⎠ .

Regarding the switching interconnection graphs, the closed-
loop system can be expressed as{

ẋ = u = −k(L� + B�) ⊗ I2x + kB�1 ⊗ x0 + v,

v̇ = 1 ⊗ a0 − �k(L� + B�) ⊗ I2x + �k(B�1) ⊗ x0,
(8)

where Il ∈ Rl×l (for any positive integer l) is the identity
matrix and ⊗ denotes the Kronecker product, � : [0, ∞) →
P={1, 2, . . . , N} is a piecewise-constant switching signal with
successive switching times, B� is an n × n diagonal matrix
whose ith diagonal element is bi(t) at time t, L� is the Lapla-
cian for the n agents. Note that, even in the case when the in-
terconnection graph is connected, bi(t) may be always 0 for
some i, and therefore, B� may not be of full rank.

Denote x̄ = x − 1 ⊗ x0 and v̄ = v − 1 ⊗ v0. Because
−k(L� + B�) ⊗ I2x + kB�1 ⊗ x0 = −k(L� + B�) ⊗ I2x̄ (in-
voking Lemma 2), we can obtain an error dynamics of (8) as

follows:

�̇ = F�� + g, g =
(

0
−1 ⊗ �

)
(9)

where

� =
(

x̄

v̄

)
, F� =

( −k(L� + B�) In

−�k(L� + B�) 0

)
⊗ I2.

3. Main results

In this section, the convergence analysis of system (9) is
given for the consensus problem of multi-agent system (8). If
the information of the input a(t) can be used in local control
design, we can prove that all the agents can follow the leader,
though the leader keeps changing. If not, we can also get some
estimation of the tracking error. We first assume that the in-
terconnection graph Ḡ is always connected, though the inter-
connection topology keeps changing; and then we consider an
extended case.

As mentioned above, Ḡ is connected if at least one agent
in each of its component is connected with the leader. To be
specific, if there are m�1 components, then the Laplacian Lp

(for any p ∈ P) of the graph associated with n agents have m
zero eigenvalues. For simplicity, we can rearrange the indices
of n agents such that Lp can be rewritten as a block diagonal
matrix:

Lp =

⎛
⎜⎜⎜⎝

L1
p

L2
p

. . .

Lm
p

⎞
⎟⎟⎟⎠ ,

where each block matrix Li
p is also a Laplacian of the corre-

sponding component. For convenience, denote Mp =Lp +Bp,
where Lp is the weighted Laplacian and Bp (p ∈ P) is the di-
agonal matrix as defined in Section 2. The next lemma is given
for Mp.

Lemma 3. If graph Ḡp is connected, then the symmetric matrix
Mp associated with Ḡp is positive definite.

Proof. We only need to prove the case when m = 1. Let
�1, . . . , �n be the eigenvalues of Laplacian Lp in the increas-
ing order. From Lemma 2, �1 = 0 and �i > 0, i�2. Denote n
eigenvectors of Lp by �i , i = 1, . . . , n, with �1 = 1, an eigen-
vector of Lp corresponding to �1 =0. Then any nonzero vector
z ∈ Rn can be expressed by z = ∑n

i=1ci�i for some constants
ci, i = 1, 2, . . . , n. Moreover, Bp �= 0 since there is at least
one agent connected to the leader. Without loss of generality,
we assume bj > 0 for some j, and it is obvious �T

1 Bp�1 �bj .
Therefore, in either the case when c2 =· · ·=cn =0 (so c1 �= 0)
or the case when ci �= 0 for some i�2, we always have

zTMpz = zTLpz + zTBpz�
n∑

i=2

�ic
2
i �

T
i �i + zTBpz > 0

for z �= 0, which implies the conclusion. �
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Based on Lemma 3 and the fact that the set P is finite,

�̄ = min{eigenvalues of Mp ∈ Rn×n, ∀Ḡp is

connected} > 0, (10)

is fixed and depends directly on the constants �ij and �i for i =
1, . . . , n, j=1, . . . , n given in (2) and (3). Its estimation is also
related to the minimum nonzero eigenvalue of Laplacian Lp,
which has been widely studied in different situations (Merris,
1994).

In some existing works (including Jadbabaie et al., 2003;
Lin et al., 2004), the convergence analysis depends on theory
of nonnegative matrices or stochastic matrices. However, Fp

of system (9) fails to be transformed easily to a matrix with
some properties related to stochastic matrices, and therefore,
the effective methods used in Jadbabaie et al. (2003) may not
work. Here, we propose a Lyapunov-based approach to deal
with the problem.

Theorem 4. For any fixed 0 < � < 1 and �̄ defined in (10), we
take a constant

k >
1

4�(1 − �2)�̄
. (11)

If the switching interconnection graph keeps connected, then

lim
t→∞ ‖�(t)‖�C, (12)

for some constant C depending on �̄. Moreover, if a(t) is known
(i.e., a(t) = a0(t) or �̄ = 0),

lim
t→∞ �(t) = 0. (13)

Proof. Take a Lyapunov function V (�)=�T(t)P �(t) with sym-
metric positive definite matrix

P =
(

In −�In

−�In In

)
⊗ I2. (14)

The interconnection graph is time-varying, but the interconnec-
tion graph associated with Fp for some p ∈ P is connected on
an interval [ti , ti+1) with its topology unchanged. Consider the
derivative of V (�):

V̇ (�)|(9) = �T(F T
p P + PFp)� + 2�TPg

� − �TQp� + 2(1 + �)�̄‖�‖, (15)

where

Qp = −(F T
p P + PFp) =

(
2k(1 − �2)Mp −In

−In 2�In

)
⊗ I2 (16)

is a positive definite matrix because 2�I − (1/2k(1 − �2))M−1
p

and Mp are positive definite (by virtue of (11), Lemmas 1
and 3).

Let 	i,j , i=1, . . . , n, j=1, 2 denote the (at most) 2n different
eigenvalues of Qp though Qp ∈ R4n×4n defined in (16). Based
on �i (Mp), the eigenvalues of Mp, we have the 2n eigenvalues

in the following forms:

	i,1 = (1 − �2)k�i (Mp) + �

+
√

[(1 − �2)k�i (Mp) + �]2 − 4�(1 − �2)k�i (Mp) + 1,

	i,2 = (1 − �2)k�i (Mp) + �

−
√

[(1 − �2)k�i (Mp) + �]2 − 4�(1 − �2)k�i (Mp) + 1,

for i = 1, . . . , n. Clearly, the smallest eigenvalue of Qp will be
found in the form of 	i,2 for some i.

Note that (11) implies k�i (Mp) > 1/4�(1 − �2). In this case,
	i,2 increases as k�i (Mp) increases. Therefore, the minimum
eigenvalue of Qp will be no less than

	̄ = (1 − �2)k�̄ + � −
√

[(1 − �2)k�̄ − �]2 + 1 > 0, (17)

which is obtained by taking �i (Mp)=�̄ with a given k satisfying
(11). In addition, since the eigenvalues of P are either 	min =
1 − � or 	max = 1 + �, we have

(1 − �)‖�‖2 �V (�)�(1 + �)‖�‖2. (18)

Therefore,

min
�TQp�

�TP �
� 	̄

	max
= 2�,

where � = 	̄/2(1 + �) > 0 with 	̄ defined in (17).
Due to (18),

‖�‖� 1√
1 − �

√
V (�).

Therefore, from (15),

V̇ (�)|(9) � − 2�V (�) + 2

√
(1 + �)2V (�)

1 − �
�̄

� − �V (�) + (1 + �)2�̄
2

(1 − �)�

or equivalently,

V (�(t))�V (�(ti))e
−�(t−ti ) + (1 + �)2�̄

2

(1 − �)�2 (1 − e−�(t−ti )),

t ∈ [ti , ti+1).

Thus, with t0 = 0,

V (�(t))�V (�(0))e−�t + (1 + �)2�̄
2

(1 − �)�2 (1 − e−�t ), (19)

which implies (12) with taking C = ((1 + �)/(1 − �)�)�̄. Fur-
thermore, if �̄ = 0, then (13) is obtained. �

Next, we consider an extended case: the interconnection
graph is not always connected. Let T > 0 be a (sufficient
large) constant, and then we have a sequence of interval
[Tj , Tj+1), j = 0, 1, . . . with T0 = t0, Tj+1 = Tj + T . Each
interval [Tj , Tj+1) consists of a number of intervals (still
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expressed in the form of [ti , ti+1), during which the intercon-
nection graph is time-invariant), including the intervals during
which the graphs are connected and those during which the
graphs are not. We assume that there is a constant 
 > 0, often
called dwell time, with ti+1 − ti �
, ∀i.

Denote the total length of the intervals associated with the
connected graphs as T c

j in [Tj , Tj+1) and the total length of the

intervals with the unconnected graphs as T d
j in [Tj , Tj+1). In

what follows, we denote an upper bound of T d
j (j = 0, 1, . . .)

as T d(< T ), and a lower bound of T c
j (j = 0, 1, . . .) as

T c(=T − T d).

Theorem 5. During each time interval [Tj , Tj+1), if the total
period that the interconnection graph is connected (i.e., T c)
is sufficient large, then (12) still holds with k given in (11).
Moreover, (13) holds if �̄ = 0 (or equivalently a(t) = a0(t)).

Proof. Still take a Lyapunov function V (�) = �TP � with P
defined in (14), and then we have (15). If the graph associated
with Fp for some p ∈ P is connected during [ti , ti+1), then,
according to Theorem 4, we have

V (�(ti+1))�e−�(ti+1−ti )V (�(ti)) + (1 + �)2

(1 − �)�2 �̄
2
.

If the graph associated with Fq for some q ∈ P is not con-
nected during [tl , tl+1). The minimum eigenvalue of Qq is
� − √

1 + �2(< 0) and, by (18), we have

−�TQq��
(√

1 + �2 − �

)
�T�� �

2
V (�),

where � = (2
√

1 + �2 − 2�)/(1 − �).
Similarly, with (18),

V̇ (�(t))|(9) ��V (�(t)) + 2(1 + �)2

�(1 − �)
�̄

2
, t ∈ [tl , tl+1),

and therefore,

V (�(tl+1))�e�(tl+1−tl )V (�(tl)) + 2(1 + �)2

�2(1 − �)
(e�T d − 1)�̄

2
. (20)

Denote

� = max

{
(1 + �)2

�2(1 − �)
,

2(1 + �)2

�2(1 − �)
(e�T d − 1)

}
.

It is not hard to see that there are at most md = [T d/
] + 1
intervals (in [Tj , Tj+1)) associated with unconnected graphs.
Therefore, we have

V (�(Tj+1))�e−�T c
j +�T d

j V (�(Tj )) + (1 + eT d + e2T d

+ · · · + emdT d
)��̄

2

�e−�T c+�(T −T c)V (�(Tj )) + �̄�̄
2

(21)

with

�̄ = e(md+1)T d − 1

eT d − 1
� > 0.

If �Tc>�(T −T c) or Tc>�T/(�+�), then �=e−�T c+�(T −T c)<1.
Thus,

V (�(Tj+1))��j+1V (�(T0)) + (�j + · · · + 1)�̄�̄
2

��j+1V (�(T0)) + 1 − �j+1

1 − �
�̄�̄

2
.

For any t > 0, there is j such that Tj < t < Tj+1 with

V (�(t))�e�T d
V (�(Tj )) + �̄�̄

2
.

Thus, (12) is obtained with taking

C =
√

(e�T d + 1 − �)�̄

(1 − �)(1 − �)
�̄.

Furthermore, if �̄=0, then C =0, which implies (13), or � → 0
as t → ∞. �

In fact, the proposed estimation idea can be extended to the
case of an active leader with the following dynamics:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ1
0 = x2

0 ,

ẋ2
0 = x3

0 ,

...

ẋ

0 = a(t) = a0(t) + �(t),

y = x0 = x1
0 ∈ R2,

(22)

where y(t) is the measured output variable of the leader and
a(t) is its input variable. The dynamics of each agent is still
taken in the form of (4). Then we will construct an observer as
we did for system (5). Here, for the space limitations, we only
give the corresponding error system, which can be expressed as

⎛
⎜⎜⎝

˙̄x1

˙̄x2

...
˙̄x


⎞
⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝

−kMp In

−�1kMp 0 In

...

−�
−2kMp 0 In

−�
−1kMp 0

⎞
⎟⎟⎟⎟⎠⊗I2

⎛
⎜⎜⎝

x̄1

x̄2

...

x̄


⎞
⎟⎟⎠+

⎛
⎜⎜⎝

0
0
...

−1⊗�

⎞
⎟⎟⎠

or equivalently in a compact form:

�̇ = Fp� + g ∈ R2n
,

where k > 0 and 0 < �j < 1, (j = 1, . . . , 
 − 1) are suitable
real numbers and x̄i = xi − 1 ⊗ xi

0 ∈ R2n with x1 = x and
xi (2� i�
) as the vector whose components are the respective
estimated values of xi

0 by n agents.
To obtain the results similar to Theorems 4 or 5, we need to

find a suitable quadratic Lyapunov function; that is, to construct
an appropriate positive definite matrix P such that F T

p P +PFp

is negative definite then the corresponding graph Ḡp is con-
nected. For example, when 
 = 3, we can choose

Fp=

⎛
⎜⎜⎝

−kMp In 0

−8k

9
Mp 0 In

−4k

9
Mp 0 0

⎞
⎟⎟⎠⊗I2, P=

⎛
⎝ In − 2

3I 0
− 2

3In In − 1
2In

0 − 1
2In In

⎞
⎠⊗I2.
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4. Conclusions

This paper studied the consensus problem of a group of au-
tonomous agents with an active leader, whose velocity can-
not be measured. To solve the problem, a distributed feedback
(i.e., (6)) along with a distributed state-estimation rule (i.e.,
(7)) was proposed for each continuous-time dynamical agent,
and Lyapunov-based convergence analysis was given for the
considered multi-agent system with a varying interconnection
topology.
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