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Abstract

The Beddington—DeAngelis predator—prey system with distributed delay is studied in this paper. At first, the positive
equilibrium and its local stability are investigated. Then, with the mean delay as a bifurcation parameter, the system is
found to undergo a Hopf bifurcation. The bifurcating periodic solutions are analyzed by means of the normal form
and center manifold theorems. Finally, numerical simulations are also given to illustrate the results.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we consider the following Beddington—DeAngelis predator—prey system with distributed
delay

dx(r) x axy

?_rx(l_%)_l—kbx—&—cy’ (L)
) ’ ex() |
T_y[_d+/ooF(t_r)1+bx(r)+cy(‘c) de

where x(¢) is the population of the prey at time ¢ and y(¢) is the population of the predator at time ¢. The
parameters r, k, a, b, ¢, d, e are positive constants with d representing the death rate of predator as well as
r and k standing for the intrinsic rate of increase and the carrying capacity for the prey population, respec-
tively. The predator consumes the prey with functional response of Beddington-DeAngelis type -5 *— and

. : . . . . Xy
contributes to its growth with rate -—. The functional response in (1.1) was first introduced by Beddington
[1] and DeAngelis et al. [2]. For the detailed biological backgrounds, see [1-3].

As usual, we assume that the distributed delay kernel F(¢) satisfies
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/xm) dt=1, tF(t) € L'((0,00); R). (12)
0

The average delay for the distributed delay kernel F(¢) is defined as

T= /OOC tF (1) dt.

In particular, the weak delay kernel

F(t)y=0e™, o>0, (1.3)
and the strong delay kernel
F(t)y=ote™, a>0 (1.4)

are widely used [4], then the average delays for the weak delay kernel and the strong delay kernel are t = % and
7 =2, respectively. '

The reason for introducing a delay into predator—prey models is that the rate of reproduction of predators
should depend not just on the rate at which they are consuming prey at the present time but also on the rate at
which they have consumed prey in the past time, and this idea has been well justified [5-7]. In fact, the dis-
tributed delay was originally introduced into biological modelling by Voltera in the 1930’s [8] and has been
regarded to be more realistic than discrete delay. For a predator—prey system with distributed delay, when
the average delay 7 is small, geometrical singular perturbation approach [9,10] has been applied to the studies
of the existence and stability of the periodic solution [11,12]. However, when t becomes quite large, geomet-
rical singular perturbation approach fails.

If the delay kernel is a delta function of the following form:

F(t)y=0(t—1), 1>0, (1.5)

where 7 is a given constant, then system (1.1) reduces to the following predator—prey system with discrete time-
delay

dx(¢) X axy

T:rx(l_%)_lanancy’ (1.6)

dy(®) { N ex(t — 1) '
de 1+bx(t—1)+ey(t—1)]

System (1.6) and some of its special cases, including the delayed ratio-dependent predator—prey system and
the delayed predator—prey system with Michaelis—Menten functional response, have been paid much attention
to in recent years [13—15]. By constructing a proper Liapunov functional, Beretta and Kuang showed the glob-
ally asymptotic stability of the positive equilibrium for the delayed ratio-dependent predator—prey system pro-
vided that the time delay 7 is small enough [13]. Based on Liapunov-like functions, Razumikhin techniques
and differential inequalities, the uniform persistence of the delayed predator—prey system with Michaelis—Men-
ten functional response was obtained under suitable conditions [14], while the existence of the periodic solu-
tion was investigated by establishing a map with a nontrivial fixed point [15]. Recently, the existence of
periodic solution of predator—prey system with periodic delay was extensively studied using the coincidence
degree theory [16-18].

In addition, if the delay kernel is a delta function in the form of F(z) = 6(¢), then system (1.1) reduces to the
following predator—prey system without any delay:

M:m(lff)f$7

dt k 1 +bx+cy (1.7)
dy(t):y a4 ex .

dt 1+bx+cy

The uniform persistence, the stability of the positive equilibrium and the existence of the limit cycle under suit-
able restrictions on parameters were discussed for system (1.7) in [19], while the global stability of the positive
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equilibrium was analyzed using divergency criterion and the uniqueness of the limit cycle was studied by trans-
forming system (1.7) into a Gause-type predator—prey system in [20,21].

In this paper, we studied the Hopf bifurcation of system (1.1) with a weak distributed delay kernel F(z),
where the average delay t is taken as the bifurcation parameter. The direction of Hopf bifurcation and the
stability of the bifurcating periodic solutions are analyzed with help of the theory of the normal form and cen-
ter manifold [22].

The rest of the paper is organized as follows. In Section 2, the existence of Hopf bifurcation is verified, while
the related stability analysis is carried out in Section 3. Then, numerical simulations are given to illustrate the
theoretical results in Section 4. Finally, a conclusion is presented in Section 5.

2. Existence of Hopf bifurcation

From [19], we know that there are three equilibria for system (1.1); that is, E, = (0,0), E, = (k,0),
E; = (x*,y*), where

rkce — ak(e — bd) + \/[ak(e — bd) — rkce]” + 4racdek

X' = ,

2rce
y_ad k)’

and if e > 1d(1 + bk), then the equilibrium Ej is a positive equilibrium. From the biological viewpoint, we are
only interested in the equilibrium FEj.

Set
up=x—x", w=y-—y, Py = . S—
1 — ) 2 _y y I y 1 + b.x + Cy
Then system (1.1) can be rewritten as follows:
du, (¢ *
“5[( ) r ) (1= Zx ) —auy +y" )P(u +x"uy +y"),
2.1)
d , (
) +97) | d e [P 0P+ n(6) +) d
Linearizing system (2.1) around Fj3 yields
d
”C’l() / K(t)u(t + 1) dt + H(u), (2.2)
where u = (u; 2) with T denoting the transpose, and
- ay*Plo( V') —aP(x",yt) — ay Po (x7, )
< 0 , (2.3)
B < 0 0 > (2.4)
ey Pro(x", y")F(=1) ey Por(x",y")F(=1) ) '
and
Tk —ay Z 1'1 Pz/uu] auZZ ,H
i+j=2 i+j=1
3 .
Hw)=| e [ F(=1) > LPul(t+0ub(t+7)dr | +HO.T, (2.5)
i+j=2
2 .
teuy [° F(—1) 3 Py (t+ 1t + 1) dr
i+j=1
with agf a); 2) (es)=( ) denoted by P;; and H.O.T for the shorthand of “higher order terms”
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It is easy to obtain the characteristic equation of the linearized system (2.2) in the following form:
0
D) = det |l — L — / K (x) dif

0

*

2rx

e F(—1)dti+ ( -

:/12—6)/*})()1()6*,)/*)/

—00

—r+ ay*Pm(x*,y*)> A—ey Py (x*,y")
0 v 2rx* * * * * * * * * 0 Vi
></ F(=t) d( == —r+ay'Pu(x’,y") | +aP(x,y")ey Pro(x 7y)/ eF(—1) de

0
+ ay*Pm(x*,y*)ey*Pm(x*,y*)/ e F(—1)dt =0. (2.6)
If F(s) is a weak kernel (i.e., F(s) = ae™™, o > 0), then (2.6) becomes a third-order algebraic equation:
224 by () 2% + by(2) )+ b3(a) = 0, (2.7)
where
by(o) = o + CANEN ay"Pi(x",y"),

2rx*
by(a) = O‘[ P r+ay Py(x",y") — ey*POI(x*,y*)},

2rx*
k

bi(o) = a {ey*(r — VPo; (x*, y*) + aey*P(x*,y*)Pm(x*,y*)} )

In this paper, it is always assumed that x* > k/2, then it is easily verified that b, («) > 0, by(a) > 0, b3(x) > 0.
Define a continuously differentiable function y/,(a) : (0,400) — R:
Y (e) = bi(@)ba(a) — b3(2).

The Routh—Hurwitz criterion [23] guarantees the locally asymptotic stability of equilibrium Ej3 in case

V(o) > 0.
Obviously, if

o — ey* (r_zi}c_x*)POI(X*7y*) +aey*P(X*7y*)P10(X*7y*) 2rx*
0= —

— —r+ay Pp(x",y)|,

27—r+ay*P10(x*,y*) — ey* Py (x*,y%) k ( )

then ,(z9) = 0. Moreover, (2.7) has a pair of purely imaginary roots A; = woi, 4y = —wyi, where wy =
by(a) and a real root A3 = —b; (o) < 0.

By differentiating (2.7) with respect to o, it follows that

d 1 dyr, («
& Renlly = 5 h,,
o 2[by(2) + by(2)]  de
where
d o 2rx* « 5« K k U
i )Ia:(x = |ey"( r———|Pa(x",y") + aey"P(x",y")Po(x", »")
do 0 k
2rx* 3 * * zrx* * * X £ * 3
- —r+ay"P(x",y") . —r+ay" Pi(x",y") — ey Por (x", ")
2rx* X * * * * *
= x —r4+ay'Py(x",y") — ey Po(x",»") |
Then %;“)L:% > 0, provided that x* > k/2 and oy > 0.

Therefore, the above analysis can be summarized as follows:

Theorem 2.1. If x* > k/2, then, when () > 0, the positive equilibrium E3 = (x*,y*) of system (1.1) is locally
asymptotically stable. If x* > k/2 and there exists oy > 0 such that (o) = 0, then, as o crosses the critical
value o, there is a Hopf bifurcation at E;.
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On the other hand, if F(s) is a strong kernel (i.e., F(s) = o’se™, a > 0), then (2.6) becomes a fourth-order
algebraic equation:
P4 er(0) 2 + ea ()47 + es(a) A + ea(o) = 0, (2.8)

where

*

2
e (o) =20+ hal

—r+ay"Py(x*,y"),

*

cr(a) = o + 2a (2?:

—r+ ay*Plo(X*,y*)) ;

2rx*
C3(0€) = OCZ |:T — r+ay*P10(X*7y*) - ey*P01(x*7y*):|7

*

2rx
cq(a) = o’ [ey* (r ~ )POI (x*, ") + aey*P(x*,y*)Plo(x*,y*)} .

With x* > k/2, we also have ¢;(a) > 0, c(a) >0, c3(a) > 0, ca(a) > 0.
Define

o (o) = cr(a)ea(ar) — es(a),

Y3(2) = ex(@ra (o) — ea(o)ei ().

By the Routh-Hurwitz criterion [23], the equilibrium FEj; is locally asymptotically stable if y,(o) > 0 and
W3(2) > 0.

Denote 4; (i = 1,2,3,4) as the roots of the characteristic equation (2.8), and then we have

M+l + 2+ A= —c (),

/11)&2 + /1123 + 21/14 + 12/13 + /12)&4 + 2314 = 6‘2(0(),

/11)»213 + )vl/"b3)v4 + /’{2},3/14 + 1112}4 = —03(06),

/11)&2/1314 = C4(OC).
If Y, (o) > 0 and there exists o such that (o) = 0, then by the Routh—Hurwitz criterion [23], it follows that
at least one root, say 4;, with its real part equal to zero. From the fourth equation of (2.9), it follows that Im
/1 = wy # 0, and hence there is another root, say 4, such that 1, = 4,. Since y/;(a) is a continuous function of

its roots, A; and 1, are complex conjugate for « in an open interval containing o. Therefore, Egs. (2.9) have
the following form at oy:

(2.9)

A3+ Ay = —c1(a),
CU(Z) + ;L};L4 = CQ(OC()),
(}\)(2)()@, + 24) = —C3(O(0),

(i)(z))»3/14 = 64(060).

(2.10)

If 23 and /4 are complex conjugate, then 2Rel; = —c;(2) < 0 can be derived from the first equation of (2.9). If
Az and A4 are real, then A3 < 0 and 44 < 0 from the first and fourth equations of (2.9). Moreover, it is not hard
to see that

i[Re%Hd:a _ Cl(O() 5 dl//3(O()
" 2l (@)es(@) + (e (@ea(n) = 2e3(2))T]  do

do

Thus, we have the following result.

Theorem 2.2. If x* > k/2, then, when ,(a) > 0 and y5(a) > 0, the positive equilibrium E3 = (x*,y*) of system
(1.1) is locally asymptotically stable. If x* > k/2, W,(o) > 0 and there exists oo > 0 such that (o) = 0 and
() £ 0, then o is the critical value of a Hopf bifurcation at E.

do |0<:060




G. Lin, Y. Hong | Applied Mathematics and Computation 190 (2007) 12961311 1301
3. Stability of bifurcating periodic solutions

In this section, the algorithm given by Hassard et al. [22] is employed to analyze the bifurcating periodic
solutions. Here, for simplicity, we mainly consider the case when the distributed kernel F(¢) is a weak kernel,
ie. F(s) = ae™™, a > 0. In fact, the case of the strong kernel can be discussed similarly.

For convenience, we transform system (2.2) into an operator equation of the following form:

du,

E:AutJrFu,, (3'1)
where u = (uy,us T ou = u(t+0), 0 € (—0,0], and the operators 4 and F are defined as follows:
wlo) —00 < 0 <0,
AP(0) = 0 (32)
Lp(0) + | K(1)¢(r) dr, 0=0,
and
0
(0), —00 < 0 <0,
3 . .
—26,1(00 — @y > #iPi$1(0)92(0)
i+j=
2 . .
F$(0) = —ah,(0) 3= 5 Py$1(0) ¢, (0) (33)
i+j=1
3 b) 9 = 07
e [ oo™ 3 L Pl () ph(x) de
i+j=2
2 ) )
+ep,(0) f_ox e Zl ﬁpzj(ﬁl] (1)¢3 (1) dr
itj=1 "

where L and K are defined as in (2.3) and (2.4), ¢(0) = (4,(6), ¢2(6))T. The H.O.T. in (2.5) is omitted here
because determining the direction and the stability of Hopf bifurcation only needs up to the third order terms.

Note that the operator 4 depends on parameter «. By Theorem 2.1, a Hopf bifurcation occurs when o
passes through aq. Let

U= o — 0.
Then the Hopf bifurcation occurs when p = 0.
The adjoint operator 4™ of A is defined as

— W) 0 <6< oo,
L)+ [° K ()y(-7) dr, 6=0,

where LT and KT are the transpose of the matrices L and K, respectively. Note that 4 and 4* can have com-
plex eigenvectors. It is therefore suitable to assume that i € C([0, +0c), C*) and ¢ € C((—o0,0], C?). Define
the bilinear form:

W) = 00000 - [

A(3) = (3.4)

[jT(z — 0)K(0)¢(¢) d¢ do.

To obtain the Poincare normal form of the operator 4, we need to calculate the eigenvector ¢ of 4 corre-
sponding to the eigenvalue iw, and the eigenvector ¢* of 4™ to the eigenvalue —iwy. Clearly,

1Y\ .
q(0) = (B)e“”O’), —00 < 0<0,

B aey*Pio(x*, y*)
iwo((l -+ 1(})0) — ocey*Pm (x*,y*) ’
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and
N s
g 0)=E c e’ 0< < oo,
where
o (= io)aP(c ) + ay P, y7)]
iwg(o0 — iwg) + aey* Py (x*,3*)
T (o + ia)o)2

(o + iwo)z(l + CB) + a[Cey*Po(x*,y*) + CBey* Py (x*, y*)] .
It is straightforward to obtain that
(¢9)=1, (4", q)=0.
With the same notation as Hassard et al. did in [22], we first construct the coordinates to describe the center
manifold wg at u = 0 (i.e., & = o). Define
z(t) =(q",u), w(t,0) =u, —2Re{z(t)q(0)}. (3.5)
On the center manifold wy, w(t, 0) = w(z(¢),z(¢), ), where
22 z z3
W(Z,Z, 0) = Wzo(e) 5 =+ wip (H)ZE + Woz(e) 5 + W30(0) g + ey (36)

where z and z are local coordinates for the center manifold wq in the direction of ¢* and ¢*. Note that w is real
if u, is real. We are only interested in real solutions.
For solution u, € wy of (3.1), from u =0,

£(t) = iooz(t) + (¢ (0), F(w(z,2,0) + 2Re{z(1)q(0)})) = iwoz(t) + [ (0)]' F(w(z,Z, 0) + 2Re{z(1)¢(0)}),

or equivalently,

(1) = iwoz(1) + g(2,2), (3.7)
where
g(z,2) = [¢°(0))"F(w(z,2,0) + 2Re{z(1)q(0)}). (3.8)

Recalling (3.1) and (3.5), we have
W= i, — 2g — 5 = Aw — 2Re{(q"(0), F(w(z,Z, 0) + 2Re{=(1)q(0)}))q(0)} + F(w(z.Z, 0) + 2Re{=(1)(0)})
— Aw — 2Re{g(z,2)g(6)} + F(w(z.Z,0) + 2Re{z(1)q(0)}),

which can also be expressed as

w=Aw+ H(z,z,0), (3.9)
where
H(z,z,0) = —2Re{g(z,2)q(0)} + F(w(z,z,0) + 2Re{z(t)q(0)}). (3.10)
We expand the function g(z,z) on the center manifold w, in powers of z and Zz; that is,
z2 z2 2z
g(z,Z):g205+g1122+g025+g217+~~~. (3.11)

The coefficients of (3.11) can be fixed by comparing (3.11) with (3.8), where w is replaced by its expansion
(3.6). In order to determine the coefficients w;;(0) of the expansion (3.6), we expand the function H(z,z, 6)
in powers of z and z on the center manifold wy; that is,

2 22

H(z,%,0) = Hx(0) % + H (0)22 + Ha(0) % T (3.12)
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The argument of F'is

1)) + zeion? + ze~on
w

w+zq(0) +zg(0) = 4 -
9(0) +24(0) (w(z)(ﬂ) + zBei0? 4 zBe 1!

<°) <0<0
0 ) —00 ’

F(w(z,z,0) 4+ 2Re{z(t)q(0)}) = ( 7 )
, 0=0,

)ei“’f’”, —00<0<0,
where w = [w(0), w2 (0)]". Thus,

0

2
0

where
fo = k[ YO +z+7 —ay Z 0) +z +2)'(w?(0) + 2B +2B) — a(w?
i+j= 2
21 A o
3 LR P 84
i+j=
f02 = ey*/ oe™ Z 7P1/ +Zeltuor +ze |(/)()‘L') ( (2) (’L’) + zBel™o* _’_ZBeﬂ(z)or)J dr
- i+j= 2
( ZB =+ ZB / oe™ Z + Zelw()‘r + Ze—lw‘,r)

i+j=

x (w2 (1) 4 zBe' ™" 4 zBe ")/ dx.
By (3.8), it follows that

g(z,2) = Efy (z,2) + ECf;(z,).

Therefore,
0
<O>’ —00 < 0 <0,
H(z2.0) = ~2Re{(Ef) =.2) + ECREAWO}+9 )
0 9
, 0=0
(ﬁ@@)
Set
2
G] = 7% — 2BaP10( ) — 2B’2aP01(x*,y*) — ay*(P20 —+ ZBP” +BZP()2),
_ 2€BO([P10(X*,_)/*) + BPOl(X*7y*)] i ey (X[Pz() —+ 2BP11 + B Poz]
: o+ 1y o+ 21m,
Then
o fo(z,2) 6273 (z,2)
_ = |— = G17
0z z=5=0 0z* =20

0z2

Eﬁ&@] Eﬁ&@
i

= G,.
622 :| z=2z=0

1303

(0) +zB +ZB)



1304 G. Lin, Y. Hong | Applied Mathematics and Computation 190 (2007) 1296-1311
Therefore, by (3.10), we can obtain

0’H(z,z,0 = = =
Moo = [%} = —E(G, + CGy)q(0) — E(G, + CG,)g(0) +
z=z=0

(3.13)
Similarly, set

2r _ — _
G3 = —I—BaPlo(x*,y*) —BaPlO(x*,y*) — ZBBaPm(x*,y*) — ay*[Pz() —+ (B+B)P11 +BBP()2L

_ eBa[Pyo(x*,y*) + BPo; (x*, y")] N eBo[Pyo(x*, ") + BPy; (x*, y")]

‘P B)P BPy).
G o — iy o + i + ey’ [Py + (B + B)P11 + BBPy)]
Then
e I i
20z |, | 002 |.., 3
0’ (z,2) _ [@f3(z,2) .
0202 |, 202 |, 4
As a result,

0%H(z,z, 0)}

Hyy = [ 2 = ~E(G: + CGa)q(0) — E(Gy + CG)g(60) +

_ G
Gy

On the other hand, on the center manifold wy near the origin, we have

(3.14)

Ww(z,Z) = w.z + wiZ. (3.15)

Substituting (3.6) for w. and w: and (3.7) for z and Z, we obtain a second expression of . In comparison
with (3.9), the equations for the coeflicients w;;(6) can be derived as follows:

(21(1)0[ — A)Wzo(e) = Hzo(e), (316)
— Awy1(0) = Hy1(0), (3.17)
and Wor = Wyy. Define
(1) 0
Wi (6) = <W§g)( )>, o0 <0 <0,
Wy (0)
By substituting (3.3) and (3.13) into (3.16), when —oco < 6 < 0, we have
iy — & 0 wi (0)\ [ —E(Gi+ CGye™' — E(G, + CG,)e " (3.18)
0 2iwo — 55 ) \ wi)(0) —E(Gy + CG,)Be" — E(G + CGy)Be™" | '
If 0 = 0, then

<2ia)0 [r — 2’7‘ — ay*Plo(x*,y*)] aP(x*,y*) + ay*Po (x*, y*) > <wgg (0) )
)
d

0 21600
L orie wntore) ()5
oo \ @V Pro(x*,y")oe™ ey Poi(x*, y" )™ ) \ wid) () H(0)
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In order to obtain a continuous solution w(6) on (—oo, 0], we consider the above equations associated with
the following boundary conditions:

(WO [ wi(0)
o <ng;<@> 2o/ 320

The general solution to (3.18) is

0 (0 ko\ kY Y\
WZ;) ( ) _ ( 0 ) eleo(') + ( 1 )elwoﬁ + ( 2 ) eflw(]H (321)
wgo)(H) ly h [y

1 _ .
ki = ——E(G, + CGy)e ™, I, = Bk,
1

1 . _
ky = ———E(G) + CGy)e ™" 1, = Bk,
31600

and /) and k, are determined by (3.20), i.e.
ko = wiy (0) — (ki + k), o = wig (0) — (I + 1.
To find w(zg (0) and w%)(O), we plug (3.21) into Eq. (3.19) to obtain

<2ia)0 — [r =5 —ayPi(x",»")]  aP(x",y") + ay"Po (x*,y*)) (wgg)(0)> _ (cg))) (3.22)
ey*aPo(x* %) . ey* aPop (x* %) 2 - 2 . .
- zx+120im() - 21600 - oHrOéimoy W(ZO) (0) Cg())
where

1 1
Céo> = H(zo) (0),

ki +k k k
@ _ 1) : + | KT R ! 2
=H;; (0) — P — — — — -
20 2 (0) — ey aPrlx, ") Lx + 2wy a+imy o — 1a)J
L+ A [
ey oPor (x 7)’)[a+21w0 o +iwy o — img
Define
. ey aPo (x*, )] [ . 2rx” . ey aPio(x", y")
A = | 2iwy — LT I i — (1= 25— gy Py (e, y R
[ 1 o+ 2img } { o (r k ay Py ) | + o+ 2wy
X [aP(x",y") + ay" Po1 (x*, "))
Then,
1 : ey* Xt 2 O * * gk
iy 0 2o — 2] - laP (e y) +ay Py
W (0) A ’
2 . et " L% 1) ey*oL x* *
o s [2iwg — (r — 25 — ay Pio(x*,y))] + e & a}:-lgi(woy :
w (0) = A

Similarly, by Eq. (3.19),

ngl)(()) Po P1\ im0 P2\ iwgo
> = + e+ e, (3.23)
wgl)(()) do 4 B
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where
1 = Val iyl
P = EE(Gs + CGy)e™",  q, = Bpy,

] A _
P = *fE(Gs + CGy)e ™", g, = Bp,,

Po —W(n( 0) = (1 +p), 4o :W(121)(0) — (g + q2)-

To obtain w!}(0) and w2 (0), we substitute (3.23) into (3.17), which leads to

(ﬂ —r+ay'Pu(x*,y")  aP(x*,y") + ay*Pm(X*vy*)) (ngl)(o)> _ (Cgll) > (3.24)

—ey"Pio(x*, ") —ey" Poi (x*, ") wi?(0) P

(2) :H(z) 0) — *p * p]iwo _ _pziw() _ “P * qlio‘)o _ _quwO
‘1 i1 (0) —ey IO(x’y)oc+iwo % — iwg ey Ol(x’y)oc+ia)0 % —img|”

2rx* * * *k * * k * * * £ * * * *
A = — - —r+ayPp(x*,y )} ley"Por (x", y")] + ey Pro(x", y") [aP(x", y") + ay" Por (x", )]

Therefore, it is quite easy to get

W =i e Por (2, )] — e [aP(x*,y*) + ayPoi (x*, y*)]
Wi (O) = A, ,

e [~ ay P, y)] + ey Pro(xt, )

4,
Now it is time to consider F(w(z,z,0) + 2Re{z(¢)¢(0)}). Since

Wil (0) =

2 =2

F(w(z,%,0) + 2Re{z(1)q(0)}) = WZO(O)% i (0)zz + WOZ(O)% 4o 2Re{z(1)q(0)}

) > 0 m -
WZO (0) z Wl] (0) _ W02 (0) VA
— L, )> 27 ( B )>ZZ+ e ) 5 T+ 2Re{z(0)q(0)},

wa (0 Wll)(o 2)(0)
we have
r 2 2
fo = % {W(zi))(o) 3 +w§1)(0)zz+w(()2)(0)5+ +z+z}
: (1) z (1) (1), Z !
—ay* o ,,( 20(0)5+W”(0)ZE—|—W02(0)5+ +z+§)
=2
2) z 2) (2) 7 Y
X <W20 (0) D) + wiy (0)z2 + wg, (0) 5 4+ +zB+ ZB>
22
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and
2 g [ ~ 1 7 4,0 M) 2 ' i),
Jo=ey / oe™ Z WPIZ/ W0 (T)E"‘ wiy (1)2Z + Wi (T)E oz e
-0 = B
RN PR P R
X | wyg (T)E—’—W” ()22 + wy, (T)E+--~+zBe +zBe dz
el w2012 4w (0122 4 w2 (0) 2 2Bl x [ e S L p (W
e|wa ( )5+W11( )2Z + wp ( )5"’"""2 +z5| X oe Z anti Wao (T)E"‘Wu (1)zz
T =
-2 ) . i
_|_ W(()12>(T)ZE+ - +Zel(0(]r +Zelu)()r)
DA PRI R o0t 4 B iont )
X | wyg (7) 7 +wi (1)zZ + wyy () zt + zBe'™" 4 ZBe dr.
Thus,
T T EC 0(1) T+ 7 r@
¢(.2) = [ (O F(w(z%,0) + 2Ref=(0)q(0)}) = EFC) 10, | =E (" +Tri?). (325)
0

The comparison of the coefficients of (3.11) and (3.25) yields

Ehl r * * a *
gy =2E [_% — aPyy(x",y")B — aPy (x",y")B* — %(on +2p1\B + pp,B%)

ey*a
) (Pao + 2Bpy; + BzPoz)” )

_| eBa
Pio(x",y") + BPo1 (X", ")) + 57—
+C[ (Pro(x",y") + BPoi (x", y ))+2(a+2iw(>

CX+1W0

_ 2r _ _ _ _
g&n = E{_; —aPy(x",y")(B + B) — 2aPo (x",y")BB — ay"(py + p11 (B + B) + pp,BB)

[ eBa — eBo
C b P *’ * BP. *7 * . P Kok BP *, *
FO | B (Pl ) 4 BP0 (37 T (Pl ) 4 B 3")

+ey*(py + P11 (B + B) ‘*‘PozBE)} ] )

¥l r * *\ D * *\ D a - D %)
8n = 2E[_%_GP10(X ,V")B — aPy (x",y")B* — ; (2 + 2p11B + p,B’)

ey*o
2(0( - 21W())

eBo.

o — 1wy

(P1o(x", ") 4+ BPo (x*, ")) + (P +2Bpy, + szoz)” 5
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and

r . o ls 1
£ = 2B{ = L00) + 200 0)] — aPulr'.y) 5B 0) + Bul} 0) + 3050) + 4 (0)

* *\ [D. 1
—aPy(x',y")[Bwy (0) + 28wl (0)] — ay’ [zpzowzo (0) +2wiy/(0))
1 1 1
+u(5B00) + Bul)(0) + 3080+ 0)) + 5 (BuS 0) + 280 0)|
ay* — _ —
- % [30 ++ P21 (B + 2B) + py»(B* + 2BB) + py3B°B]

— 5P (B +2B) + 2p,, (2BB + B*) + 3p,5B]

(2) (2
— awsg (0)  ow,7 (0)
CleP * ¥ 20 \ 11 i
ePro(",y") 2(e —iwg) o+ iwg

0 0
—|—B/ oe” w”( )d‘t—l—2 / oce‘”w%)(r) dr}

o0

aBWR(0)  aBwY(0) 0 B[
2 —zoiw0)+ oc—!—liwo —|—B/_ ae” W'Y (x )d‘t—l—2 /_DO ae”wi) (1) dt

+ ePo (x*, ")

o0

1 0
+ eP(x*,y") [EPZO (/ (i) ( )dr + 2/ ae(rtion)t (111)(1) dr)

o0

B [0 ) 0 )
+pu (2 / ae(a—m;o)rw(z{))(,[) dt JrB/ Oce(ct-%—lu)o)rw(lll) (’C) dr

0 0
+/ ae(aﬂwo)rwﬁ)(f) dr +§ / ae(zﬂwo)rwg))(r) d‘L’)
1 = (" (a—iwg)t, (2) 0 (o)1, (2)
+ FP0 B oe wy, (7) dt + 2B oe wiy (v) dz
4 Py LA * _(B+2B)+ ¥ (B +2BB)+ * BB
2 p3ooc+ia)o p21a+iw0 plzoc—i—ia)o pmoc—i—iwo

1 — o _ _ o
= 2B+ B——F— B*4+BB+BB———
* [2}720 ( * o+ 2iw0) e < eE o+ 2iw0>

1 = = o

Therefore, we can get the following parameters:

i 1 g
c1(0) :2— (gzogn - 2|g11|2 —§|g022> +%»

Recl( )
= =5
~ ReZ ((o0)”
S Imc;(0) + wIm 2 (o)
2 — o )
B, =2Rec(0),
2 _
T=""(1+0d +0(), &="""040%
o K

Thus, we obtain the main result of this section; that is,

Theorem 3.1. The direction of the Hopf bifurcation described in Theorem 2.1 is determined by the sign of u,: if
W, >0 (< 0), then the bifurcating periodic solutions exist for o > oy (o0 < o). The periodic solutions are stable
(unstable) if B, < 0 (> 0). The period of the bifurcating periodic solutions of system (1.1) increases (decrease) if
>0 (<0).
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4. Numerical example

In this section, an example is given to illustrate our results.

Take r=0.21, k=1,a=0.86, b =0.25, ¢ =127, d=2.62, e = 5.25, which satisfy the all assumptions of
this paper. Moreover, the distributed delay kernel F(¢) is selected as a weak kernel. Therefore, system (1.1)
becomes:

dxd—(zt)zo'm(l _%) 1 +0.(;58:?1.27y’ 1)
dfi—(rt) =Y {_2'62 + /, OC e o.zssjrs)x (+T )1.27y(r) drl,
Obviously, the positive equilibrium E3 of system (4.1) is
E; = (0.6507,0.1112), (4.2)
and
op = 0.3251,  wy = 0.3657, (4.3)

after some simple calculations.
Based on the results in Section 3, it follows that

jy = —7.2556 B, =—2.8655 1, =7.0836. (4.4)

According to Theorem 2.1, Ej is stable when o > o (that is, ¥, («) > 0), which is shown in Fig. 1 with
o = 0.4. When « decreases and passes through the critical value oy = 0.3251, E; loses its stability and a Hopf
bifurcation occurs; i.e., a family of periodic solutions bifurcate from E5. By Theorem 3.1, the individual peri-
odic orbit is stable since f, < 0. Since p, < 0, the bifurcating periodic solutions exist as the value of « slightly
less than the critical value. With o = 0.3121, Fig. 2 shows that there is a stable limit cycle.

Recall that the average delay is defined by t=1 Therefore, the equilibrium E; is stable when

1(=1) <L =3.0760. As the average delay t decreases to zero. System (4.1) can be described by
a0

o

dx(¢) _ 0.21x(1 _)_C) 3 0.86xy ’
dr 1 1 +0.25x+1.27y (4.5)
dy(z) a6 5.25x '
KT R I N S o
08 : : ‘ ‘ ‘ : : 2
o7l 18}
161
06 |
14}
05 12}
X o4t x 1
03| 08 y 1
06 1
02}
0.4 |
%4 06 08 1 12 14 16 18 2 % 200 400 600 800 1000
x1 t

Fig. 1. Ej5 is asymptotic stable, o = 0.4.
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2 0.7
1.8 06
1.6
0.5
14
0.4
* 1.2 N
0.3
1
08 0.2
0.6 0.1
- 0.4 0
04 06 08 1 12 14 16 18 2 0 200 400 600 800 1000 0 200 400 600 800 1000

x1 t t

Fig. 2. There is an stable cycle, o = 0.3121.

0.7

06 x1
05}
04 |
03}

02+
X2

0.1

0.5 0.55 0.6 0.65 07 0 200 400 600 800 1000

Fig. 3. E; is asymptotic stable, T = 0.

From [19-21], the positive equilibrium Ej of system (4.5) is stable, which is also illustrated in Fig. 3 as t = 0.
This shows that our results are consistent with those in [19-21].

5. Conclusion

In this paper, we considered the Beddington—-DeAngelis predator—prey system with distributed delay (1.1).
With the average delay (= 1) as a bifurcation parameter, we showed that a Hopf bifurcation occurs at the
critical value og. The bifurcating periodic solutions were analyzed in light of the normal form and center man-
ifold. Under suitable restrictions on the parameters, when (= 1) decreases to zero, our results are consistent
with those in [19-21]. On the other hand, when 7(= 1) increases and crosses a critical value, our results indicate

that delays are able to destablize an otherwise stable equilibrium (that is, £3) and generate a Hopf bifurcation.
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