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Abstract— Multi-agent systems (MAS) have received an in-
creasing attention over the past few years. Here an MAS is a
system consisted of multiple interacting intelligent agents. This
paper further investigates the consensus of MAS with an active
leader and asymmetric adjacency matrix. In particular, the
state of the active leader is changing and unmeasured. Under
some suitable conditions, we have proved that: i) each agent
of MAS can follow the active leader if the input of the active
leader is known beforehand; ii) the tracking error of MAS
can be effectively estimated if the input of the active leader
is unknown beforehand. Moreover, numerical simulations are
then given to verify the effectiveness of the proposed theorems.

I. INTRODUCTION

Over the past ten years, the coordinating motion of multi-

agent systems (MAS) has received an increasing attention in

various fields, such as mathematical, physical, engineering,

and biological sciences [1]-[16]. Some potential real-world

applications of MAS include formation control [1], [3], [5],

flocking [4], [5], consensus [6]-[8], and network synchro-

nization [13]-[17].

It is well known that the research of consensus has a

very long history in computer science, especially in automata

theory and distributed computation [7]. In fact, consensus

or synchronization is one of typical collective behaviors in

MAS. In detail, consensus of MAS means that all agents

can reach a general agreement by using some local follow-up

interactions between agents. To reveal the inherent mechanics

of consensus in MAS, some typical mathematical models

were introduced, such as the Vicsek model [4], Couzin-Levin

model [13], and so on. Some recent advances were reported

on the consensus of MAS. For example, the graph theory

approach was applied to further investigate the consensus of

Vicsek model [5].

Leader-follower method indicates another effective route

to consensus of MAS. Recently, a neighbor-based observer

This work was supported by the National Natural Science Foundation
of China under Grants 60821091, 60772158, and 70571059, the National
Basic Research (973) Program of China under Grant 2007CB310805, the
Important Direction Project of Knowledge Innovation Program of Chinese
Academy of Sciences under Grant KJCX3-SYW-S01, the Foundation for the
Author of National Excellent Doctoral Dissertation of P.R. China, and the
Scientific Research Foundation for the Returned Overseas Chinese Scholars,
State Education Ministry.

W. Guo and S. Chen are with the College of Mathematics and Statistics,
Wuhan University, Wuhan 430072, China. email: guowanliff@163.com,
shcheng@whu.edu.cn
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was designed to estimate the unmeasurable state of an active

leader in MAS [9]. Note that the interconnection between

agents of MAS was described by the undirected graphs [9].

That is, the adjacency matrix is symmetric. However, in

most real-world MAS, the interconnection between agents

is more likely to be described by the directed graphs. And

the corresponding adjacency matrix is asymmetric. This

paper further explores the consensus of MAS with an active

leader and asymmetric adjacency matrix. Under some soft

conditions, some interesting results are attained as follows: i)
each agent of MAS can follow the active leader if the input of

the active leader is known beforehand; ii) the tracking error

of MAS can be estimated if the input of the active leader

is unknown beforehand. In addition, numerical simulations

are also given to validate the effectiveness of the proposed

criteria.

This paper is organized as follows. Section II describes the

fundamental problem and gives several necessary lemmas.

The main results are given in Section III. In Section IV, the

numerical simulations are then used to justify the effective-

ness of the deduced criteria. Some concluding remarks are

drawn in Section V.

II. PROBLEM FORMULATION

Let G = (V, ε, A) be a weighted directed graph of MAS,

where V = {1, 2, · · · , n} is the set of vertices, ε ⊂ V ×
V = {(i, j) : i, j ∈ V } is the set of ordered edges, and

A = (aij) ∈ Rn×n is the weighted adjacency matrix with

aii = 0 and aij ≥ 0 for i 6= j. Here, aij > 0 if and only

if there exists an edge from i to j. If (i, j) ∈ ε, then j is

called a neighbor of i. The set of all neighbors of i is denoted

by Ni = {j ∈ V : (i, j) ∈ ε, j 6= i}. The degree matrix

of G is given by D = diag{d1, · · · , dn} ∈ Rn×n, where

di =
∑

j∈Ni

aij for i = 1, 2, · · · , n. Thus the Laplacian

of the weighted digraph G is defined by L = D − A.

In general, the Laplacian L of the weighted digraph G is

asymmetric.

Hereafter, we focus on an MAS with digraph Ḡ consisting

of n agents and an active leader. In detail, Ḡ contains

two independent parts: digraph G with n agents and the

leader with directed edges from some agents to the leader.

To describe the digraph Ḡ, let B = diag{b1, · · · , bn} be

the adjacency matrix of leader associated with Ḡ, where

bi > 0 if the leader is a neighbor of agent i, otherwise,

bi = 0. Hereafter, assume that there at least exists one

bi > 0. The norm of a vector u ∈ Rn is defined as

||u|| =
√

uT u. The spectral norm of M ∈ Rn×n is defined
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as ||M || = max
16i6n

√
λi, where λi are the eigenvalues of

MT M .

The state vectors of all agents of MAS are described by

ẋi = ui ∈ Rm, i = 1, · · · , n , (1)

where ui are the control inputs. Suppose that the leader of

MAS is active, that is, its state variables keep updating. And

its underlying dynamics is given by










ẋ0 = v0,

v̇0 = a(t) = a0(t) + δ(t),

y = x0,

x0, v0, δ ∈ Rm, (2)

where y(t) = x0(t) is the measured output and a(t) is the

(acceleration) input. It should be especially pointed out that

the dynamics (2) of the leader is totally different from the

agent dynamics (1). That is, all agents of MAS will track its

leader with different dynamics.

In the above problem formulation, the input a(t) may not

be completely known. Hereafter, suppose that a0(t) is known

and δ(t) is unknown but bounded by a given upper bound

δ̄. That is, ||δ(t)|| ≤ δ̄. Thus the input a(t) is known if and

only if δ̄ = 0. In the following, the main idea is to design

a suitable decentralized control scheme for each agent to

follow the leader. That is, xi → x0.

Since v0(t) cannot be measured even if all agents of MAS

are connected to the leader, then its value cannot be used

in the design of controller. Instead, one needs to estimate

v0 during the dynamical evolution. It should be especially

pointed out that each agent of MAS can estimate v0 only

by using the information obtained from its neighbors in a

decentralized way. The estimated value of v0(t) by agent i
is denoted by vi(t) for i = 1, · · · , n.

According to [9], for each agent i, the local control scheme

includes the following two parts:

(A) A neighbor-based feedback law:

ui = −k





∑

j∈Ni

aij(xi − xj) + bi(xi − x0)



+ vi, (3)

where k > 0 and i = 1, · · · , n.

(B) A dynamic neighbor-based system to estimate v0:

v̇i = a0 − γk





∑

j∈Ni

aij(xi − xj) + bi(xi − x0)



 , (4)

where 0 < γ < 1 and i = 1, · · · , n.

Using the above neighbor-based observer (3) to estimate

the velocity of leader, each agent of MAS only relies on

the locally available information at any time t. In other

words, each agent of MAS cannot “observe” or ”estimate”

the leader directly based on the measured information of the

leader if it has not connection with the leader. Therefore, it

is necessary for some agents to collect the information of the

leader in a distributed way from its neighbor agents during

the dynamical evolution.

Denote

x =







x1

...

xn






, v =







v1

...

vn






, u =







u1

...

un






.

Then the closed-loop system can be described by
{

ẋ = u = −k(L + B) ⊗ Imx + kB1⊗ x0 + v,

v̇ = 1⊗ a0 − γk(L + B) ⊗ Imx + γkB1⊗ x0,
(5)

where ⊗ is Kronecker product and 1 = (1, 1, · · · , 1)T .

Denote x̄ = x−1⊗x0 and v̄ = v−1⊗ v0. And the error

dynamics of (5) is given by
{

˙̄x = −k(L + B) ⊗ Imx̄ + v̄,

˙̄v = −γk(L + B) ⊗ Imx̄ − 1⊗ δ.

Also it can be rewritten as follows:

ω̇ = Fω + g, g =

(

0
−1⊗ δ

)

, (6)

where

ω =

(

x̄

v̄

)

, F =

(

−k(L + B) In

−γk(L + B) 0

)

⊗ Im .

To begin with, one definition and several necessary lem-

mas are introduced in the following.

Definition 1: A digraph is called strongly connected if and

only if there exists a directed path from vertex i to vertex j
for any pair of vertices (i, j).

Lemma 1: [11] The graph G is strongly connected if and

only if its Laplacian is irreducible.

Lemma 2: [10] Let Q and R be two symmetric matrices,

and matrix S has suitable dimension. Then
(

Q S
ST R

)

> 0

if and only if R > 0 and Q − SR−1ST > 0.

Lemma 3: [12] Suppose that L = (lij) ∈ Rn×n satisfies

the following conditions:

1) lij ≤ 0, i 6= j, lii = −
n
∑

j=1

lij , i = 1, 2, · · · , n,

2) L is irreducible,

then one has

i) All real parts of eigenvalues of L are positive except an

eigenvalue 0 with multiplicity 1.

ii) L has the right eigenvector (1, 1, · · · , 1)T correspond-

ing to the eigenvalue 0.

iii) Let ξ = (ξ1, ξ2, · · · , ξn)T be the left eigenvector of

L corresponding to the eigenvalue 0, then ξi > 0 for

i = 1, 2, · · · , n.

Lemma 4: If L = (lij)n×n is an irreducible matrix

satisfying lij = lji ≤ 0 for i 6= j and lii = −
n
∑

j=1,i6=j

lij

for i = 1, 2, · · · , n, then all eigenvalues of the matrix

L̃ =







l11 + ε1 · · · l1n

...
. . .

...

ln1 · · · lnn + εn






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are positive, where ε1, ε2, · · · , εn are nonnegative constants

with ε1 + ε2 + · · · + εn > 0.

Proof. Denote Λ = diag{ε1, ε2, · · · , εn}. Let λ be the

eigenvalue of L̃ and x = (x1, x2, · · · , xn)T be the cor-

responding right eigenvector. Then one has

xT L̃x = xT Lx + xT Λx = λxT x.

According to Lemma 3 and its assumptions, then

xT L x ≥ 0 and xT Λ x ≥ 0, which implies λ ≥ 0.

If λ = 0, then one gets

xT L̃x = xT Lx + xT Λx = 0.

Thus x should satisfy xT Lx = 0 and xT Λx = 0. And

xT Lx = 0 implies x = α(1, 1, · · · , 1)T . However, one

also has xT Λ x 6= 0. Therefore, it is a contradiction and

λ > 0. Thus the proof is completed here. �

III. MAIN RESULTS

In this section, our main results are given in the following

two different cases: Case I: Strongly connected digraph and

Case II: Non-strongly connected digraph.

A. Case I: Strongly Connected Digraph

In this subsection, suppose that the directed graph G is

strongly connected. That is, its Laplacian L is irreducible.

Denote M = (L + B), Ξ = diag{ξ1, · · · , ξn}, and M s =
ΞM + MT Ξ, where ξ = (ξ1, ξ2, · · · , ξn)T is the left

eigenvector of L corresponding to the eigenvalue 0 with ξi >
0.

Theorem 1: For any given 0 < γ < 1, select a constant

k >
max ξi

2γ(1 − γ2)λ
−

,

where λ
−

is the minimal eigenvalue of M s. If the interconnec-

tion graph G keeps strongly connected or L is irreducible,

then there exists some constant C satisfying

lim
t→∞

||ω(t)|| 6 Cδ̄.

Moreover, if a(t) is known, that is, a(t) = a0(t) or δ̄ = 0,

then one has

lim
t→∞

||ω(t)|| = 0.

Proof. Construct a Lyapunov candidate V (ω) = ωT Pω with

symmetric positive definite matrix

P =

(

Ξ −γΞ
−γΞ Ξ

)

⊗ Im.

Differentiating V (t), one obtains

V̇ (ω) = ωT (PF + FT P )ω + 2ωT Pg

6 ωT (PF + FT P )ω + 2||ω||(1 + γ)δ̄ max ξi.

Since L is irreducible, then one has

(ΞL + LT Ξ)







1
...

1






= ΞL







1
...

1






+ LT Ξ







1
...

1







= ΞL







1
...

1






+ LT







ξ1

...

ξN







= 0

Thus, ΞL+LT Ξ has zero row sum. Since L is irreducible,

then ΞL is irreducible. Therefore, ΞL + LT Ξ is irreducible.

According to Lemma 4, M s is positive definite. When k >
max ξi

2γ(1−γ2)λ
−

, one gets

k(1 − γ2)M s − Ξ(2γΞ)−1Ξ = k(1 − γ2)M s − Ξ

2γ
> 0 .

Moreover, from Lemma 2, the matrix

Q = −(PF + FT P ) =

(

k(1 − γ2)M s −Ξ
−Ξ 2γΞ

)

⊗ Im

is positive definite. Denote µ
−

be the minimum eigenvalue of

Q.

In addition, since the maximal and minimal eigenvalues of

P are (1 + γ)max ξi and (1 − γ)min ξi, respectively, then

one has

(1 − γ)min ξi||ω||2 6 V (ω) 6 (1 + γ)max ξi||ω||2.
Therefore, one gets

ωT Qω > µ
−

ωT ω > µ
−

V (ω)

(1 + γ)max ξi

and

||ω|| 6

√

V (ω)

(1 − γ)min ξi

.

Let
µ
−

(1+γ)max ξi
= 2β, then one obtains

V̇ (ω) 6 −2βV (ω) + 2(1 + γ)max ξiδ̄

√

V (ω)

(1 − γ)min ξi

.

Thus one has

d
√

V (ω)

dt
6 −β

√

V (ω)+(1+γ)max ξiδ̄

√

1

(1 − γ)min ξi

.

Therefore, one gets

√

V (ω) 6
√

V (ω(0))e−βt +
(1 + γ)max ξiδ̄(1 − e−βt)

β
√

(1 − γ)min ξi

.

It implies lim
t→∞

||ω(t)|| 6 Cδ̄, where C = (1+γ)max ξi

(1−γ)β min ξi
.

Furthermore, if δ̄ = 0, then lim
t→∞

||ω(t)|| = 0.

And the proof is thus completed. �

Remark 1: Under the conditions of Theorem 1, we now

have proved that: i) each agent of MAS can follow the active

leader if the input of the active leader is known beforehand;

ii) the tracking error of MAS can be effectively estimated if

the input of the active leader is unknown beforehand.
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B. Case II: Non-Strongly Connected Digraph

If the interconnection graph G is not strongly connected,

then its Laplacian L is reducible. Denote

L =(lij)n×n

=





















L11 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...

0 · · · Lqq 0 · · · 0
Lq+1,1 · · · Lq+1,q Lq+1,q+1 · · · 0

...
. . .

...
...

. . .
...

Lp1 · · · Lpq Lp,q+1 · · · Lpp





















,

where Lii ∈ Rmi,mi are irreducible or one dimensional

zero matrices for i = 1, · · · , q and Lii ∈ Rmi,mi are

irreducible for i = q + 1, · · · , p. For each q + 1 ≤
i ≤ p, there exists some k < i satisfying Lik 6= 0. For

simplification, denote Si = m1 + · · · + mi with S0 = 0
and ξq+1 = (ξq+1

1 , · · · ξq+1
mq+1

)T be the left eigenvector

of Lq+1,q+1 + diag{
Sq
∑

i=1

lSq+1,i,
Sq
∑

i=1

lSq+2,i, · · · ,
Sq
∑

i=1

lSq+1,i}

corresponding to the eigenvalue 0, where ξq+1
i > 0 and

Ξq+1 = diag{ξq+1
1 , · · · ξq+1

mq+1
}.

Remark 2: If Lik = 0(i > k), then the Laplacian L is a

block diagonal matrix and the result follows immediately. If

each Lii corresponds to at least one agent, then it follows

from Section 3.1 that either every agent in the graph G can

follow the leader or that the tracking error can be estimated.

Theorem 2: If bSi+1 + · · ·+ bSi+1
> 0 for i = 1, · · · , q,

then one can select some large enough k satisfying that each

agent of MAS can follow the leader or the tracking errors

can be estimated.

Proof. According to Theorem 1, if there exists at least

one agent in every part of graph G which corresponds to

Lii, i = 1, · · · , q connecting with the leader, then all agents

in Lii, i = 1, · · · , q can follow the leader or the tracking

errors can be estimated. Also, there exists a positive constant

C satisfying

||xj − x0|| ≤ Cδ̄, j = 1, · · · , Sq .

For subsystem xSq+1, · · · , xSq+1
in Lq+1,q+1, one has



























ẋi = −k(

Sq+1
∑

j=1

lijxj + bi(xi − x0)) + vi,

v̇i = a0 − γk(

Sq+1
∑

j=1

lijxj + bi(xi − x0)) ,

where i ∈ [Sq + 1, Sq+1].

Denote

xh =
(

xSh−1+1, · · · , xSh

)T
, vh =

(

vSh−1+1, · · · , vSh

)T
,

where h = 1, 2, · · · , p.

Thus one gets



















ẋq+1 = − k(Lq+1,1 ⊗ Imx1 + · · · + (Lq+1,q+1 + Bq+1)

⊗ Imxq+1) + kBq+1
1⊗ x0 + vq+1,

v̇q+1 =1 ⊗ a0 − γk(Lq+1,1 ⊗ Imx1 + · · · + (Lq+1,q+1

+ Bq+1) ⊗ Imxq+1) + γkBq+1
1⊗ x0,

where Bq+1 = diag{bSq+1, · · · , bSq+1
}.

Denote

x̄h = xh − 1 ⊗ x0, v̄h = vh − 1⊗ v0,

where h = 1, 2, · · · , p.

Then the error dynamics is described by



















˙̄xq+1 = − k(Lq+1,1 ⊗ Imx̄1 + · · · + (Lq+1,q+1

+ Bq+1) ⊗ Imx̄q+1) + v̄q+1,

˙̄vq+1 = − γk(Lq+1,1 ⊗ Imx̄1 + · · · + (Lq+1,q+1

+ Bq+1) ⊗ Imx̄q+1) − 1⊗ δ.

Denote ωh =
(

x̄h, v̄h
)T

for h = 1, 2, · · · , p, thus one

obtains

ω̇q+1 = F 1ω1 + · · · + F qωq + F q+1ωq+1 + g ,

where g = (0, −1⊗ δ)
T

and

F i =

(

−kLq+1,i 0
−γkLq+1,i 0

)

⊗ Im, i = 1, · · · , q,

F q+1 =

(

−k(Lq+1,q+1 + Bq+1) In

−γk(Lq+1,q+1 + Bq+1) 0

)

⊗ Im .

Construct a Lyapunov candidate

V (ωq+1) = (ωq+1)T P q+1ωq+1

with the symmetric positive definite matrix

P q+1 =

(

Ξq+1 −γΞq+1

−γΞq+1 Ξq+1

)

⊗ Im,

whose maximal and minimal eigenvalues are (1 +
γ)max ξq+1

i and (1 − γ)min ξq+1
i , respectively. Then one

has

(1 − γ)min ξq+1
i ||ωq+1||2 6V (ωq+1)

6 (1 + γ)max ξq+1
i ||ωq+1||2 .

Differentiating V (ωq+1) and one gets

V̇ (ωq+1) =2(ωq+1)T P q+1(F 1ω1 + · · · + F qωq

+ F q+1ωq+1 + g)

62(||P q+1F 1|| · ||ω1|| + · · · + ||P q+1F q|| · ||ωq||
+ δ̄||P q+1||)||ωq+1|| + (ωq+1)T (P q+1F q+1

+ (F q+1)T P q+1)ωq+1

62(C||F 1P q+1|| + · · · + C||F q|| · ||P q+1||
+ ||P q+1||)δ̄||ωq+1|| + (ωq+1)T (P q+1F q+1

+ (F q+1)T P q+1)ωq+1

= − (ωq+1)T Qq+1ωq+1 + Cδ̄||ωq+1||,
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where

C = 2(C||F 1P q+1|| + · · · + C||F q|| · ||P q+1|| + ||P q+1||)
and

Qq+1 = −(P q+1F q+1 + (F q+1)T P q+1) .

According to Theorem 1 and Lemma 4, for the large

enough k, Qq+1 is a positive definite matrix. This is because

that for each q + 1 ≤ i ≤ p, there exists some k < i
satisfying Lik 6= 0. Let µ

−

q+1 be the minimal eigenvalue of

Qq+1. Then one obtains

(ωq+1)T Qq+1ωq+1 >µ
−

q+1(ωq+1)T ωq+1

>µ
−

q+1 V (ωq+1)

(1 + γ)max ξi

.

Denote
µ
−

q+1

(1+γ)max ξi
= 2βq+1, then one gets

V̇ (ωq+1) 6 −2βq+1V (ωq+1) + Cδ̄

√

V (ωq+1)

(1 − γ)min ξq+1
i

.

Thus, one has

d
√

V (ωq+1)

dt
6 βq+1

√

V (ωq+1)+
Cδ̄

2

√

1

(1 − γ)min ξq+1
i

.

Therefore, one gets

√

V (ωq+1) 6
√

V (ωq+1(0))e−βt+
Cδ̄(1 − e−βt)

2βq+1(1 − γ)min ξq+1
i

.

Similarly, one can prove that all agents corresponding to

the subsystem Lq+2,q+2, · · · , Lpp can also follow the leader

or the tracking errors can be estimated. That is, each agent

in the directed graph G can follow the leader or the tracking

error can be estimated. Thus the proof is completed. �

Remark 3: In general, the interconnection topology of

MAS is time-varying. Similarly, according to [9], it is easy

to generalize the results of Theorems 1 and 2 to be the case

of the time-varying interconnection topology.

Remark 4: It is well known that most graphs of real-world

MAS are more likely to be the directed graphs. Moreover, the

undirected graphs can easily be regarded as being directed

by viewing each undirected edge between the vertices i and

j as the union of two directed edges. Therefore, our results

indeed generalize the results in [9].

IV. NUMERICAL SIMULATIONS

To validate the effectiveness of the proposed theories,

several numerical simulations are then given in the following.

Here, suppose that an MAS has 6 three-dimensional agents

and a leader with velocity v0.

When δ̄ = 0, assume that v0 satisfies the following

Lorenz system


















ẋ0 = v0,

v̇01 = a(v02 − v01) + δ1(t),

v̇02 = cv01 − v01v03 − v02 + δ2(t),

v̇03 = v01v02 − bv03 + δ3(t),

where a = 10, b = 8/3, and c = 28.

The distance between agent xi and leader x0 is given by

Ei =
√

(xi1 − x01)2 + (xi2 − x02)2 + (xi3 − x03)2 .

A. Case I: Strongly Connected Digraph

Here, the adjacency matrices and parameters are given as

follows:

A =

















0 1 2 1 1 1
2 0 2 1 0 1
1 3 0 0 1 2
2 1 1 0 2 3
1 2 1 2 0 1
2 1 2 1 1 0

















,

B = diag{0, 5, 0, 0, 0, 0}, γ = 0.8, and k = 5. Fig.

1 shows the distances between agents xi and leader x0 in

strongly connected graph for δ(t) = (sin t, cos t, sin t) and

i = 1, · · · , 6. Fig. 2 shows the distances between agents

xi and leader x0 in strongly connected graph for δ̄ = 0 and

i = 1, · · · , 6. Here, the horizontal axis is the time t in all

figures.
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Fig. 1. The distances between agents xi and leader x0 in strongly
connected graph, where δ(t) = (sin t, cos t, sin t) and i = 1, · · · , 6.
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Fig. 2. The distances between agents xi and leader x0 in strongly
connected graph, where δ̄ = 0 and i = 1, · · · , 6.
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B. Case II: Non-Strongly Connected Digraph

In this subsection, the adjacency matrices and parameters

are given as follows:

A =

















0 0 0 0 0 0
0 0 2 0 0 0
0 3 0 0 0 0
2 1 1 0 2 3
1 2 1 2 0 1
2 1 2 1 1 0

















,

B = diag{3, 5, 0, 0, 0, 0}, γ = 0.8, and k = 5. Fig. 3

shows the distances between agents xi and leader x0 in non-

strongly connected graph for δ(t) = (sin t, cos t, sin t) and

i = 1, · · · , 6. Fig. 2 shows the distances between agents

xi and leader x0 in non-strongly connected graph for δ̄ = 0
and i = 1, · · · , 6.
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Fig. 3. The distances between agents xi and leader x0 in non-strongly
connected graph, where δ(t) = (sin t, cos t, sin t) and i = 1, · · · , 6.
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Fig. 4. The distances between agents xi and leader x0 in non-strongly
connected graph, where δ̄ = 0 and i = 1, · · · , 6.

Figs. 1 and 3 indicate us that the tracking errors between

agents xi and leader x0 can be effectively estimated for the

connected or unconnected graph under a given disturbance.

Similarly, Figs. 2 and 4 show us that each agent xi of MAS

can follow the leader x0 for the connected or unconnected

graph without disturbance. All above numerical results con-

sist with the theoretical analysis results in Theorems 1 and

2.

V. CONCLUDING REMARKS

This paper has further investigated the consensus of MAS

with an active leader and asymmetric adjacency matrix. It

should be especially pointed out that the state of the active

leader is changing and unmeasured. Under some suitable

assumptions, some interesting results are attained as follows:

i) each agent of MAS can follow the active leader if the input

of the active leader is known beforehand; ii) the tracking

error of MAS can be estimated if the input of the active

leader is unknown beforehand. Finally, several numerical

simulations are also given to justify the effectiveness of

the proposed criteria. Some potential real-world engineering

applications will be further explored in the near future.
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