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Abstract— This paper further investigates and answers two
fundamental questions in the complex dynamical networks: i)
how many nodes should a general complex dynamical net-
work with fixed network structure and coupling strength be
pinned to reach network synchronization? ii) how much coupling
strength should a general complex dynamical network with
fixed network structure and pinning nodes be employed to
reach network synchronization? In the above framework, the
coupling-configuration matrix and the inner-coupling matrix
are not necessarily symmetric. Also, the pinning nodes can be
randomly selected. Furthermore, our adaptive pinning controllers
are rather simple compared with some traditional controllers.
Finally, a BA network example is then given to show the
effectiveness of the proposed synchronization criteria.

I. INTRODUCTION

Today, complex networks lie in everywhere in our daily
life, such as the Internet, World Wide Web, communication
networks, power grid networks, social networks, genetic reg-
ulatory networks, and so on [1-8]. Over the past two decades,
complex networks have been intensively investigated in var-
ious disciplines, such as mathematical, physical, biological,
engineering, and social sciences [1-8].

Synchronization is a kind of typical collective behaviors
and basic motions in nature [1-8]. Recently, one of the
interesting and significant phenomena in complex dynamical
networks is the synchronization of all dynamical nodes in a
network. More recently, adaptive synchronization in networks
or coupled oscillators has received an increasing attention. For
example, Zhou and her colleagues introduced several adaptive
synchronization criteria for an uncertain complex dynamical
network [4].

Since a complex network normally has a large number of
nodes, it is usually difficult to control a complex network by
adding the controllers to all nodes. To reduce the number of
the controllers, a natural approach is to control a complex
network by pinning part of nodes. Wang and Chen proposed
an effective measure to pin a complex dynamical network
to its equilibrium [7]. However, we do not know how many
nodes a complex network should be pinned to achieve network
synchronization. Therefore, it is very interesting to ask the
following two fundamental questions in complex dynamical

networks: i) how many nodes should a general complex
dynamical network with fixed network structure and coupling
strength be pinned to achieve network synchronization? ii)
how much coupling strength should a general complex dy-
namical network with fixed network structure and pinning
nodes be employed to realize network synchronization? In
this paper, one gives a complete answer to these two basic
questions as above. In brief, one provides a simple formula
for calculating the number of pinning nodes and the value of
the coupling strength. Here, the coupling configuration matrix
and the inner-coupling matrix are not necessary symmetric and
the pinning nodes can be randomly selected. It is very useful
for the future practical engineering design.

The left paper is organized as follows. A general complex
dynamical network model is introduced in Section II. In
Section III, several locally and globally adaptive pinning
synchronization criteria for the general complex dynamical
networks are deduced. A BA network example is then given to
show the effectiveness of the pinning control method as above
in Section IV. Conclusions are finally drawn in Section V.

II. PRELIMINARIES

A. A generally complex dynamical network model

Consider a generally controlled complex dynamical network
consisting of N identical nodes with linearly diffusive cou-
plings, which is described by

ẋi = f(xi, t) +
N∑

j=1

cij A xj + ui(x1, · · · , xN ), (1)

where 1 ≤ i ≤ N , xi = (xi1, xi2, · · · , xin)T ∈ Rn is
the state vector of the ith node, f : Ω × R+ → Rn is a
smooth nonlinear vector field, node dynamics is ẋ = f(x, t),
ui ∈ Rn are the control inputs satisfying ui(x, · · · , x) = 0.
Here, A ∈ Rn× n is the inner-coupling matrix and C =
(cij)N ×N ∈ RN × N is the coupling configuration matrix. If
there is a link from node i to node j (j �= i), then cij > 0
and cij is the coupling strength; otherwise, cij = 0. Assume

that C is a diffusive matrix satisfying
N∑

j=1

cij = 0.
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Suppose that the coupling matrix C is irreducible but needs
not to be symmetric, and that the inner coupling matrix
A also needs not to be symmetric. Hereafter, assume that
x = s(t ; t0, x0), denoted as s(t), is a solution of the node
system ẋ = f(x, t). Then S(t) = (sT (t), sT (t), · · · , sT (t))T

is a synchronous solution of the controlled complex dynamical
network (1) since it is a diffusive coupling network. Note that
s(t) can be an equilibrium point, a periodic orbit, an aperiodic
orbit, or a chaotic orbit in the phase space.

B. Mathematical preliminaries

Define error vectors as ei(t) = xi(t) − s(t), where 1 ≤
i ≤ N . Then the error system of network (1) is given by

ėi = f(xi, t)− f(s, t)+
N∑

j=1

cij A ej + ui(x1, · · · , xN ) , (2)

where 1 ≤ i ≤ N .
To realize synchronization, the controllers ui should guide

the error system (1) to approach zero as t goes to infinity. That
is, lim

t→+∞ ‖ei(t)‖2 = 0, where 1 ≤ i ≤ N .

Hypothesis 1: (H1) Suppose that ‖Df(s)‖2 is bounded. That
is, there exists a nonnegative constant α satisfying ‖Df(s)‖2 ≤
α.

Hereafter, assume that A �= 0 and ‖A‖2 = γ > 0.
Denote ρmin as the minimum eigenvalue of the matrix A + AT

2 .
Suppose also that λ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues
of the matrix Ĉ + Ĉ

T

2 , where Ĉ is a modifying matrix of C by
replacing the diagonal elements cii by

ρmin
γ cii.

Lemma 1: [9] Assume that E, F are the n × n Hermitian
matrices. Suppose that ξ1 ≥ ξ2 ≥ · · · ≥ ξn, ζ1 ≥ ζ2 ≥
· · · ≥ ζn, and ς1 ≥ ς2 ≥ · · · ≥ ςn are the eigenvalues of
E, F, E + F, respectively. Then one has ξi + ζn ≤ ςi ≤
ξi + ζ1, 1 ≤ i ≤ n.

III. ADAPTIVE PINNING SYNCHRONIZATION OF A
COMPLEX DYNAMICAL NETWORK

This section further investigates the locally and globally
adaptive pinning synchronization of a complex dynamical
network. Several network synchronization criteria are drawn.

A. Locally adaptive pinning synchronization

Assume that l nodes i1, i2, · · · , il are selected and pinned
with the adaptive controllers, which is described by{

uik
= −dik

eik
, ḋik

= hik
‖eik

‖2
2, 1 ≤ k ≤ l

uik
= 0, otherwise ,

(3)

where hik
(k = 1, · · · , l) are any positive constants. Thus

network (1) can be rewritten as follows:


ẋik
= f(xik

, t) +
N∑

j=1

cik jAxj − dik
eik

, 1 ≤ k ≤ l

ḋik
= hik

‖eik
‖2
2, 1 ≤ k ≤ l

ẋik
= f(xik

, t) +
N∑

j=1

cik jAxj , otherwise .

(4)

Without loss of generality, one selects the first l nodes as
the pinning nodes. From (2) and (3), linearizing system (2) at
zero yields


ėi = Df(s)ei +
N∑

j=1

cijAej − diei, 1 ≤ i ≤ l

ḋi = hi‖ei‖2
2, 1 ≤ i ≤ l

ėi = Df(s)ei +
N∑

j=1

cijAxj , (l + 1) ≤ i ≤ N ,

(5)
where Df(s) is the Jacobian of f evaluated at x = s.

Theorem 1: Suppose that H1 holds. If there exists a natural
number 1 ≤ l ≤ N satisfying λl +1 < −α

γ , the synchronous
solution S(t) of network (1) is locally asymptotically stable
under the pinning adaptive controller{

ui = −diei, ḋi = hi‖ei‖2
2, 1 ≤ i ≤ l

ui = 0, (l + 1) ≤ i ≤ N ,
(6)

where hi are positive constants for 1 ≤ i ≤ l.
Proof. Construct a Lyapunov candidate as follows:

V =
1
2

N∑
i =1

eT
i ei +

1
2

l∑
i =1

(di − d)2

hi
, (7)

where d are positive constants satisfying d > α + γλ1.
Thus the differential coefficient of V is described by

V̇ = 1
2

N∑
i = 1

(ėT
i ei + eT

i ėi) +
l∑

i =1

(di − d)ḋi

hi

≤ eT (αIN + γ Ĉ − D)e
= eT (αIN + γ Ĉ + Ĉ

T

2 − D)e

where e = (‖e1‖2, ‖e2‖2, · · · , ‖eN‖2)T , D =
diag{d, · · · , d︸ ︷︷ ︸

l

, 0, · · · , 0︸ ︷︷ ︸
N−l

}.

Assume that λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂n are the eigenvalues
of the matrix

(
Ĉ + Ĉ

T

2 − D
γ

)
. According to Lemma 1, since

λ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues of the matrix
Ĉ + Ĉ

T

2 , one has{
− d

γ + λN ≤ λ̂i ≤ − d
γ + λ1, 1 ≤ i ≤ l

λN ≤ λ̂i ≤ λ1, l + 1 ≤ i ≤ N

and − d
γ + λi ≤ λ̂i ≤ λi for 1 ≤ i ≤ N .

Since
(

Ĉ + Ĉ
T

2 − D
γ

)
is a real symmetric matrix, there

exists an orthogonal matrix P satisfying
(

Ĉ + Ĉ
T

2 − D
γ

)
=

PT diag{λ̂1, · · · , λ̂N}P.
Therefore, one gets

V̇ ≤ eT (αIN + γ Ĉ + Ĉ
T

2 − D)e ≤ (Pe)T Q(Pe)

where Q = diag{(α − d + γλ1), · · · , (α − d + γλ1), (α +
γλl+1), · · · , (α + γλN )}.

Since d > α + γλ1, one has α + γλ1 − d < 0. From
the assumption, then α + γλi < 0 for (l + 1) ≤ i ≤ N .
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Therefore, Q is a negative definite matrix. It follows that
Pe → 0 as t → +∞. Since P is an orthogonal matrix,
the error vector η = (eT

1 , eT
2 , · · · , eT

N)T → 0 as t → +∞.
That is, the synchronous solution S(t) of network (1) is locally
asymptotically stable under the adaptive pinning controller (6).
Thus the proof is completed.

Theorem 1 indicates that the network synchronization de-
pends on three basic elements: node dynamics (α), network
structure (λl +1), and inner coupling means (γ, ρmin). In
detail, the inequality λl +1 < −α

γ gives a sufficient condition
of the three basic elements as above for the network syn-
chronization. According to Theorem 1, for network (1) with
fixed network structure and coupling strength, one can easily
determine the number of the pinning nodes to achieve network
synchronization. Moreover, for network (1) with fixed network
structure and pinning nodes, one can easily determine the value
of the coupling strength to realize network synchronization.

Consider a more generally complex dynamical network,
which is given by

ẋi = f(xi, t) +
N∑

j=1

cij W(xj , t) + ui(x1, · · · , xN ), (8)

where 1 ≤ i ≤ N and W : Rn × R+ → Rn is
an inner coupling function satisfying the diffusive condition
N∑

j=1

cij W(xj , t) = 0.

Hypothesis 2: (H2) Suppose that W(xj , t) is Lipschitz
continuous. That is, there exists a positive constant δ satisfying
‖W(xj , t) − W(s, t)‖2 ≤ δ‖ej‖2 for 1 ≤ j ≤ N .

Theorem 2: Suppose H1 and H2 hold. If there exists a
natural number 1 ≤ l ≤ N satisfying λl+1 < −α

δ , the syn-
chronous solution S(t) of network (8) is locally asymptotically
stable under the adaptive pinning controller (6).

B. Globally adaptive pinning synchronization

Rewrite the node system ẋ = f(x, t) as ẋ = B x + g(x, t),
where B x is the linear part of the node dynamics with B ∈
Rn× n and g : Ω× R+ → Rn is a continuously differentially
nonlinear function. Thus the network (1) is recasted as follows:

ẋi = Bxi + g(xi, t) +
N∑

j=1

cij A xj + ui(x1, · · · , xN), (9)

where 1 ≤ i ≤ N .
Since B is a given constant matrix, there exists a nonnega-

tive constant β satisfying ‖B‖2 ≤ β.
Hypothesis 3: (H3) Suppose that g(x, t) is Lipschitz con-

tinuous. That is, there exists a Lipschitz constant µ satisfying
‖g(xi, t) − g(s, t)‖2 ≤ µ ‖ei‖2 for 1 ≤ i ≤ N .

Similarly, one can select the first l nodes as the pinning

nodes. From (3) and (9), the error system is described by


ėi = B ei + g(xi, t) − g(s, t) +
N∑

j=1

cijAej − diei,

1 ≤ i ≤ l

ḋi = hi‖ei‖2
2, 1 ≤ i ≤ l

ėi = B ei + g(xi, t) − g(s, t) +
N∑

j=1

cijAxj ,

(l + 1) ≤ i ≤ N .
(10)

Similarly, one obtains the following two globally adaptive
pinning synchronization criteria.

Theorem 3: Suppose that H3 holds. If there exists a natural
number 1 ≤ l ≤ N satisfying λl +1 < −β + µ

γ , the synchro-
nous solution S(t) of network (9) is globally asymptotically
stable under the adaptive pinning controller{

ui = −diei, ḋi = hi‖ei‖2
2, 1 ≤ i ≤ l

ui = 0, (l + 1) ≤ i ≤ N ,
(11)

where hi are positive constants for 1 ≤ i ≤ l.

Theorem 4: Assume that H2 and H3 hold. If there exists
a natural number 1 ≤ l ≤ N satisfying λl+1 < −β + µ

δ ,
the synchronous solution S(t) of network (8) is globally
asymptotically stable under adaptive pinning controller (11).

IV. NUMERICAL SIMULATION

Suppose that the controlled network (1) consists of 50
identical Lorenz systems, which is described by

ẋi = Bxi + g(xi) + c

50∑
j=1

c̄ij A xj + ui, (12)

where 1 ≤ i ≤ 50, A = diag{1, 1.3, 1}, c = 40, C̄ =
(c̄ij)50×50 is a symmetrically diffusive coupling matrix with
c̄ij = 0 or 1 (j �= i). The node dynamics is given by

ẋi =


 −r1 r1 0

r3 −1 0
0 0 −r2





 xi1

xi2

xi3


 +


 0

−xi1xi3

xi1xi2




= Bxi + g(xi) ,

where 1 ≤ i ≤ 50 and r1 = 10, r2 = 8
3 , r3 = 28.

Obviously, γ = ‖A‖2 = 1.3, β = ‖B‖2 ≈ 30.0731.
From [10], there exist constants M1 = M2 = 28.9180 and
M3 = 56.9180 satisfying ‖xij‖, ‖sj‖ ≤ Mj for 1 ≤ i ≤
50 and 1 ≤ j ≤ 3. Therefore, one has

‖g(xi) − g(s)‖2 ≤ √
2M2

1 + M2
2 + M2

3 ‖ei‖2

≈ 75.8183 ‖ei‖2 .

Let µ = 75.8183. Then one gets −β + µ
cγ = −2.0364.

One generates network (12) via the known BA scale-free
model with m0 = m = 5, N = 50 [6]. Without loss of
generality, one randomly chooses the pinning nodes. Since
λ̄2 = −1.9463 and λ̄3 = −2.1096, there exists a natural
number l = 2 satisfying λ̄2+1 = −2.1096 < −2.0364.
From Theorem 3, the synchronous solution S(t) of network
(12) is globally asymptotically stable under controller (11).
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(b) ei1 (1 ≤ i ≤ 50) for 0 ≤ t ≤ 30

(c) ei2 (1 ≤ i ≤ 50) for 0 ≤ t ≤ 30 (d) ei3 (1 ≤ i ≤ 50) for 0 ≤ t ≤ 30
Fig. 1. Synchronization errors eij (1 ≤ i ≤ 50, 1 ≤ t ≤ 30) of network (12).

In the numerical simulation, all parameters are given as
follows: l = 2, hk = 0.01, dk(0) = 1, xi(0) = (4 +
0.5i, 5 + 0.5i, 6 + 0.5i)T , s(0) = (4, 5, 6)T , where 1 ≤
k ≤ 3 and 1 ≤ i ≤ 50. The synchronous errors ei (1 ≤
i ≤ 50) are shown in Fig. 1. Thus network (12) is globally
asymptotically stable at zero under controller (11) with l = 2.

V. CONCLUSIONS

We have further studied and answered the following two
fundamental questions in complex dynamical networks: i) how
many nodes should a general complex dynamical network
with fixed network structure and coupling strength be pinned
to realize network synchronization? ii) how much coupling
strength should a general complex dynamical network with
fixed network structure and pinning nodes be employed to
achieve network synchronization? Moreover, several novelly
adaptive synchronization criteria are proposed. Here, the cou-
pling configuration matrix and the inner-coupling matrix are
not necessarily symmetric. It is very useful for the future
practical engineering design.
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