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Abstract— Over the last few decades, complex networks have
been intensively studied throughout many fields of science,
especially in biological and engineering sciences. This paper
briefly reviews the main advances in the complex biological and
engineering networks, aiming to bridge the gap between the
complex biological and engineering networks. Biologists pay more
attention to the mechanisms and local dynamics of individuals,
however, engineers are more interesting in the global dynamical
behaviors. It is the time for the biologists and engineers to work
together for better understanding the complex networks.

I. INTRODUCTION

Nowadays complex networks are everywhere in our real
life [1-14]. The ubiquity of networks attracts an increasing
attention in various fields of science, especially in biological
and engineering sciences. Biological networks are complex,
with each individual typically closely related to all others,
either directly or indirectly [2-10]. For example, an animate
being is a very complex network. Also, many large engineer-
ing networks, such as Internet, World Wide Web and VLSI
circuits, are very complex [11-14]. This mini review of the
special session entitled “Complex Biological and Engineering
Networks” in ISCAS 2007 provides a brief overview of the
complex biological and engineering networks and bridges the
gap between them.

The overall research goal of complex networks is to unravel
the structure, function, dynamics and evolution of complex
networks. Genetics and molecular biology normally uncovered
the general principles for expressing genetic information. And
genetics and biochemistry often identified some specific parts
of individual protein networks. However, our understanding of
complex networks as a whole is always limited, basically at a
qualitative level. As E. O. Wilson said before [1], “The greatest
challenge today, not just in cell biology and ecology but in all
of science, is the accurate and complete description of complex
systems. Scientists have broken down many kinds of systems.
They think they know most of the elements and forces. The
next task is to reassemble them, at least in mathematical
models that capture the key properties of the entire ensembles.”

Fortunately, more and more biologists realize the impor-
tance of uncovering the basic principles underlying the com-
plex biological networks. There are some recent advances in

this endeavor [7-9]: 1) Exploring the fundamental principles
from the local rules of individual to the global behaviors of
population; 2) Investigating the mechanisms from physiology
to system dynamics; 3) Revealing the underlying rules from
structure to dynamics in biological networks. For example, to
simulate the collective motion of flocks and schools, several
mathematical models are proposed recently, such as boid
model [2], Vicsek model [3] and our model [5].

Similarly, there are some recent advances in understanding
network structure and dynamics in complex engineering sys-
tems (consisting potentially of thousands and tens of thousands
nodes). For example, the computerization of data acquisition
and the availability of high computing power have led to
the emergence of huge databases on various real networks
of complex topology. Moreover, the public access to the huge
amount of real data has in turn stimulated great interest in
revealing the unifying properties of the different kinds of
complex networks. To characterize the network structure, some
typical models are then proposed over the past few decades,
such as small-world and scale-free network models [1]. To
understand the network dynamics, several specific dynamical
network models are recently presented, such as the time-
varying dynamical network model [6,12].

The rest of this paper is organized as follows. In Section
II, several evolving and dynamical models are introduced for
modeling the complex biological networks and understanding
the underlying biological mechanisms. Also, several evolving
and dynamical models are proposed for designing and con-
trolling complex engineering networks in Section III. And the
conclusions and remarks are finally given in Section IV.

II. MODELING COMPLEX BIOLOGICAL NETWORKS

Biological networks are complex, such as a flock of birds
as shown in Fig. 1 (a) and the food web of Little Rock Lake
in Wisconsin [9] as shown in Fig. 1 (b), with each individual
typically connected to all other individuals, either directly or
indirectly. To model these biological networks, one introduces
several evolving network models, including boid model [2],
Vicsek model [3] and Couzin-Levin model [4], and a time-
varying discrete network model in the following.
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(a) A bird flock (b) Food web of Little Rock Lake, Wisconsin [9]
Fig. 1. Complex biological networks.

(a) Separation (b) Cohesion (c) Alignment

Fig. 2. The working principles of Boid model.

A. Boid model

We often watch a flock of birds flying to a specific direction
or goal. There do not exist obvious leaders and individual birds
move back and forth within the flock as shown in Fig. 1 (a).
The motion of a flock of birds is one of nature’s delights.

To simulate and understand the collective motion of bird
flock, Reynolds [2] introduced a boid model in 1987, whose
rules are described as follows:
(i) Separation: steer to avoid crowding local flockmates as

shown in Fig. 2 (a).
(i) Cohesion: steer to move toward the average position of

local flockmates as shown in Fig. 2 (b).
(ii) Alignment: steer towards the average heading of local

flockmates as shown in Fig. 2 (c).

B. Vicsek model

To investigate the emergent mechanisms of self-ordered
motion in systems of particles with biologically motivated
interaction, Vicsek and his colleagues [3] proposed a simple
model in 1995, called Vicsek model.

The updating rule of the position of the ith individual is
then given by

xi(t + 1) = xi(t) + vi(t)∆ t , (1)

where xi(t) is the position vector and vi(t) is the velocity
vector with the same absolute velocity v and varying direction
angle θ(t), which is updated by

θi(t + 1) = < θ(t) >r + ∆ θ , (2)

where < θ(t) >r is the average direction angle of the
particles (including particle i) being within a neighbor region
of individual i with radius r and ∆θ is a random noise with
uniform distribution in the interval [− η

2 , η
2 ].

C. Couzin-Levin model

In 2005, Couzin and his colleagues [4] presented a simple
model of collective motion. The updating rules are described
as follows:

(i) If there exists j satisfying 0 < dij ≤ α, then one has

xi(t + ∆ t) =
∑

0<dij ≤α

xi(t) − xj(t)
|xi(t) − xj(t)| , (3)

where dij is the distance between individuals i and j, ∆ t
is the time step, and α is the given minimum separation
distance between individuals.

(ii) Otherwise, if there exists j satisfying α < dij ≤ β,
then one gets

xi(t + ∆ t) =
∑

α<dij≤β

xj(t) − xi(t)
|xj(t) − xi(t)| +

∑

dij≤β

vj(t)
|vj(t)| ,

(4)
where β is the given maximum reaction distance between
individuals.

D. A time-varying discrete biological network

In real-world biological context, such as metapopulation,
many different factors, such as ages, genders and species,
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(a) Battlefield command network (b) World Wide Web
Fig. 3. Complex engineering networks.

are often involved simultaneously. The evolving rule of the
population is then given by a multidimensional iterative map

x(t + 1) = f(x(t)) , (5)

where x ∈ R
n and f : X → X (X ⊆ R

n) is a fundamental
reproductive (birth-death) function.

The time-varying discrete biological network with N pop-
ulations (habitat patches) is described by [6]

xi(t + 1) =
N∑

j=1

cij(t)f(xj(t)), i = 1, 2, . . . , N , (6)

where xi(t) ∈ X is the patch density of the ith habitat patch
at time t, C(t) = (cij(t))N×N is the dispersal matrix at time
t, representing the coupling strength and the connecting status
between patches.

In addition, C(t) satisfies

N∑

j=1

cij(t) = 1 . (7)

That is, C(t) has row sums 1 for t = 1, 2, · · · .
III. MODELING COMPLEX ENGINEERING NETWORKS

Large engineering networks are also complex, such as
Internet, large communication networks, power grid networks,
Cellular Neural Networks, battlefield command networks as
shown in Fig. 3 (a), and World Wide Web as shown in Fig. 3
(b).

A. Small-world network

To bridge the gap between a regular network and a random
graph, Watts and Strogatz [1,14] introduced a small-world
network model in 1998, which is given as follows:

(i) Initialization: Start with a nearest-neighbor coupled ring
network with N nodes, in which each node i is connected
to its K neighboring nodes i±1, i±2, · · · , i± K

2 , where
K is an even integer. Also, suppose that N � K �
ln(N) � 1, which makes the network be connected
and sparse at all times.

(ii) Randomization: Randomly reconnect each link of the net-
work with probability p satisfying that self-connections
and duplicated links are excluded. Reconnecting means
transferring one end of the connection to a randomly
chosen node. This process introduces pNK

2 long-range
links, which connect some nodes that otherwise would
not have direct connections.

A small-world network lies along a continuum of network
models between the two extreme networks: regular and ran-
dom ones. After that, Newman and Watts [1,14] modified the
original WS model. Instead of rewiring links between nodes,
extra links called shortcuts are added between pairs of nodes
chosen at random in NW model, but no links are removed from
the existing network. Therefore, the NW model reduces to the
originally nearest-neighbor coupled network for p = 0; while
it becomes a globally coupled network for p = 1. However,
the NW model is equivalent to the WS model for sufficiently
small p and sufficiently large N values.

B. Scale-free Network

Many real-world networks are scale-free. In 1999, Barabási
and Albert [1,14] proposed a scale-free network model, which
continuously evolves by the addition of new nodes and these
new nodes are preferentially attached to existing nodes with
large numbers of connections. The BA model is described as
follows:

(i) Growth: Start with a small number (m0) of nodes, at
each time step a new node is added and is connected to
m (≤ m0) already existing nodes.

(ii) Preferential attachment: When choosing the nodes to
which the new node connects, assume that the probability
pi that a new node will be connected to node i depends
on the degree ki of node i, satisfying

pi =
ki∑

j

kj
.

After t time steps, this network has N = t + m0 nodes and
mt links. According to the growth and preferential attachment,
this network evolves into a scale-invariant state. That is, the
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probability of connecting a node with k links is proportional
to the power term k−3.

C. A time-varying discrete engineering network

System (6) can be rewritten as follows [6]:

xi(t + 1) = f(xi(t)) +
N∑

j=1

c̄ij(t)f(xj(t)), i = 1, 2, . . . , N,

(8)
where c̄ij(t) = cij(t) for i �= j and c̄ii(t) = cii(t) − 1 for
i = 1, 2, . . . , N . Then C(t) = C(t) − IN×N , where IN×N

is an N ×N unit matrix. Moreover, condition (7) is equivalent
to

c̄ii(t) = −
N∑

j=1
j �=i

c̄ij(t), i = 1, 2, . . . , N , (9)

where t = 1, 2, · · · . That is, C(t) has zero row sums, which
means that network (8) is a diffusive coupling network.

D. A time-varying continuous engineering network

Lü and his colleagues [12,14] introduced a general time-
varying continuous engineering network

ẋi(t) = f(xi(t)) +
N∑

j=1

c̄ij(t)A(t)xj(t), i = 1, 2, · · · , N,

(10)
where xi(t) = (xi1(t), xi2(t), · · · , xin(t))T ∈ R

n is the
state variable of node i at time t, A(t) = (akl(t))n×n ∈
R

n×n is the inner-coupling matrix of the network at time t,
C(t) = (c̄ij(t))N ×N is the coupling configuration matrix
representing the coupling strength and the connecting topology
of the network at time t, in which c̄ij(t) is defined as follows:
if there is a connection from node i to node j (j �= i) at
time t, then c̄ij(t) �= 0; otherwise, c̄ij(t) = 0 (j �= i), and
the diagonal elements of matrix C(t) satisfy the diffusively
coupled conditions as follows:

c̄ii(t) = −
N∑

j=1
j �=i

c̄ij(t) , i = 1, 2, · · · , N , (11)

where t ≥ 0.
If A(t), C(t) are constant matrices, then network (10)

becomes a time-invariant network [12-14]:

ẋi(t) = f(xi(t)) +
N∑

j=1

c̄ijA xj(t), i = 1, 2, · · · , N . (12)

IV. CONCLUSIONS AND REMARKS

We have briefly reviewed the main advances of the com-
plex biological and engineering networks. These mathematical
models belong to two different kinds of models: evolving
model and dynamical model. Boid model, Vicsek model,
Couzin-Levin model, small-world network, and scale-free net-
work are the evolving models, which characterize the network
structure and evolving mechanisms. The time-varying discrete
biological network, the time-varying discrete and continuous

engineering networks are the typical dynamical models, which
characterize the network dynamics. These models provide
some new insights for understanding the structures, functions,
dynamics, and evolutions of complex biological and engineer-
ing networks. Different models focus on different aspects of
complex networks. Although the biological and engineering
networks are very different in the detailed contexts, they also
have many similar network structures and dynamics.

Biologists pay more attention to the mechanics and local dy-
namics of individuals, however, engineers are more interesting
in the global dynamical behaviors. It is the time for the biolo-
gists and engineers to work together for better understanding
the complex biological and engineering networks now. This is
the case not only in deeper and wider theoretical studies but
also in many newly found real-world applied fields. It calls
for the further efforts and endeavors from the communities
of both biology and engineering, as well as the other close
relative sciences.
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