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Abstract— The study of synchronization of population dy-
namics is extremely important for predicting and evaluating
the risk of global extinctions. The migration in a network of
patch populations (metapopulation) inevitably involves various
environmental noises or outside disturbances, which make the
migration is timely evolving and spatially extended. Thus the
time-invariant discrete biological networks are often insufficient
to capture the key features of real-world biological networks.
Here, a time-varying discrete biological network is proposed
to characterize the practical metapopulation for the first time.
Based on this model, several novel local synchronous criteria
are then attained, which provide some new insights into the
ecological conservation and biological diversity. Moreover, these
synchronous criteria are also applicable to the synchronization
of complex networks in other biological and engineering systems.

I. INTRODUCTION

Biological networks are on our minds nowadays. There
are various complex biological networks, such as genetic
regulatory networks, food webs, metapopulations (networks
of populations), and so on [1-10]. In particular, ecological
networks are a kind of representative biological networks [1-
5]. Hereafter, we will use the ecological networks as the
typical examples to explore the synchronization of the complex
biological networks.

Ecosystems are spatially extended and timely evolving dy-
namical systems [3]. Darwin used the metaphor of a ‘tangled
bank’ to describe the complex interactions between species
[1-5]. All such interactions can be visualized as ecological
networks which reveal the underlying ecological mechanisms.
A metapopulation comprises a network of spatially separated
populations of the same species which interact at some level.
Ecologists view the extinction of species as a danger and
conservation of biological diversity as a goal.

Synchronization is an emerging collective behaviors in
nature. Since some direct and indirect evidences indicate that
synchronization is strongly correlated with global extinctions,
the synchronization of population dynamics becomes one of
major concern in the studies of ecological conservation [1-5].

Since the effects of migration in a metapopulation are
very important for predicting the possibility of extinctions at
the local scale, then the local asymptotic synchronization is
extremely important for unraveling the underlying mechanics
of global extinctions [1-5]. The most previous theoretical
and experimental researches are concentrated on the synchro-
nization of the time-invariant discrete ecosystems (biological
networks) or coupled map lattices [1-5]. Since the ecosystems
are spatially extended and timely evolving dynamical systems,
the time-invariant discrete biological networks often can not
capture some key features of the real-world ecosystems. As a
result, the local asymptotic synchronization of time-invariant
discrete biological network is often insufficient for understand-
ing the risk of global extinctions. Also, there exist various
environment noises in a metapopulation. Based on all reasons
as above, it is very necessary to introduce a time-varying
discrete biological network to characterize the network of
patch populations. In the following, a time-varying discrete
biological network is introduced and its local asymptotic
synchronization is then further investigated. Based on this
model, several local asymptotic synchronization criteria are
then proposed for predicting the possibility of extinctions at a
local scale.

The left paper is then organized as follows. A time-varying
discrete biological network model and two necessary defi-
nitions are introduced in Section II. In Section III, several
local asymptotic synchronization criteria for the time-varying
discrete biological network are proposed. A simple example is
then given to show the effectiveness of these synchronization
criteria in Section IV. Conclusions are finally drawn in Section
V.

II. A TIME-VARYING DISCRETE BIOLOGICAL NETWORK

In real-world biological context, such as metapopulation,
many different factors, such as ages, genders and species, are
often involved [1-5]. Therefore, it is necessary to use a multidi-
mensional vector to characterize the population. The evolving
rule of the population is then given by a multidimensional
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iterative map

xt+1 = F (xt), t = 0, 1, . . . , (1)

where x ∈ R
n and F : X → X (X ⊆ R

n) is a fundamental
reproductive (or birth-death) function. And the desired time-
varying discrete biological (or ecological) network with N
habitat patches (or populations) is described by

xt+1
i =

N∑
j=1

ct
ijF (xt

j), i = 1, 2, . . . , N, t = 0, 1, . . . , (2)

where xt
i ∈ X is the patch density of the ith habitat patch

at time t, C(t) = (ct
ij)N×N is the dispersal matrix at time t,

representing the coupling strength and the connecting status
between patches. Moreover, C(t) satisfies

N∑
j=1

ct
ij = 1, i = 1, 2, . . . , N, t = 0, 1, . . . , (3)

i.e., C(t) has row sums 1 for t = 0, 1, . . ., which means
that 1 is an eigenvalue of C(t) associated with eigenvector
e = (1, 1, . . . , 1)T . And the row sum 1 is a precondition that
makes a synchronous solution satisfy system (2), where the
synchronous solution is defined by xt

i = xt
j for all i and j at

time t. System (2) can be recasted as follows:

xt+1
i = F (xt

i) +
N∑

j=1

c̄t
ijF (xt

j), i = 1, 2, . . . , N, (4)

where t = 0, 1, . . ., c̄t
ij = ct

ij for i �= j and c̄t
ii = ct

ii − 1
for i, j = 1, 2, . . . , N . Thus, C(t) = C(t) − EN×N , where
EN×N is an N × N unit matrix. Furthermore, condition (3)
implies

c̄t
ii = −

N∑
j=1
j �=i

c̄t
ij , i = 1, 2, . . . , N, t = 0, 1, . . . , (5)

i.e., C(t) has zero row sums for t = 0, 1, . . .. In fact, system
(2) (or (4)) is a diffusive coupling system, which can also
describe many real-world networks, such as metabolic sys-
tems, genetic networks, food webs, Internet, communication
networks, and the World Wide Web [6-10]. For constant matrix
C, system (2) becomes a time-invariant discrete biological
network

xt+1
i =

N∑
j=1

cijF (xt
j), i = 1, 2, . . . , N, t = 0, 1, . . . . (6)

For convenience, several abbreviated notations are intro-
duced as follows. Let an N −dimensional vector e =(

1, 1,
..., 1

)
, λ1(t), λ2(t), . . . , λN (t) be the eigenvalues of

matrix C(t), λ̄1(t), λ̄2(t), . . . , λ̄N (t) be the eigenvalues of
matrix C̄(t),

�x =




x1

...
xN


 ∈ XN , F (�x) =




F (x1)
...

F (xN )


 ∈ XN .

Then the complete map �F : R
+ × XN → XN is described

by

�F(t,�x) =




N∑
j=1

ct
1jF (xj)

...
N∑

j=1

ct
NjF (xj)




= C(t) · F (�x) , (7)

and network (2) can be rewritten as follows:

�xt+1 = C(t) · F (�xt) . (8)

The trajectory of network (2) (or (8)) consists of the time
series {�xt |�xt = �F

t
(t,�x0), t ≥ 0} , where �F

0
(0, �x) = �x and

�F
t
(t,�x) = �F(t, �F

t−1
(t − 1, �x)) for t ≥ 1.

Network (2) with condition (3) implies that the synchronous
solution xt

1 = xt
2 = . . . = xt

N = st is also a solution
of the iterative map (1) of each population. Furthermore, a
synchronous attractor may be an equilibrium, a periodic orbit,
an aperiodic orbit, even or a chaotic attractor [1-10]. Before
further investigating the local asymptotic synchronization of
the time-varying discrete biological network (2), one firstly
introduces the following two definitions.

Definition 1. S = {�x = (xT
1 , . . . , xT

N )T ∈ XN |xi =
xj = s ∈ X, i, j = 1, 2, . . . , N} is called the synchronous
manifold of the time-varying discrete biological network (2)
and the time-invariant discrete biological network (6).

Definition 2. A trajectory {�xt | t = 0, 1, . . . } is asymptoti-
cally synchronous if lim

t→∞ ‖�xt − ste‖ = 0.

III. LOCAL ASYMPTOTIC SYNCHRONIZATION

It is well known that the local asymptotic synchronization is
extremely important for unraveling the underlying mechanics
of global extinctions [1-10]. This is because the effects of
migration in a metapopulation (a network of populations) are
very important for predicting the possibility of extinctions
at the local scale. In the following, based on the proposed
time-varying discrete biological network model (2), several
novel local asymptotic synchronization criteria are presented
for predicting the possibility of extinctions at a local scale.

Suppose that st is a solution of the single population
dynamics xt+1 = F (xt). Let the error vectors be

ηt
i = xt

i − st, i = 1, 2, . . . , N. (9)

Substitute system (9) into system (2) gets

ηt+1
i =

N∑
j=1

ct
ij

(
F (st + ηt

j)− F (st)
)
, i = 1, 2, . . . , N. (10)

Denote �η = �x − se =
(
ηT
1 , ηT

2 , . . . , ηT
N

)T ∈ XN . Thus
network (10) can be simplified as follows:

�ηt+1 = �F(t, ste + �ηt) − �F(t, ste) . (11)

Since C has 1 row sums, without loss of generality, let λ1 =
1. Let λmax = max

2≤i≤N
|λi|, r = sup

x∈X
‖DxF‖ . For stating
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simplification, one introduces a lemma and a hypothesis as
follows.

Lemma 1: If C = (cij)N×N has 1 row sums
and can be diagonalized, then there exists a nonsingu-
lar matrix Φ = (φ1, φ2, . . . , φN ) satisfying CT φi =
λiφi (i = 1, 2, . . . , N) with λ1 = 1, and Φ−1 =(
ϕT

1 , ϕT
2 , . . . , ϕT

N

)T
with ϕ1 = (1, 1, . . . , 1).

The proof is omitted here.

Hypothesis 1 (H1): Assume that the zero solution of the
discrete linear map ξt+1 = DstF ξt is asymptotically stable,
where F : X → X is differentiable at each x ∈ X ⊆ R

n.
And the asymptotic stability of zero solution of system (11)
is equivalent to that of its corresponding linearized system.
Suppose also that there exists t0 ≥ 1 satisfying λi(t) �= 1 or
λi(t) ≡ 1 for all t ≥ t0 and i = 1, 2, . . . , N .

Condition (3) implies that C(t) has at least an eigenvalue 1
for all t = 1, 2, · · · , i.e., there exists at least an 1 ≤ i ≤ N
satisfying λi(t) = 1 for each t = 1, 2, · · · . According to
H1, there exists t0 ≥ 1 satisfying λi(t) ≡ 1 for any t ≥ t0.
Without loss of generality, hereafter assume that λ1(t) ≡ 1
for any t ≥ t0.

Theorem 1: Suppose that H1 holds and C(t) is an N × N
real matrix with 1 row sums for t = 1, 2, · · · . Suppose also
that there exists a nonsingular real matrix Φ(t), such that
Φ−1(t)( C(t))T Φ(t) = diag{λ1(t), λ2(t), . . . , λN (t)} and
Φ−1(t)Φ(t + 1) = diag{β1(t), β2(t), . . . , βN (t)}. Then the
time-varying discrete biological network (2) (or synchronous
manifold S) is locally asymptotically synchronous if and only
if the linear systems

ξt+1
i =

[
λi(t)βi(t)DstF

]
ξt
i , i = 2, 3, . . . , N (12)

are asymptotically stable at the zero solution.
Proof: Linearizing system (11) at �ηt = 0 yields [12-15]

�ζt+1 = C(t) ⊗ DstF �ζt , (13)

where �ζ =
(
ζT
1 , ζT

2 , . . . , ζT
N

)T ∈ XN and ⊗ is the Kro-
necker product.

Rewrite system (13) as follows:

ζt+1
i = DstF [

N∑
j=1

ct
ijζ

t
j ]

= DstF [(ζt
1, ζ

t
2, . . . , ζ

t
N ) · (ct

i1, . . . , c
t
iN )T ] ,

(14)

where i = 1, 2, . . . , N . Thus one gets

(ζt+1
1 , ζt+1

2 , . . . , ζt+1
N ) = DstF [(ζt

1, ζ
t
2, . . . , ζ

t
N )(C(t))T ] .

(15)
According to the assumption of Theorem 1, one has

Φ−1(t)(C(t))T Φ(t) = Λ(t) , (16)

where Λ(t) = diag{λ1(t), λ2(t), . . . , λN (t)}. Consider the
nonsingular linear transformation

(ζt
1, ζ

t
2, . . . , ζ

t
N ) = (ξt

1, ξ
t
2, . . . , ξ

t
N )Φ−1(t) , (17)

from (15), one gets

(ξt+1
1 , ξt+1

2 , . . . , ξt+1
N )

= DstF [(ξt
1, ξ

t
2, . . . , ξ

t
N )Φ−1(t)(C(t))T Φ(t)]

[Φ−1(t)Φ(t + 1)]
= DstF [(ξt

1, ξ
t
2, . . . , ξ

t
N )Λ(t)]Γ(t) .

(18)

where Γ(t) = diag{β1(t), β2(t), . . . , βN (t)}.
Therefore, one has

ξt+1
i = [λi(t)βi(t)DstF ]ξt

i , i = 1, 2, . . . , N. (19)

H1 indicates that the asymptotic stability of zero solution of
system (11) is equivalent to that of system (13).

Since the linear transformation (17) is nonsingular, then
ζt
i → 0 is equivalent to ξt

i → 0. Thus the asymptotic stability
of zero solution of system (11) is equivalent to that of system
(19). Here, systems (19) and (12) have the same algebraic
forms for i = 2, . . . , N .

From H1, there exists t0 ≥ 1 satisfying λ1(t) ≡ 1 for
any t ≥ t0. Denote Φ(t) = (φ1(t), φ2(t), . . . , φN (t))
and Φ−1(t) =

(
ϕT

1 (t), ϕT
2 (t), . . . , ϕT

N (t)
)T

. According to
Lemma 1, ϕ1(t) = ϕ1(t + 1) = (1, 1, . . . , 1). Since
Φ−1(t + 1)Φ(t + 1) = EN×N = diag{ϕ1(t + 1)φ1(t +
1), ϕ2(t + 1)φ2(t + 1), . . . , ϕN (t + 1)φN (t + 1)}, then
ϕ1(t + 1)φ1(t + 1) = 1. From the assumption of Theorem
1, Φ−1(t)Φ(t + 1) = diag{β1(t), β2(t), . . . , βN (t)} =
diag{ϕ1(t)φ1(t + 1), ϕ2(t)φ2(t + 1), . . . , ϕN (t)φN (t + 1)}.
Then β1(t) = ϕ1(t)φ1(t + 1) = (1, 1, . . . , 1)φ1(t + 1) =
ϕ1(t + 1)φ1(t + 1) = 1.

When i = 1, λ1(t)β1(t) = 1 for all t ≥ t0 and system
(19) becomes

ξt+1
1 = DstF ξt

1 .

H1 indicates that the above linear system is asymptotically
stable at the zero solution. Therefore, the time-varying discrete
biological network (2) (or synchronous manifold S) is locally
asymptotically synchronous if and only if the linear systems
(12) are asymptotically stable at the zero solution. And the
proof is thus completed.

Based on Theorem 1, we can easily get the following
corollary.

Corollary 2: Assume that H1 holds. Suppose the dispersal
matrix C(t) = EN×N + α sin(arctan(t))C has 1 row sums
and C can be diagonalized. Then the time-varying discrete
biological network (2) is locally asymptotically synchronous
if 0 < α ≤ 1

γ and

−1 − e−µ0

α sin(arctan 1)
< λ̄i < 0, i = 2, 3, . . . , N, (20)

or − 1
γ ≤ α < 0 and

0 < λ̄i <
−1 − e−µ0

α sin(arctan 1)
, i = 2, 3, . . . , N, (21)

where λ̄i (i = 1, 2, . . . , N) are the eigenvalues of matrix
C, γ = max

2≤i≤N
|λ̄i|, and µ0 < 0 is the largest Lyapunov

exponent of population dynamical system (1).
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Fig. 1. Synchronous errors e1i (i = 2, 3, 4) between the population densities
of the patches, where e1i = xt

i − xt
1.

IV. AN EXAMPLE

To verify the effectiveness of the proposed synchronous
criteria, one analyzes a simple spatially structured discrete time
metapopulation model (2) with four patches.

Hereafter, xt
i is the population density of the ith patch at

time t. F (xi), such as logistic map [3,5], characterizes the
birth-death processes of the local population xi, which is
described by

xt+1 = a xt (1 − xt) , (22)

where a is the net growth rate of the local population.
Let a = 2.5, then system (22) has a asymptotically stable

solution xt = 1 − 1
a

and µ0 = − ln 2 < 0.

The time-varying dispersal matrix C(t) is given by C(t) =
EN×N + sin(arctan(t))C , where

C =




−0.4 0.2 0 0.2
0.8 −0.8 0 0
0.8 0 −0.8 0
0.25 0 0.25 −0.5


 . (23)

The eigenvalues of matrix C are described by λ̄1 = 0, λ̄2 =
−0.7382, λ̄3 = −0.8, λ̄4 = −0.9618.

Then γ = max
2≤i≤4

|λ̄i| = 0.9618 and 0 < α = 1 < 1
0.9618 .

Moreover, one has

−3
√

2 =
−1 − e−µ0

sin(arctan(1))
< λ̄i < 0, i = 2, 3, 4. (24)

According to Corollary 2, the spatially structured discrete
time metapopulation model (2) with four patches is locally
asymptotically synchronous.

The synchronous errors between the population densities of
the patches are defined by e1i = xt

i − xt
1 for i = 2, 3, 4.

Fig. 1 shows the synchronous errors e1i (i = 2, 3, 4) between
the population densities of the patches for 8, 000 iterations.
It is very clear from Fig. 1 that the spatially structured
discrete time metapopulation model (2) with four patches is
locally asymptotically synchronous. Therefore, our numerical
simulations are well consistent with our theoretical analysis.

V. CONCLUSIONS

We have introduced a novel time-varying discrete biological
network and further investigated its local asymptotic syn-
chronization. Moreover, several fundamental criteria are also
proposed for the local asymptotic synchronization of the time-
varying discrete biological network (2). These criteria are
essentially important and provide some new insight for the pre-
diction and evaluation of the risk of global extinctions. These
synchronous criteria are also suitable to the local asymptotic
synchronization of other complex dynamical systems, such as
the secrete communication, synchronous satellite, swarming
in the battlefield, collective motion in animal groups, and the
eradication of infectious diseases, etc.

These synchronous criteria provide the powerful tools for
evaluating and predicting the risk of global extinctions in
ecosystems. They also offer some new views on the conser-
vation of biological diversity and endangered species, such as
the weak couplings (few migration) or same fixed couplings
(uniform migration) between populations do not means the
low risk of global extinctions. Our results show that the
heterogeneous migration is more likely to decrease the risk
of global extinctions.
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