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Abstract— This paper introduces a novel four-order sys-
tem, which can generate one-directional (1-D) n−torus, two-
directional (2-D) n × m−torus, three-directional (3-D) n ×
m × l−torus, four-directional (4-D) n × m × l × p−torus
chaotic attractors. Furthermore, a novel block circuit diagram
is designed for the hardware implementation of multi-directional
grid multi-torus chaotic attractors. This is the first time in the
literature to experimentally verify a 5 × 5 × 3 × 3−torus chaotic
attractors.

I. INTRODUCTION

Over the last two decades, the design and circuit implemen-
tation of chaotic oscillators have been a subject of increasing
interest due to their applications in various chaos-based tech-
nologies and information systems [1]. In particular, the theoret-
ical design and hardware implementation of various complex
multi-scroll chaotic attractors have seen a rapid development
[1-11]. Suykens and Vandewalle firstly introduced a family of
n−double scroll chaotic attractors [2]. A switching manifold
method for creating chaotic attractors with multiple-merged
basins of attraction was proposed by Lü et al. in [5]. Yalcin et
al. presented a family of scroll grid attractors by using a step
function approach, including 1-D n−scroll, 2-D n × m−grid
scroll, and 3-D n×m× l−grid scroll chaotic attractors [3]. Lü
et al. [6-8] introduced the hysteresis and saturated functions
series methods for generating 1-D n−scroll, 2-D n × m−grid
scroll, and 3-D n × m × l−grid scroll chaotic attractors, with
a rigorously mathematical proof and a physical realization
for the chaotic behaviors. Last but not least, Yu et al. [10]
proposed a general jerk circuit approach for creating various
types of n−scroll chaotic attractors.

As is known today, a stable torus is observed as a result
after the system meets the super-critical Neimark-Sacker bi-
furcation for a limit cycle [11]. The tori are easily observed
in two-dimensional and periodically forced dynamical sys-
tems. However, there is only a few publications on stable
tori in three-dimensional autonomous systems. Moreover, the
physical circuit implementations of various tori attractors are
quite difficult. In this paper, we propose a simple four-order
system for creating 1-D n−torus, 2-D n × m−torus, 3-D
n × m × l−torus, and 4-D n × m × l × p−torus chaotic

attractors. Also, a simple block circuit diagram is constructed
for experimentally verifying these multi-directional grid multi-
torus chaotic attractors.

The rest of this paper is organized as follows. In Section
II, a novel four-order system is introduced for creating multi-
directional grid multi-torus chaotic attractors. A simple block
circuit diagram is then designed in Section III, for the hard-
ware implementations of the multi-directional grid multi-torus
chaotic attractors. Conclusions are finally drawn in Section IV.

Fig. 1. 8−torus chaotic attractor.

II. MULTI-DIRECTIONAL GRID MULTI-TORUS CHAOTIC

SYSTEM

In the following, we propose a four-order multi-directional
grid multi-torus chaotic system, which is described by




dx
dt = y − f2(y)
dy
dt = z − f3(z)
dz
dt = w − f4(w)
dw
dt = −α x − β y − γ z − δ w + α f1(x)

+ β f2(y) + γ f3(z) + δ f4(w) ,

(1)

where α, β, γ, δ are the system parameters and
f1(x), f2(y), f3(z), f4(w) are the step function series or
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Fig. 2. Various plane projections of 13 × 13 × 7 × 7−torus chaotic attractor. (a) x − y plane; (b) y − z plane; (c) z − w plane.

Fig. 3. Bifurcation diagram of parameter α.

saturated function series. For f1(x) �= 0, f2(y) = f3(z) =
f4(w) = 0, system can generate 1-D multi-torus chaotic
attractors; for f1(x) �= 0, f2(y) �= 0, f3(z) = f4(w) = 0,
system can generate 2-D multi-torus chaotic attractors;
for f1(x) �= 0, f2(y) �= 0, f3(z) �= 0, f4(w) = 0,

system can generate 3-D multi-torus chaotic attractors; for
f1(x) �= 0, f2(y) �= 0, f3(z) �= 0, f4(w) �= 0, system can
generate 4-D multi-torus chaotic attractors.

When f1(x) = A1

2∑
i=1

{sgn[x − (2i − 1)A1] + sgn[x +

(2i − 1)A1]} and f2(y) = f3(z) = f4(w) = 0, system
(1) has a 8−torus chaotic attractor for α = 0.045, β =
γ = δ = 1, A1 = 0.5 as shown in Fig. 1. When f1(x) =

A1

I∑
i=1

{sgn[x− (2i− 1)A1] + sgn[x + (2i− 1)A1]}, f2(y) =

A2

J∑
j=1

{sgn[y − (2j − 1)A2] + sgn[y + (2j − 1)A2]}, f3(z) =

A3

K∑
k=1

{sgn[z − (2k − 1)A3] + sgn[z + (2k − 1)A3]},

f4(w) = A4

Q∑
q=1

{sgn[w − (2q − 1)A4] + sgn[w + (2q −
1)A4]}, system (1) can create various 1-D n−torus, 2-D n ×
m−torus, 3-D n × m × l−torus, 4-D n × m × l × p−torus
chaotic attractors. For example, has a 13 × 13 × 7 × 7−torus
chaotic attractor for α = 0.1, β = γ = δ = 1, I = J =
6, K = Q = 3, A1 = 0.5, A2 = A3 = A4 = A1

4 as
shown in Fig. 2.
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Fig. 4. Circuit diagram for implementing multi-directional multi-torus chaotic attractors.

Let f1 = A1

4∑
i=1

{sgn[x − (2i − 1)A1] + sgn[x + (2i −
1)A1]}, f2(y) = f3(z) = f4(w) = 0, A1 = 1, A2 =

A3 = A4 = A1
4 , β = γ = δ = 1. Then the bifurcation

diagram of parameter α is shown in Fig. 3. When α = 0.1,
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Fig. 5. Experimental observations of 4-D 5 × 5 × 3 × 3 torus chaotic attractors. (a) x − y plane, where x = 0.6V/div, y = 0.2V/div; (b) y − z
plane, where y = 0.16V/div, z = 0.1V/div; (c) z − w plane, where z = 0.12V/div, w = 0.12V/div.

system (1) is chaotic and its Lyapunov exponents are given by
LE1 = 0.015, LE2 = 0, LE3 = −0.03, LE4 = −0.98.

III. CIRCUIT IMPLEMENTATION AND EXPERIMENTAL

OBSERVATIONS

Based on the operational principles of multi-torus chaotic
attractors, from (1), one can construct a circuit diagram to
realize various multi-scroll chaotic attractors.

Figure 4 shows such a circuit diagram. This circuit di-
agram includes seven different parts; that is, Part I: basic
four-order grid multi-torus circuit N0; Part II: capacitance
coupling sub-circuit Nd; Part III: generator N1 of step func-
tion series in x−direction; Part IV: generator N2 of step
function series in y−direction; Part V: generator N3 of step
function series in z−direction; Part VI: generator N4 of step
function series in w−direction; Part VII: switch linkages, in-
cluding K1, K2, K3, K10, K11, K12, K13, K14, K15, K22.
Assume that the supply voltages and saturated voltages
of all operational amplifiers are V = ±15 V and
Vsat = ±13.5 V , respectively. Furthermore, switch linkages
K1, K2, K3 control the number of directions for the four-
order grid multi-torus chaotic attractors. However, switch
linkages K10, K11, K12, K13, K14, K15 control the number
of tori in x−direction and switch linkage K22 controls the
number of tori in y−direction for four-order grid multi-torus
chaotic attractors, respectively.

Assume that K1, K2, K3, K11, K12, K22 are switched on
and K10, K13, K14, K15 are switched off. Then the circuit
diagram can generate a 5 × 5 × 3 ×3−torus chaotic attractor
for parameters Rx = 13.5kQ, Ry = Rz = Rw =
54kQ, E11 = 1.00, V E12 = 3.00V, E21 = E31 = E41 =
0.25V, E22 = 0.75. The as shown in Fig. 5.

IV. CONCLUSIONS

We have introduced a novel four-order system for generating
1-D n−torus, 2-D n × m−torus, 3-D n × m × l−torus,
4-D n × m × l × p−torus chaotic attractors. Moreover,
a novel block circuit diagram is constructed for physically
realizing multi-directional grid multi-torus chaotic attractors.

Also, it is the first time in the literature to report the hardware
implementation of a 5 × 5 × 3 × 3−torus chaotic attractors.
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