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Abstract— Over the last two decades, generating complex
multi-scroll chaotic attractors via simple electronic circuits or
simple systems has seen rapid development. This paper provides
a brief overview of the subject on multi-scroll chaotic attractors
generation, including some fundamental theories and design
methodologies.

I. INTRODUCTION

Multi-scroll chaotic attractors generation has become a
relatively mature research direction today, after rapid devel-
opments in the last two decades [1-14].

In retrospect, Suykens & Vandewalle [4] firstly introduced
a family of n−double scroll chaotic attractors by using the
so-called quasi-linear function approach. Suykens et al. [5]
also proposed a piecewise linear (PWL) function method for
generating a complete family of n−scroll chaotic attractors.
Aziz-Alaoui [1] presented a PWL function approach for cre-
ating multi-spiral chaotic attractors. Yalcin et al. [6] exper-
imentally confirmed the 3− and 5−scroll chaotic attractors
in a generalized Chua’s circuit. Tang et al. [7-8] introduced
a sine function to generate n−scroll attractors in a simple
circuit with physically realizing up to a 10−scroll chaotic
attractor observed on the oscilloscope. Similarly, Özoǧuz
et al. [3] suggested a nonlinear transconductor method for
creating n−scroll chaotic attractors. Lü et al. [9] presented a
switching manifold approach for generating chaotic attractors
with multiple-merged basins of attraction.

In particular, Yalcin et al. [10] proposed a step circuit
method for generating a family of scroll-grid chaotic attractors,
including 1-D n−scroll, 2-D n × m−grid scroll, and 3-D
n × m × l−grid scroll chaotic attractors. Lü et al. [11,13]
introduced a hysteresis circuit approach for creating 1-D
n−scroll, 2-D n × m−grid scroll, and 3-D n × m × l−grid
scroll chaotic attractors with a rigorous theoretical proof and
experimentally verifying the maximal 1-D 11−scroll, 2-D
3 × 11−grid scroll and 3-D 3 × 3 × 11−grid scroll hysteresis
chaotic attractors. Recently, Lü et al. [12-13] also initiated
a saturated circuit method for generating 1-D n−scroll, 2-D
n × m−grid scroll, and 3-D n × m × l−grid scroll attractors
with a rigorous mathematical proof and physically realizing
the maximal 1-D 14−scroll, 2-D 14 × 10−grid scroll and 3-D

10× 10× 10−grid (1000) scroll chaotic attractors. To that end,
Yu et al. [14] suggested a novel nonlinear modulating function
approach for creating n−scroll chaotic attractors based on a
general jerk circuit.

This paper is intended to offer a very brief review, with the
hope that it could benefit some new comers in both historical
literature search and future research outlook. For more infor-
mation, the readers are referred to our recent detailed review
article [3].

The rest of this paper is organized as follows. In Section
2, a PWL function approach is introduced for generating
n−scroll chaotic attractors. A switching manifold method and
basic-circuits approach are proposed for creating multi-scroll
chaotic attractors in Sections 3 and 4, respectively. In Section
5, several other techniques for multi-scroll chaotic attractors
generation are briefly discussed. Conclusions are given in
Section 6.

II. GENERATING N-SCROLL CHAOTIC ATTRACTORS VIA

PWL FUNCTIONS

Up to now, many multi-breakpoint PWL function ap-
proaches are proposed for generating n−scroll chaotic attrac-
tors from Chua’s circuit or other simple nonlinear systems. In
the following, a generalized Chua’s circuit is introduced for
generating n−scroll chaotic attractors.

Suykens et al. [5] proposed a generalized Chua’s circuit,
described by 


ẋ = α(y − h(x))
ẏ = x − y + z
ż = −β y ,

(1)

where n is a natural number and h(x) = m2n−1x +
1
2

2n−1∑
i=1

(mi−1 − mi)(|x + ci| − |x − ci|). System (1) is

determined by the parameters set {α, β, m, c}, where m =
(m0 m1 · · · m2n−1) and c = (c1 c2 · · · c2n−1).

In the case of n−double-scroll attractors, the components
of vector m have alternating signs and the sign of m0 is
negative. In the case of n−scroll attractors with an odd number
of scrolls, the components of vector m also have alternating
signs, but the sign of m0 is positive.
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III. GENERATING MULTI-SCROLL CHAOTIC ATTRACTORS

VIA SWITCHING MANIFOLD

Lü et al. [9] introduced a systematic switching manifold ap-
proach for generating chaotic attractors with multiple merged
basins of attraction from the following 3D linear controlled
system:

Ẋ = AX + f(X) , (2)

where X = (x, y, z)T ,

A =


 a b 0

−b a 0
0 0 c


 ,

and

f(X) =




k


 −x

−y
d


 , if z +

√
x2 + y2 > k,

0 , otherwise ,

in which a, b, c, d, k are real parameters. System (2) with
controller f(X) can create chaotic attractors within a wide
range of parameter values.

To generate a chaotic attractor with two merged basins of
attraction, one can modify the controller f(X) as follows:

f1(X) =




k


 −x

−y
d


 , if

z > 0,

z +
√

x2 + y2 > k,

m


 −x

−y
e


 , if

z < 0,

z −
√

x2 + y2 < −m,

δ


 0

0
−sign(z)


 , otherwise ,

where a, b, c, d, e, k, m, δ are all real parameters.
Similarly, one can create chaotic attractors with n merged

basins of attraction. The formalized design approach is out-
lined as follows:

(i) Partition the whole space into n subspaces. For conve-
nience, one may partition the space along the z-axis.

(ii) Duplicate the original attractors, the upper-attractor and
the lower-attractor, to every subspace.

(iii) Use the switching controller to connect all the n
independent attractors, so as to form a single chaotic attractor
with multiple merged basins of attraction.

Here, the switching controller can be chosen as δ sign(z −
hi), where the height hi (between two neighboring subspaces)
should be smaller than the height of a single chaotic attractor.

IV. GENERATING MULTI-DIRECTIONAL MULTI-SCROLL

CHAOTIC ATTRACTORS VIA BASIC CIRCUITS

This section reviews several approaches for generating
multi-directional multi-scroll chaotic attractors by using three
basic circuits: step circuit, hysteresis circuit and saturated
circuit.

A. Step circuit

Yalcin et al. [10] proposed a new family of scroll and
grid-scroll attractors by using the step circuit, including 1-D
n−scroll, 2-D n × m−grid scroll, and 3-D n × m × l−grid
scroll chaotic attractors. The state equation of this family of
systems is given by

Ẋ = AX + Bσ(CX) , (3)

where X = (x, y, z)T , B = diag{1, 1, 1} and

A =


 0 1 0

0 0 1
−a −a −a


 , C =


 0 1 0

0 0 1
1 0 0


 .

There are three different cases:
(i) 1-D n-scroll chaotic attractors:




by = bz = 0 ,

σ(·) =


 0

0
f1(·)


 ,

where f1(x) =
Mx∑
i=1

g−2i+1
2

(x) +
Nx∑
i=1

g 2i−1
2

(x) and

gθ(ζ) =




1, ζ ≥ θ θ > 0 ,
0, ζ < θ θ > 0 ,
0, ζ ≥ θ θ < 0 ,
−1, ζ < θ θ < 0 ,

which belongs to the sector [0, 2].
(ii) 2-D n × m−grid scroll chaotic attractors:




by = −1, bz = 0 ,

σ(·) =


 f1(·)

0
f2(·)


 ,

where f1(·) is defined in (i), f2(x) =
m−1∑
i=1

β gpi(x) with

pi = My + 0.5 + (i−1)(My + Ny + 1), β = My + Ny + 1,
which belongs to the sector [0,

My + Ny +1
My +0.5 ].

(iii) 3-D n × m × l−grid scroll chaotic attractors:



by = −1, bz = −1 ,

σ(·) =


 f1(·)

f1(·)
f3(·)


 ,

where f1(·) is defined in (i), f3(x) =
k−1∑
i=1

γ gnl
(x) with

nl = ρ + 0.5 + (l − 1)(ρ + ζ + 1), γ = ρ + ζ + 1,

ρ =
∣∣∣∣min

i,j
{ueq,y

i + ueq,z
j }

∣∣∣∣ , ζ =
∣∣∣∣max

i,j
{ueq,y

i + ueq,z
j }

∣∣∣∣, in

which ueq,y
i , ueq,z

j are the vectors for the y and z variables
related to the equilibrium points, respectively, which belongs
to the sector [0, ζ + ρ +1

ρ +0.5 ].
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B. Hysteresis circuit

Lü et al. [11] introduced a new systematic approach for gen-
erating multi-directional multi-scroll chaotic attractors from a
3D linear autonomous system using hysteresis series, including
1-D n−scroll, 2-D n × m−grid scroll, and 3-D n × m ×
l−grid scroll attractors. The system is described by (3) with
B = −A, C = diag{1, 1, 1}, and

A =


 0 1 0

0 0 1
−a −b −c


 .

There are three different cases to consider:
(i) 1-D hysteresis n−scroll chaotic attractors:

σ(X) =


 h(x, p1, q1)

0
0


 ,

where the hysteresis series function h(x, p1, q1) is defined by

h(x, p1, q1) =




−p1 if x < −p1 + 1

i if
i − 1 < x < i + 1
i = −p1 + 1, · · · , q1 − 1

q1 if x > q1 − 1.

(4)

(ii) 2-D hysteresis n × m−grid scroll chaotic attractors:

σ(X) =


 h(x, p1, q1)

h(y, p2, q2)
0


 ,

where the hysteresis series functions h(x, p1, q1) and
h(y, p2, q2) are similarly defined by (4).

(iii) 3-D hysteresis n × m × l−grid scroll chaotic attrac-
tors:

σ(X) =


 h(x, p1, q1)

h(y, p2, q2)
h(z, p3, q3)


 ,

where the hysteresis series functions h(x, p1, q1),
h(y, p2, q2), and h(z, p3, q3) are similarly defined by
(4).

Lü et al. [13] also designed a novel block circuit diagram
for physically realizing 1-D 5 ∼ 11−scroll, 2-D 3 × 5 ∼
11−grid scroll, and 3-D 3 × 3 × 5 ∼ 11−grid scroll chaotic
attractors.

C. Saturated circuit

Lü et al. [12] initiated a 3D saturated multi-scroll chaotic
system described by (3) with C = diag{1, 1, 1} and

A =


 0 1 0

0 0 1
−a −b −c


 , B =


 0 − d2

b 0
0 0 − d3

c
d1 d2 d3


 .

This system can produce three different types of attractors, as
follows:

(i) 1-D saturated n−scroll chaotic attractors:

σ(CX) =


 f(x ; k1, h1, p1, q1)

0
0


 ,

where the saturated function series f(x ; k1, h1, p1, q1) is
defined by

f(x ; k1, h1, p1, q1) =


(2q1 + 1)k1, if x > q1h1 + 1

k1(x − ih1) + 2ik1, if
|x − ih1| ≤ 1
−p1 ≤ i ≤ q1

(2i + 1)k1, if
1 < x − ih1 < h1 − 1
−p1 ≤ i ≤ q1 − 1

−(2p1 + 1)k1, if x < −p1h1 − 1 .
(5)

(ii) 2-D saturated n × m−grid scroll chaotic attractors:

σ(CX) =


 f(x ; k1, h1, p1, q1)

f(y ; k2, h2, p2, q2)
0


 ,

where f(x ; k1, h1, p1, q1) and f(y ; k2, h2, p2, q2) are sim-
ilarly defined by (5).

(iii) 3-D saturated n × m× l−grid scroll chaotic attractors:

σ(CX) =


 f(x ; k1, h1, p1, q1)

f(y ; k2, h2, p2, q2)
f(z ; k3, h3, p3, q3)


 ,

where f(x ; k1, h1, p1, q1), f(y ; k2, h2, p2, q2), and
f(z ; k3, h3, p3, q3) are similarly defined by (5).

Moreover, Lü et al. [13] also designed a block cir-
cuitry for experimentally verifying 1-D 10, 12, 14−scroll, 2-
D 10, 12, 14 × 10−grid scroll, and 3-D 10 × 10 × 10−grid
scroll chaotic attractors. Particularly, it was the first time in
the literature to report the experimental verification of 1-D
14−scroll, 2-D 14 × 10−grid scroll and 3-D 10 × 10 ×
10−grid (1000) scroll chaotic attractors.

V. GENERATING MULTI-SCROLL CHAOTIC ATTRACTORS

VIA OTHER APPROACHES

In this section, several other techniques for creating multi-
scroll chaotic attractors are briefly discussed.

A. Sine function approach

Tang et al. [7] applied the sine function to replace the
nonlinear characteristic function of Chua’s circuit and obtained
a modified Chua’s circuit as follows:


ẋ = α(y − f(x))
ẏ = x − y + z
ż = −β y ,

(6)

where

f(x) =




bπ
2a (x − 2ac) x ≥ 2ac
−b sin(π x

2a + d) −2ac < x < 2ac
bπ
2a (x + 2ac) x ≤ −2ac ,

and

d =
{

π for c is even
0 for c is odd ,

in which α, β, a, b, c, d are real parameters.
Note that system (6) can generate (c + 1)−scroll chaotic

attractors. Tang et al. [7] also constructed an electronic circuit
to experimental verify these n−scroll chaotic attractors.
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B. Transconductor function method

Similarly, Özoǧuz et al. [3] constructed an n−scroll chaotic
attractors generator by using the smooth hyperbolic tangent
functions, which is described by
 ẋ

ẏ
ż


 =


 0 1 0

0 0 1
0 −a −a





 x

y
z


 +


 0

0
−af(x1)


 ,

(7)

where f(x) =
M∑

j =−N

(−1)j−1 tanh k(x − oj) and M, N

are odd integers. System (7) can generate a M + N +2
2 −scroll

chaotic attractor.

C. General nonlinear modulating functions approach

The general jerk circuit is described by
...
x + β ẍ + γ ẋ = f(x) , (8)

where β, γ are real parameters, f(x) is a nonlinear function,
ẋ = dx

dτ is the velocity, ẍ = d2x
dτ2 is the acceleration, and

...
x = d3x

dτ3 is the jerk.
Yu et al. [14] introduced a PWL function with varying

breakpoints and slopes to create n−scroll chaotic attractors
from (8). It includes two cases with even and odd numbers of
scrolls, respectively:

(1) Even number of scrolls:

f1(x) =
M∑

n=−M

A
2αn

[∣∣(x − 2An
B

)
+ αn

∣∣
− ∣∣(x − 2An

B

) − αn

∣∣] − Bx ,

where parameters A > 0, 0.8 ≤ B ≤ 1.2, αn ∈
(0, 3A

10B ] (n = 0, ±1, · · · , ±M), M = 1, 2, · · · ,
which can create 2M + 2 scrolls in the chaotic attractor.

(2) Odd number of scrolls:

f2(x) =
M∑

n=−M

n�=0

A
2αn

[∣∣∣(x − A
B (2n − |n|

n )
)

+ αn

∣∣∣
−

∣∣∣(x − A
B (2n − |n|

n )
)
− αn

∣∣∣] − Bx ,

where parameters A > 0, 0.8 ≤ B ≤ 1.2, αn ∈
(0, 3A

10B ] (n = ±1, ±2, · · · , ±M), M = 1, 2, · · · ,
which can create 2M + 1 scrolls in the chaotic attractor.

D. Hyperchaotic multi-scroll attractors from the modified
MCK circuit

Yalcin et al. [2] proposed a modified MCK circuit method
for creating n−double scroll hyperchaotic attractors, which is
given by 



ẋ = α (g(y − x) − z)
ẏ = β (−g(y − x) − w)
ż = x + z
ẇ = γ y ,

(9)

where g(y − x) = m0(y − x) + 1
2

2n−1∑
i=1

(mi − mi−1)(|y −
x + ci| − |y − x − ci|).

Moreover, Yu et al. [3] further modified its PWL character-
istic to generate n−scroll hyperchaotic attractors, as follows:

g(y − x) = mN−1(y − x) + 1
2

N−1∑
i=1

(mi−1 − mi)(|y − x +

ci| − |y − x − ci|).
VI. CONCLUSIONS

This paper briefly reviews the main advances of multi-
scroll chaotic attractors generation, including PWL method,
switching manifold approach, basic circuits method, sine
and transconductor functions techniques, nonlinear modulating
functions approach, and modified MCK circuit method. A
more detailed review can be found in our overview article
[3].
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[14] S. M. Yu, J. Lü, H. Leung, and G. Chen, “Design and implementation
of n−scroll chaotic attractors from a general jerk circuit,” IEEE Trans.
Circuits Syst. I, vol. 52, no. 7, pp. 1459-1476, Jul. 2005.

705


	Main
	Welcome Messages
	Committees
	Table of Contents
	Technical Program
	Tutorials
	Keynote Talks
	Conference at a Glance
	Technical Program at a Glance
	Author Index
	Session Chair Index
	Reviewers
	CD-ROM Help
	Search
	Zoom In
	Zoom Out
	View Full Page
	Go to Previous Document

