N-Scroll Chaotic Attractors from A General Jerk Circuit

Simin Yu
College of Automation
Guangdong University
of Technology
Guangzhou 510090, China Chinese Academy of Sciences
Beijing 100080, China
Email: jhlu@iss.ac.cn
Institute of Systems Science
Academy of Mathematics and Systems Science

Henry Leung
Department of Electrical and
Computer Engineering
University of Calgary
AB, T2N 1N4, Canada
Email: leungh@ucalgary.ca

Guanrong Chen
Department of Electronic
Engineering
City University of Hong Kong
Hong Kong, China
Email: gchen@ee.cityu.edu.hk

Abstract

This paper proposes a novel nonlinear modulating function approach for generating n-scroll chaotic attractors based on a general jerk circuit. The systematic nonlinear modulating function methodology developed here can arbitrarily design the swings, widths, slopes, breakpoints, equilibrium points, and shapes of the n-scroll chaotic attractors via the adjustable sawtooth wave, triangular wave, and transconductor wave functions. A block circuit diagram is designed for hardware implementation of various $3 \sim 12$-scroll attractors via switchings of the switch linkages. This is the first time to experimentally verify a 12 -scroll chaotic attractor generated by an analog circuit under the laboratory environment.

I. Introduction

The so-called jerk circuits are described by $\dddot{x}=$ $J(x, \dot{x}, \ddot{x})$. Jerk circuits have some practical applications in, for example, broadband signal generations and secure communications. This is because they are simple circuits that are easy to build, to be re-scaled (to any desired frequencies), and to analyze, predict, and control with very high accuracy [1-2]. On the other hand, multi-scroll chaotic attractors also have many practical applications [3-10]. Notice, however, that a general jerk system can only generate single- or doublescroll attractors [1-2]. Therefore, it is very interesting to ask whether or not the general jerk circuits can be slightly modified so as to generate n-scroll chaotic attractors. This paper gives a positive answer to this question. More precisely, this paper introduces a nonlinear modulating function approach for creating n-scroll chaotic attractors based on a general jerk circuit. Moreover, a block circuit diagram is designed for hardware implementations of various $3 \sim 12$-scroll attractors by using the switchings of the switch linkages.

This paper is organized as follows. In Section II, a general jerk circuit is introduced. The proposed design approach is further discussed in Section III. In Section IV, a simple circuit diagram is constructed for experimentally verifying the $n-$ scroll chaotic attractors. Conclusions are finally given in Section V.

II. A General Jerk Circuit

The general jerk circuit is described by

$$
\begin{equation*}
\dddot{x}+\beta \ddot{x}+\gamma \dot{x}=f(x) \tag{1}
\end{equation*}
$$

where β, γ are real parameters, $f(x)$ is a nonlinear function, $\dot{x}=\frac{d x}{d \tau}$ is the velocity, $\ddot{x}=\frac{d^{2} x}{d \tau^{2}}$ is the acceleration, $\dddot{x}=\frac{d^{3} x}{d \tau^{3}}$ is the jerk (or, the rate of change of the acceleration by mechanical means), $\tau=\frac{t}{R_{0} C_{0}}$, in which $\frac{1}{R_{0} C_{0}}$ is the transformation factor of the time scale, and also is the integral constant of the integrator. For simplicity, assume that $\beta=$ $0.6, \gamma=1$. The following is a result for the stability of the equilibrium point $\left(x_{0}, 0,0\right)$ of the jerk system (1).

Lemma 1: Assume that $f(x)$ is differentiable at the equilibrium point $\left(x_{0}, 0,0\right)$. A necessary and sufficient condition for the stability of the equilibrium point $\left(x_{0}, 0,0\right)$ is that $\beta>0$ and $-\beta \gamma<f^{\prime}<0$, where $f^{\prime}=\left.\frac{d f}{d \tau}\right|_{x=x_{0}}$.

III. Design of n-Scroll Chaotic Attractors

A. Modulating Function Approach

In the following, a swing modulating function of double sawtooth wave is constructed to generate multi-scroll chaotic attractors in the jerk system (1). This function is described by

$$
\begin{equation*}
f(x)=|F(x)| \operatorname{sgn}(x)-x \tag{2}
\end{equation*}
$$

where $F(x)$ is the swing modulating function, which controls the swings of scrolls and equilibrium points of system (1).

It is noticed that the modulating function $F(\cdot)$ may be an autonomous function, or a non-autonomous function produced by outer signals. Of course, $F(\cdot)$ can be a constant in the special case. To create chaos in system (1) with (2), the modulating function $F(\cdot)$ has to satisfy some conditions. Here, assume that

$$
\begin{equation*}
|F(\cdot)|=|A \sin (a x)| \tag{3}
\end{equation*}
$$

where $A, a>0$ are parameters. Let $A=5, a=1.27$. Then, system (1) with (2) and (3) has a scroll-nesting 4-scroll chaotic attractor, as shown in Fig. 1.

B. Adjustable Sawtooth Wave Method

To generate a chaotic attractor with an even number of scrolls, the adjustable sawtooth wave is used, which is de-

Fig. 1. Scroll-nesting 4-scroll chaotic attractor.
scribed by

$$
\begin{align*}
f_{1}(x)= & A_{0} \operatorname{sgn}(x)+\sum_{i=1}^{M}\left[\frac{A_{i-1}+A_{i}}{2} \operatorname{sgn}\left(x-\frac{2}{B} \sum_{j=0}^{i-1} A_{j}\right)\right] \\
& +\sum_{i=1}^{M}\left[\frac{A_{i-1}+A_{i}}{2} \operatorname{sgn}\left(x+\frac{2}{B} \sum_{j=0}^{i-1} A_{j}\right)\right]-B x \tag{4}
\end{align*}
$$

where all parameters $A_{i}>0(i=0,1,2, \cdots)$ and $B \in$ $[0.7,1.2]$, which can create $2 M+2(M=1,2,3, \cdots)$ scrolls in the attractor.

Similarly, to generate a chaotic attractor with an odd number of scrolls, the adjustable sawtooth wave is used, which is described by

$$
\begin{align*}
f_{2}(x)= & \sum_{i=1}^{M}\left\{\frac{A_{i-1}+A_{i}}{2} \operatorname{sgn}\left[x-\frac{1}{B}\left(2 \sum_{j=0}^{i-1} A_{j}-A_{0}\right)\right]\right\}+ \\
& \sum_{i=1}^{M}\left\{\frac{A_{i-1}+A_{i}}{2} \operatorname{sgn}\left[x+\frac{1}{B}\left(2 \sum_{j=0}^{i-1} A_{j}-A_{0}\right)\right]\right\}-B x \tag{5}
\end{align*}
$$

where all parameters $A_{i}>0(i=0,1,2, \cdots)$ and $B \in$ $[0.7,1.2]$, which can create $2 M+1(M=1,2,3, \cdots)$ scrolls in the attractor.

Assume that (i) $f_{1}(x)$ and $f_{2}(x)$ are odd functions, and (ii) the zeros of $f_{1}(x)$ and $f_{2}(x)$ lie in the centers of two neighboring breakpoints. Then, one can rigorously deduce a set of recursive formulas on the parameters of sawtooth wave, as follows:
(i) The slopes of the sawtooth waves $f_{1}(x)$ and $f_{2}(x)$ are $-B$, satisfying $B \in[0.7,1.2]$.
(ii) Denote the swings of the scrolls of the sawtooth waves $f_{1}(x)$ and $f_{2}(x)$ by $E_{i}(i=0,1, \cdots, M)$. Then, the recursive formulas of E_{i} are

$$
\begin{equation*}
E_{0}=2 A_{0}, \quad E_{i}=A_{i-1}+A_{i} \tag{6}
\end{equation*}
$$

where $i=1, \cdots, M$.
(iii) Denote the widths between two neighboring scrolls of the sawtooth waves $f_{1}(x)$ and $f_{2}(x)$ by $W_{i}(i=$
$0,1, \cdots, M-1)$. Then, the recursive formulas of W_{i} (except the outside edge scroll) are

$$
\begin{equation*}
W_{i}=\frac{2 A_{i}}{B}, \tag{7}
\end{equation*}
$$

where $i=0,1, \cdots, M-1$.
(iv) Denote the breakpoints of the sawtooth waves $f_{1}(x)$ and $f_{2}(x)$ by $S_{i}(i=0,1, \cdots, M)$. Then, the recursive formulas of S_{i} are

$$
\left\{\begin{array}{l}
S_{i, f_{1}}=\frac{1}{B} \sum_{j=0}^{i-1} 2 A_{j} \tag{8}\\
S_{i, f_{2}}=\frac{1}{B}\left(\sum_{j=0}^{i-1} 2 A_{j}-A_{0}\right)
\end{array}\right.
$$

where $i=1,2, \cdots, M$.
(v) Denote the zeros of the sawtooth waves $f_{1}(x)$ and $f_{2}(x)$ by $P_{i}(i=0,1, \cdots, M)$. Then, the recursive formulas of P_{i} are

$$
\left\{\begin{array}{l}
P_{i, f_{1}}=\frac{1}{B}\left(\sum_{j=0}^{i-1} 2 A_{j}-A_{i-1}\right) \tag{9}\\
P_{i, f_{2}}=\frac{1}{B}\left(\sum_{j=0}^{i-1} 2 A_{j}-A_{i-1}-A_{0}\right)
\end{array}\right.
$$

where $i=1, \cdots, M$.
In the following, all the parameters of the chaotic attractor are calculated by using the recursive formulas (6)-(9). Four kinds of 12 -scroll chaotic attractors with different sizes are further investigated; that is, Type I: multi-scroll attractors, with the sizes of the scrolls gradually increasing from the center to both sides; Type II: multi-scroll attractors, with the sizes of the scrolls gradually decreasing from the center to both sides; Type III: multi-scroll attractors, with the scrolls alternating between small and large scrolls; Type IV: multiscroll attractors, with all scrolls being same in size.

C. Adjustable Triangular Wave Approach

In most chaotic circuits, such as Chua's circuit, the fourdimensional Matsumoto-Chua-Kobayashi (MCK) chaotic circuit, and some Sprott's chaotic jerk circuits, their piecewise linear (PWL) functions have constant breakpoints and slopes. In the following, a PWL function with varying breakpoints and slopes is constructed, to create single-scroll and double-scroll attractors in the jerk system (1). The function is described by

$$
\begin{align*}
f(x) & =\frac{A}{2 \alpha}(|x+\alpha|-|x-\alpha|)-B x \\
& = \begin{cases}-B x-A & x<-\alpha \\
\frac{A-\alpha B}{\alpha} x & -\alpha \leq x \leq \alpha \\
-B x+A & x>\alpha\end{cases} \tag{10}
\end{align*}
$$

where parameters $A>0, B \in[0.8,1.2]$, and $\alpha \in\left(0, \frac{A}{B}\right]$ represents the varying breakpoints.

Based on (10), to generate a chaotic attractor with an even number of scrolls, the adjustable triangular wave is constructed as

$$
\begin{align*}
f_{1}(x)= & \sum_{n=-M}^{M} \frac{A}{2 \alpha_{n}}\left[\left|\left(x-\frac{2 A n}{B}\right)+\alpha_{n}\right|\right. \tag{11}\\
& \left.-\left|\left(x-\frac{2 A n}{B}\right)-\alpha_{n}\right|\right]-B x
\end{align*}
$$

Fig. 2. Circuit diagram of $n-$ scroll attractors.
where parameters $A>0,0.8 \leq B \leq 1.2, \alpha_{n} \in$ $\left(0, \frac{3 A}{10 B}\right](n=0, \pm 1, \cdots, \pm M), M=1,2, \cdots$, which can create $2 M+2$ scrolls in the chaotic attractor.

Similarly, to generate a chaotic attractor with an odd number of scrolls, the adjustable triangular wave is constructed as

$$
\begin{align*}
f_{2}(x)= & \sum_{\substack{n=-M \\
n \neq 0}}^{M} \frac{A}{2 \alpha_{n}}\left[\left|\left(x-\frac{A}{B}\left(2 n-\frac{|n|}{n}\right)\right)+\alpha_{n}\right|\right. \tag{12}\\
& \left.-\left|\left(x-\frac{A}{B}\left(2 n-\frac{|n|}{n}\right)\right)-\alpha_{n}\right|\right]-B x
\end{align*}
$$

where parameters $A>0,0.8 \leq B \leq 1.2, \alpha_{n} \in$ $\left(0, \frac{3 A}{10 B}\right](n= \pm 1, \pm 2, \cdots, \pm M), M=1,2, \cdots$, which can create $2 M+1$ scrolls in the chaotic attractor.

D. Adjustable Transconductor Wave Method

To generate a chaotic attractor with an even number of scrolls, the adjustable transconductor wave is constructed as

$$
\begin{equation*}
f_{1}(x)=\sum_{n=-M}^{M} A \tanh \left[C_{n}\left(x-\frac{2 n A}{B}\right)\right]-B x \tag{13}
\end{equation*}
$$

where A, B, C_{n} are adjustable parameters, and $M \in N$.

Similarly, to create a chaotic attractor with an odd number of scrolls, the adjustable transconductor wave is constructed as

$$
\begin{equation*}
f_{2}(x)=\sum_{\substack{n=-M \\ n \neq 0}}^{M} A \tanh \left[C_{n}\left(x-\left(2 n-\frac{|n|}{n}\right) \frac{A}{B}\right)\right]-B x \tag{14}
\end{equation*}
$$

where A, B, C_{n} are adjustable parameters, and $M \in N$.

IV. Circuit Implementation OF n-Scroll Chaotic ATTRACTORS

Based on the operational principles of sawtooth waves and triangular waves, according to (1), (4), (5), (11), and (12), one can design a circuit diagram to realize various multi-scroll chaotic attractors.

Figure 2 shows such a circuit diagram. This circuit diagram includes five different parts; that is, Part I: integrator N_{0}; Part II: sawtooth wave and triangular wave generator N_{1}; Part III: buffer N_{2}; Part IV: switch linkages, including $K, K_{10}, K_{11}, K_{12}, K_{13}, K_{14}, K_{15}$; Part V: voltage-current conversion resistors $R 10 \sim R 15$. Let $R_{3 j}=1 k \Omega$ and
$R_{2 j}=200 k \Omega$ for $0 \leq j \leq 5$. When K is switched on, N_{1} generates a triangular wave; when K is switched off, N_{1} creates a sawtooth wave. According to (6)-(9), all experimental parameters can be closely calculated for generating Types I, II, III, and IV of chaotic attractors.

To generate an attractor with an even number of scrolls, K_{10} and K_{11} are switched on. When $K_{12}, K_{13}, K_{14}, K_{15}$ are switched off, the circuit diagram can create a 4 -scroll attractor; when K_{12} is switched on and K_{13}, K_{14}, K_{15} are switched off, the circuit diagram can generate a 6 -scroll attractor; when K_{12}, K_{13} are switched on and K_{14}, K_{15} are switched off, the circuit diagram can create a 8 -scroll attractor; when K_{12}, K_{13}, K_{14} are switched on and K_{15} is switched off, the circuit diagram can generate a $10-$ scroll attractor; when $K_{12}, K_{13}, K_{14}, K_{15}$ are switched on, the circuit diagram can create a 12 -scroll attractor, as shown in Fig. 3.

To generate an attractor with an odd number of scrolls, K_{10} is switched off and K_{11} is switched on. When $K_{12}, K_{13}, K_{14}, K_{15}$ are switched off, the circuit diagram can create a 3 -scroll attractor; when K_{12} is switched on and K_{13}, K_{14}, K_{15} are switched off, the circuit diagram can generate a 5 -scroll attractor; when K_{12}, K_{13} are switched on and K_{14}, K_{15} are switched off, the circuit diagram can create a 7 -scroll attractor; when K_{12}, K_{13}, K_{14} are switched on and K_{15} is switched off, the circuit diagram can generate a $9-$ scroll attractor; when $K_{12}, K_{13}, K_{14}, K_{15}$ are switched on, the circuit diagram can create a 11 -scroll attractor. Due to space limitation, figures are omitted here.

V. CONCLUSION

This paper has reported a nonlinear modulating function approach for generating n-scroll chaotic attractors from a general jerk circuit. A simple block circuit diagram has been designed for experimental verification of various $3 \sim$ $12-$ scroll chaotic attractors. In particular, the adjustability of the sawtooth wave and triangular wave as well as the rigorous recursive formulas provide a theoretical principle for physically realizing chaotic attractors with a large number of scrolls.

Acknowledgment

This work was supported by National Natural Science Foundation of China under Grant No. 60304017 and Grant No.20336040/B06, Natural Science Foundation of Guangdong Province under Grant No.32469, Science and Technology Program of Guangzhou City under Grant No.2004J1-C0291, and the City University of Hong Kong under the SRG Grant 7001702(EE).

REFERENCES

[1] J. C. Sprott, "Simple chaotic systems and circuits," Amer. J. Phys., vol. 68, no. 8, pp. 758-763, Aug. 2000.
[2] J. C. Sprott, "A new class of chaotic circuit," Phys. Lett. A, vol. 266, no. 1, pp. 19-23, Feb. 2000.
[3] J. A. K. Suykens and J. Vandewalle, "Generation of n-double scrolls ($n=1,2,3,4, \cdots$)," IEEE Trans. Circuits Syst. I, vol. 40, no. 11, pp. 861-867, Nov. 1993.

Fig. 3. Experimental observations of the $12-$ scroll chaotic attractors. From up to down: (a) Type I, $x=1.1 \mathrm{~V} / \mathrm{div}$, $y=0.4 \mathrm{~V} / \mathrm{div}$; (b) Type II, $x=1.05 \mathrm{~V} / \mathrm{div}, y=0.5 \mathrm{~V} / \mathrm{div}$; (c) Type III, $x=0.8 \mathrm{~V} / \mathrm{div}, y=0.4 \mathrm{~V} / \mathrm{div}$; (d) Type IV, $x=0.66 \mathrm{~V} / \mathrm{div}, y=0.33 \mathrm{~V} / \mathrm{div}$.
[4] M. E. Yalcin, J. A. K. Suykens, J. Vandewalle, and S. Ozoguz, "Families of scroll grid attractors," Int. J. Bifurcation Chaos, vol. 12, no. 1, pp. 23-41, Jan. 2002.
[5] M. E. Yalcin, J. A. K. Suykens, and J. Vandewalle, "Experimental confirmation of $3-$ and 5 -scroll attractors from a generalized Chua's circuit," IEEE Trans. Circuits Syst. I, vol. 47, no. 3, pp. 425-429, Mar. 2000.
[6] J. Lü, T. Zhou, G. Chen, and X. Yang, "Generating chaos with a switching piecewise-linear controller," Chaos, vol. 12, no. 2, pp. 344349, Jun. 2002.
[7] J. Lü, X. Yu, and G. Chen, "Generating chaotic attractors with multiple merged basins of attraction: A switching piecewise-linear control approach," IEEE Trans. Circuits Syst. I, vol. 50, no. 2, pp. 198-207, Feb. 2003.
[8] J. Lü, F. Han, X. Yu, and G. Chen, "Generating 3-D multi-scroll chaotic attractors: A hysteresis series switching method," Automatica, vol. 40, no. 10, pp. 1677-1687, Nov. 2004.
[9] J. Lü, G. Chen, X. Yu, and H. Leung, "Design and analysis of multiscroll chaotic attractors from saturated function series," IEEE Trans. Circuits Syst. I, vol. 51, no. 12, pp. 2476-2490, Dec. 2004.
[10] S. M. Yu, S. S. Qiu, and Q. H. Lin, "New results of study on generating multiple-scroll chaotic attractors," Science in China Series F, vol. 46, no. 2, pp. 104-115, Feb. 2003.

