Experimental Verification of 3-D Hysteresis Multi-Scroll Chaotic Attractors

Jinhu Lü
Institute of Systems Science
Academy of Mathematics and Systems Science
Chinese Academy of Sciences Guangzhou 510090, China
Beijing 100080, China
Email: jhlu@iss.ac.cn
Simin Yu
College of Automation
Guangdong University
of Technology

Henry Leung
Department of Electrical and
Computer Engineering
University of Calgary
AB, T2N 1N4, Canada
Email: leungh@ucalgary.ca

Guanrong Chen
Department of Electronic Engineering
City University of Hong Kong
Hong Kong, China
Email: gchen@ee.cityu.edu.hk

Abstract

This paper introduces a novel circuit design for experimental verification of 3-D hysteresis multi-scroll chaotic attractors. A block circuit diagram is shown for realizing 1 D $5 \sim 11$-scroll, 2-D $3 \times 5 \sim 11-$ grid scroll, and 3-D $3 \times 3 \times 5 \sim 11$-grid scroll chaotic attractors by operating the switches. Moreover, this design provides a theoretical principle for hardware implementation of chaotic attractors in multidirections with a large number of scrolls.

I. Introduction

Recently, generating multi-scroll chaotic attractors by using some simple electronic circuits has been a topic with increasing interest [1-15]. Yalcin et al. [2] proposed a step function method for creating one-directional (1-D) n-scroll, two-directional (2-D) $n \times m$-grid scroll, and three-directional (3-D) $n \times m \times l$-grid scroll chaotic attractors. Lately, Lü et al. [3-4] presented a switching manifold approach for generating chaotic attractors with multiple-merged basins of attraction. Hysteresis can also create chaos [5-12]. Some theoretical analysis and synthesis of hysteresis chaos generators are reported in [5-7], and recently Lü et al. [9] introduced a hysteresis series method for creating 1-D $n-$ scroll, 2-D $n \times m$-grid scroll, and 3-D $n \times m \times l$-grid scroll attractors, with a rigorously mathematical proof for the chaotic behaviors.

All the aforementioned multi-scroll chaotic attractors can be easily realized by numerical simulations. Yet, it is much more difficult to realize multi-scroll chaotic attractors by a physical electronic circuit. Yalcin et al. [15] experimentally confirmed the 3 - and 5 -scroll chaotic attractors in a generalized Chua's circuit. Zhong et al. [14] also proposed a systematical circuit design for physically realizing up to as many as ten scrolls visible on the oscilloscope. Yalcin et al. [2] experimentally verified the maximum 2-D 3×3-grid scroll and 3-D $2 \times$ 2×2-grid scroll chaotic attractors.

It is very difficult to physically realize a nonlinear resistor which has an appropriate characteristic with many segments [2,14]. Moreover, the realization of a nonlinear resistor with multi-segment is essential for hardware implementation of a chaotic attractor in multi-directions with a large number of scrolls. However, physical conditions always limit or even prohibit such circuit realization. A novel block circuit diagram
is designed in this paper for experimentally verifying the 3D hysteresis multi-scroll chaotic attractors. It should be noted that it is the first time to report an experimental verification of 2-D 3×11-grid scroll and 3-D $3 \times 3 \times 11$-grid scroll chaotic attractors.

The rest of this paper is organized as follows. In Section II, the hysteresis multi-scroll chaotic system is briefly introduced. A novel block circuit diagram is then described in Section III for experimental verification of the 3-D hysteresis multi-scroll attractors. Conclusions are finally given in Section IV.

II. Hysteresis Multi-Scroll Chaotic Attractors

Recently, Lü et al. [9] introduced a three-dimensional hysteresis multi-scroll chaotic system, which is described by

$$
\begin{equation*}
\dot{X}=A X+B \theta(X), \tag{1}
\end{equation*}
$$

where $X=(x, y, z)^{T}$ is the state vector, $B=-A$, and

$$
A=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-a & -b & -c
\end{array}\right)
$$

There are three different cases to consider, as follows:
(1) 1-D hysteresis n-scroll attractors:

$$
\theta(X)=\left(\begin{array}{c}
h\left(x, p_{1}, q_{1}\right) \tag{2}\\
0 \\
0
\end{array}\right)
$$

where the hysteresis series function $h\left(x, p_{1}, q_{1}\right)$ is defined by

$$
h\left(x, p_{1}, q_{1}\right)=\left\{\begin{array}{lll}
-p_{1} & \text { if } & x<-p_{1}+1 \tag{3}\\
i & \text { if } & i-1<x<i+1 \\
q_{1} & \text { if } & x>p_{1}+1, \cdots, q_{1}-1
\end{array}\right.
$$

(2) 2-D hysteresis $n \times m$-grid scroll attractors:

$$
\theta(X)=\left(\begin{array}{c}
h\left(x, p_{1}, q_{1}\right) \tag{4}\\
h\left(y, p_{2}, q_{2}\right) \\
0
\end{array}\right)
$$

Fig. 1. Circuit diagram for 3-D hysteresis multi-scroll chaotic attractors.
where the hysteresis series functions $h\left(x, p_{1}, q_{1}\right)$ and $h\left(y, p_{2}, q_{2}\right)$ are defined by (3).
(3) 3-D hysteresis $n \times m \times l$-grid scroll attractors:

$$
\theta(X)=\left(\begin{array}{c}
h\left(x, p_{1}, q_{1}\right) \tag{5}\\
h\left(y, p_{2}, q_{2}\right) \\
h\left(z, p_{3}, q_{3}\right)
\end{array}\right)
$$

where the hysteresis series functions $h\left(x, p_{1}, q_{1}\right)$, $h\left(y, p_{2}, q_{2}\right)$, and $h\left(z, p_{3}, q_{3}\right)$ are defined by (3).
System (1) with (2) can generate a 1-D $\left(p_{1}+q_{1}+1\right)-$ scroll chaotic attractor for some suitable parameters a, b, c; system (1) with (4) can create a 2-D $\left(p_{1}+q_{1}+1\right) \times\left(p_{2}+q_{2}+\right.$ $1)$ - grid scroll chaotic attractor for some suitable parameters a, b, c; system (1) with (5) can generate a 3-D $\left(p_{1}+q_{1}+\right.$ 1) $\times\left(p_{2}+q_{2}+1\right) \times\left(p_{3}+q_{3}+1\right)-$ grid scroll chaotic attractor for some suitable parameters a, b, c. Moreover, Lü et al. [9] constructed a two-dimensional Poincaré return map to verify the chaotic behaviors of the generated hysteresis multi-scroll attractors via a rigorous theoretical approach.

However, experimental observations are still lacking. For this purpose, a novel circuit diagram is designed below, to generate the hysteresis multi-scroll chaotic attractors by means of a physical electronic circuit.

III. Experimental Verification of Hysteresis Multi-Scroll Attractors

Figure 1 shows the circuit diagram for the hysteresis multiscroll attractors. Figure 2 shows the circuit diagram of the hysteresis generator.

Table 1
On-off of switches $K 1 \sim K 4$ and the number of directions for the multi-scroll attractors.

$K 1$	$K 2$	$K 3$	$K 4$	Number of directions
off	off	off	off	1
on	off	on	off	2
on	on	on	on	3

As in Table 1, when the switches $K 1, K 2, K 3, K 4$ are switched off, Fig. 1 can generate the 1-D $5 \sim 11-$ scroll

Fig. 2. Circuit diagram of hysteresis series generator.
chaotic attractors by switching the switches $K_{ \pm n}(n=2,3,4)$ in Fig. 2 based on Table 2; when the switches $K 1, K 3$ are switched on and the switches $K 2, K 4$ are switched off, Fig. 1 can create the 2-D $3 \times 5 \sim 11$-grid scroll chaotic attractors by switching the switches $K_{ \pm n}(n=2,3,4)$ in Fig. 2 based on Table 2; when the switches $K 1, K 2, K 3, K 4$ are switched on, Fig. 1 can generate the 3 -D $3 \times 3 \times 5 \sim 11$-grid scroll chaotic attractors by switching the switches $K_{ \pm n}(n=2,3,4)$ shown in Fig. 2, based on Table 2.

Figure 3 shows the experimental observations of the 1D 11 -scroll and 2-D 3×11-grid scroll chaotic attractors. Figure 4 shows experimental observations of a 3-D $3 \times 3 \times$ 11 -grid scroll chaotic attractor.

Remarks:

(1) Notice that the real measurement values of $E_{n}(0 \leq$ $n \leq 4)$ in the circuit experiment may have a small departure from the theoretically calculated values, due to the discreteness of the real circuit parameters and the measurement errors. The differences can be corrected via a small adjustment of
the resistors $R_{w 0} \sim R_{w 4}$ and $R_{1} \sim R_{9}$ in the circuit implementation.

Table 2
On-off of switches $K_{ \pm n}(n=2,3,4)$ and the number of scrolls N.

K_{+2}	K_{-2}	K_{+3}	K_{-3}	K_{+4}	K_{-4}	N
off	off	off	off	off	off	5
on	off	off	off	off	off	6
on	on	off	off	off	off	7
on	on	on	off	off	off	8
on	on	on	on	off	off	9
on	on	on	on	on	off	10
on	on	on	on	on	on	11

(2) Based on Tables 1 and 2, we can arbitrarily control the switches $K i(1 \leq i \leq 4)$ shown in Fig. 1 and the switches $K_{ \pm n}(n=2,3,4)$ shown in Fig. 2, to arbitrarily design various 1-D n-scroll, 2-D $n \times m$-grid scroll, and 3-D $n \times m \times l-$ grid scroll chaotic attractors.

Fig. 3. Experimental observations of hysteresis multi-scroll attractors in the $x-y$ plane. From up to down: (a) 1-D 11 -scroll, where $x=1.3 \mathrm{~V} / \mathrm{div}, y=0.75 \mathrm{~V} / \mathrm{div}$; (b) 2-D $3 \times 11-\operatorname{grid}$ scroll, where $x=1.44 V / d i v, y=0.8 V / d i v$.

IV. Conclusions

This paper has reported a design of a novel block circuit diagram for hardware implementation of 1-D $5 \sim 11$-scroll, 2-D $3 \times 5 \sim 11-$ grid scroll, and 3-D $3 \times 3 \times 5 \sim 11$-grid scroll chaotic attractors by different switchings. This design idea provides a theoretical principle for physical realization of a chaotic attractor in multi-directions with a large number of scrolls. It should be pointed out that this is the first time to report the experimental verification of 2-D $3 \times 11-$ grid scroll and 3-D $3 \times 3 \times 11-$ grid scroll chaotic attractors. Moreover, the hardware implementation of reliable nonlinear circuits for generating various complex chaotic signals provides a basis for future applications of chaos-based information systems.

Acknowledgment

This work was supported by National Natural Science Foundation of China under Grant No. 60304017 and Grant No.20336040/B06, Natural Science Foundation of Guangdong Province under Grant No.32469, Science and Technology Program of Guangzhou City under Grant No.2004J1-C0291, and the City University of Hong Kong under the SRG grant 7001702 (EE).

REFERENCES

[1] J. A. K. Suykens and J. Vandewalle, "Generation of n-double scrolls ($n=1,2,3,4, \cdots$)," IEEE Trans. Circuits Syst. I, vol. 40, no. 11, pp. 861-867, Nov. 1993.
[2] M. E. Yalcin, J. A. K. Suykens, J. Vandewalle, and S. Ozoguz, "Families of scroll grid attractors," Int. J. Bifurcation Chaos, vol. 12, no. 1, pp. 23-41, Jan. 2002.
[3] J. Lü, T. Zhou, G. Chen, and X. Yang, "Generating chaos with a switching piecewise-linear controller," Chaos, vol. 12, no. 2, pp. 344349, Jun. 2002.

Fig. 4. Experimental observations of 3-D $3 \times 3 \times 11$-grid scroll attractors. From up to down: (a) $x-y$ plane, where $x=1.44 \mathrm{~V} / \mathrm{div}, y=0.8 \mathrm{~V} / \mathrm{div}$; (b) $x-z$ plane, where $x=1.44 \mathrm{~V} / \mathrm{div}, z=0.8 \mathrm{~V} / \mathrm{div}$.
[4] J. Lü, X. Yu, and G. Chen, "Generating chaotic attractors with multiple merged basins of attraction: A switching piecewise-linear control approach," IEEE Trans. Circuits Syst. I, vol. 50, no. 2, pp. 198-207, Feb. 2003.
[5] J. E. Varrientos and E. Sanchez-Sinencio, "A 4-D chaotic oscillator based on a differential hysteresis comparator," IEEE Trans. Circuits Syst. I, vol. 45, no. 1, pp. 3-10, Jan. 1998.
[6] M. Kataoka and T. Saito, "A 2-port VCCS chaotic oscillator and quad screw attractor," IEEE Trans. Circuits Syst. I, vol. 48, no. 2, pp. 221-225, Feb. 2001.
[7] T. Saito, "An approach toward higher dimensional hysteresis chaos generators," IEEE Trans. Circuits Syst. I, vol. 37, no. 3, pp. 399-409, Mar. 1990.
[8] A. S. Elwakil and M. P. Kennedy, "Systematic realization of a class of hysteresis chaotic oscillators," Int. J. Circuit Theor. Appl., vol. 28, no. 4, pp. 319-334, Jul./Aug. 2000.
[9] J. Lü, F. Han, X. Yu, and G. Chen, "Generating 3-D multi-scroll chaotic attractors: A hysteresis series switching method," Automatica, vol. 40, no. 10, pp. 1677-1687, Nov. 2004.
[10] J. Lü, G. Chen, X. Yu, and H. Leung, "Design and analysis of multiscroll chaotic attractors from saturated function series," IEEE Trans. Circuits Syst. I, vol. 51, no. 12, pp. 2476-2490, Dec. 2004.
[11] J. Lü, X. Yu, and G. Chen, "Switching control for multi-scroll chaos generation: An overview," Proceedings of Physics and Control, vol. 2, pp. 420-428, Saint Petersburg, Russia, 20-22 Aug. 2003.
[12] J. Lü, G. Chen, X. Yu, and H. Leung, "Generating multi-scroll chaotic attractors via switching control," Proceedings of the 5th Asian Control Conference, Melbourne, Australia, pp. 1763-1771, 20-23 Jul. 2004.
[13] S. M. Yu, S. S. Qiu, and Q. H. Lin, "New results of study on generating multiple-scroll chaotic attractors," Science in China Series F, vol. 46, no. 2, pp. 104-115, Feb. 2003.
[14] G. Zhong, K. F. Man, and G. Chen, "A systematic approach to generating n-scroll attractors," Int. J. Bifurcation Chaos, vol. 12, no. 12, pp. 29072915, Dec. 2002.
[15] M. E. Yalcin, J. A. K. Suykens, and J. Vandewalle, "Experimental confirmation of $3-$ and 5 -scroll attractors from a generalized Chua's circuit," IEEE Trans. Circuits Syst. I, vol. 47, no. 3, pp. 425-429, Mar. 2000.

