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Abstract— It is well known that complex networks have become
a very important part of our daily lives and have been intensively
studied in all fields over the last few years. This paper proposes
and reviews several network synchronization criteria for the time-
invariant, time-varying, delayed, and discrete complex dynamical
network models. Moreover, the maximum synchronizability of
time-invariant complex dynamical networks is further investi-
gated.

I. INTRODUCTION

Over the last decades, complex networks occur in all
fields of sciences and humanities, such as the World Wide
Web, computer networks, biological neural networks, electrical
power grids, food webs, and so on [1-12]. Since many real-
world complex networks, such as the Internet and various
e-bank networks, are very important and closely relative
to our daily lives, it is extremely important to maintain
the security against failures and attacks for these complex
networks. Therefore, it is very necessary for us to further
understand the essential nature and fundamental behaviors of
network topological structures as well as their synchronization
properties, towards better design and management of real-
world complex networks.

Synchronization is a basic phenomenon in a wide range of
real systems, such as neural networks, physiological process,
biology, and so on [9]. It has been demonstrated that many
real-world complex networks display various synchronization
phenomena [3-12]. In this paper, we introduce and review
several typical network synchronization criteria for the time-
invariant [5], time-varying [3], delayed [10], and discrete [9]
network models. Moreover, the maximum synchronizability
of time-invariant complex dynamical networks is further ex-
plored. Our main results are: (i) the synchronization of a gen-
eral time-varying complex network is completely determined
by its inner-coupled matrix and its coupled configuration
matrix – specifically the eigenvalues and the corresponding
eigenvectors of this coupled configuration matrix, rather than
the sole eigenvalues of the coupled configuration matrix for
a uniform network; (ii) the maximum synchronizability of a
network is completely determined by its associated feedback
system with a real meaning in synchronous communication.

The rest of this paper is organized as follows: In Section II,

a general time-varying complex network model is introduced
and several synchronization criteria are given. The synchro-
nization criteria for a delayed and a discrete complex network
models are reviewed in Section III and Section IV, respectively.
In Section V, the maximum synchronizability of time-invariant
complex networks is then further investigated. Conclusions are
finally drawn in Section VI.

II. SYNCHRONIZATION CRITERIA OF TIME-VARYING

COMPLEX DYNAMICAL NETWORKS

In this section, we introduce a general time-varying complex
dynamical network model and further investigate its synchro-
nization criteria.

In 2002, Wang and Chen [12] proposed a simple uniform
dynamical network model, which is described by

ẋi = f(xi) + c

N∑
j=1

cijAxj , i = 1, 2, · · · , N, (1)

where C = (cij)N×N is a 0 − 1 matrix and A is a 0 − 1
diagonal matrix.

Lü et al. [3-4] generalized this uniform model and intro-
duced a general time-varying dynamical network as follows:

ẋi = f(xi) +
N∑

j=1
j �=i

cij(t) A(t) (xj − xi), i = 1, 2, · · · , N, (2)

where xi = (xi1, xi2, · · · , xin)T ∈ Rn is the state variable
of node i, A(t) = (akl(t))n×n ∈ Rn×n is the inner-coupling
matrix of the network at time t, C(t) = (cij(t))N ×N is
the coupling configuration matrix representing the coupling
strength and the topological structure of the network at time t,
in which cij(t) is defined as follows: if there is a connection
from node i to node j (j �= i) at time t, then cij(t) �= 0;
otherwise, cij(t) = 0 (j �= i), and the diagonal elements
of matrix C(t) satisfy the diffusively coupled conditions as
follows:

cii(t) = −
N∑

j=1
j �=i

cij(t) , i = 1, 2, · · · , N . (3)
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Thus network (1) can be recasted as

ẋi = f(xi) +
N∑

j=1

cij(t)A(t) xj , i = 1, 2, · · · , N. (4)

In this paper, assume that network (4) is connected in the sense
that there are no isolate clusters, that is, C(t) is irreducible.

If A(t), C(t) are constant matrices, network (4) becomes a
time-invariant network [5]:

ẋi = f(xi) +
N∑

j=1

cijAxj , i = 1, 2, · · · , N . (5)

In the following, we firstly present a rigorous definition for
network synchronization, then give several network synchro-
nization criteria [3-4,6-7].

Definition 1: Suppose xi(t , X0) (i = 1, 2, · · · , N) is a
solution of the nonautonomous dynamical network

ẋi = f(xi) + gi(t, x1, x2, · · · , xN ), i = 1, 2, · · · , N, (6)

where X0 =
(
(x0

1)
T , · · · , (x0

N )T
)T ∈ RnN , f : D → Rn

and gi : D×· · ·×D → Rn (i = 1, 2, · · · , N) are continu-
ously differentiable with D ⊆ Rn, and gi(t, x, x, · · · , x) =
0 for all t. If there exists a nonempty open subset E ⊆ D,
with x0

i ∈ E (i = 1, 2, · · · , N), such that xi(t , X0) ∈ D
for all t ≥ 0, i = 1, 2, · · · , N , and

lim
t→∞ ‖xi(t, X0) − s(t, x0)‖2 = 0 for 1 ≤ i ≤ N, (7)

where s(t , x0) is a solution of the system ẋ = f(x) with x0 ∈
D, then the network (6) is said to realize synchronization and
E×· · ·×E is called the region of synchrony for network (6).
Here, X(t, X0) =

(
xT
1 (t, X0), xT

2 (t, X0), · · · , xT
N (t, X0)

)T
is

called the synchronous solution of network (6), if xi(t, X0) =
xj(t, X0) for all t ≥ 0 and 1 ≤ i, j ≤ N .

Definition 2: [3] Suppose Γ = {s(t) | 0 ≤ t < T } denotes
the set of T−periodic solutions of system ẋ = f(x) in Rn. A
T−periodic solution s(t) is said to be orbitally stable, if for
each ε > 0 there exists a δ > 0 such that every solution x(t)
of ẋ = f(x), whose distance from Γ is less than δ at t = 0,
will remain within a distance less than ε from Γ for all t ≥ 0.
Such an s(t) is said to be orbitally asymptotically stable if, in
addition, the distance of x(t) from Γ tends to zero as t → ∞.
Furthermore, if there exist positive constants α, β and a real
constant h such that ‖x(t − h) − s(t)‖ ≤ α e−βt for t ≥ 0,
then s(t) is said to be orbitally asymptotically stable with an
asymptotic phase.

Definition 3: Let s(t) be a periodic solution of system ẋ =
f(x). Suppose γ1 = 1, γ2, · · · , γn are the Floquet multipliers
of the variational equation of s(t), ẏ = A(t) y, where A(t) =
Df(s(t)) is the Jacobian of f evaluated at s(t). Then the
periodic solution s(t) is said to be a hyperbolic periodic
solution if |γj | �= 1 for 2 ≤ j ≤ n. Furthermore, S(t) =
(sT (t), · · · , sT (t))T is said to be a hyperbolic synchronous
periodic solution of network (4) if all Floquet multipliers of

the variational equation of S(t) have absolute values less than
1 except one multiplier which equals 1.

Assumption 1: Let λ1(t), λ2(t), · · · , λN (t) be the eigenval-
ues of C(t). ∃ t0 ≥ 0, for any λi(t) (1 ≤ i ≤ N), either
λi(t) �= 0 for all t > t0, or λi(t) ≡ 0 for all t > t0.

Theorem 1: Let s(t) be a hyperbolic periodic solution of an
individual node ẋ = f(x), and be orbitally asymptotically
stable with an asymptotic phase. Suppose that the coupling
configuration matrix C = (cij)N×N can be diagonalized.

Then, S(t) =
(
sT (t), sT (t), · · · , sT (t)

)T
is a hyperbolic

synchronous periodic solution of network (5), and is orbitally
asymptotically stable with an asymptotic phase, if and only if
the linear time-varying systems

ẇ = [Df(s(t)) + λkA] w, k = 2, · · · , N, (8)

are asymptotic stable about their zero solutions.

Theorem 2: Assume that x = s(t) is an exponentially stable
solution of nonlinear system ẋ = f(x), where f : Ω → Rn is
continuously differentiable, Ω = {x ∈ Rn |‖x − s(t)‖2 <
r}. Suppose that the Jacobian DF̄(t, η̄) is bounded and
Lipschitz on Ω̄ = {η̄ ∈ RnN |‖η̄‖2 < r}, uniformly
in t. Suppose also that Assumption 1 holds and there ex-
ists a real matrix, Φ(t), nonsingular for all t, such that
Φ−1(t) (C(t))T Φ(t) = diag{λ1(t), λ2(t), · · · , λN (t)}
and Φ̇−1(t)Φ(t) = diag{β1(t), β2(t), · · · , βN (t)}. Then,
the synchronous solution S(t) is exponentially stable in net-
work (4) if and only if the linear time-varying systems

ẇ = [Df(s(t))+λk(t) A(t)−βk(t)In] w, k = 2, · · · , N, (9)

are exponentially stable about their zero solutions.

Theorem 3: Suppose that F : Ω → Rn(N−1) is continuously
differentiable on Ω = {x ∈ Rn(N−1) |‖x‖2 < r}, with
F(t, 0) = 0 for all t, and the Jacobian DF(t, x) is bounded
and Lipschitz on Ω, uniformly in t. Suppose also that there
exists a bounded nonsingular real matrix Φ(t), such that
Φ−1(t) (C(t))T Φ(t) = diag{λ1(t), λ2(t), · · · , λN (t)}
and Φ̇−1(t)Φ(t) = diag{β1(t), β2(t), · · · , βN (t)}. Then,
the chaotic synchronous state x1(t) = x2(t) = · · · =
xN (t) = s(t) is exponentially stable for dynamical network
(4) if and only if the linear time-varying systems

ẇ = [Df(s(t)) + λk(t)A(t)− βk(t)In]w, k = 2, · · · , N (10)

are exponentially stable about the zero solution.

Remark 1: For simplicity, all notes and proofs are omitted
here and detailed proofs can refer to [3-4]. Theorems 2 and 3
show that synchronization of the time-varying network (4) is
completely determined by its inner-coupling matrix A(t), and
the eigenvalues λk(t) (2 ≤ k ≤ N) and the corresponding
eigenvectors φk(t) (βk(t) are functions of φk(t) , 2 ≤ k ≤
N ) of the coupling configuration matrix C(t). However, the
synchronization of the time-invariant network (5) is completely
determined only by its inner-coupling matrix A and the
eigenvalues of the coupling configuration matrix C [12].
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III. SYNCHRONIZATION CRITERIA OF DELAYED COMPLEX

DYNAMICAL NETWORKS

The multi time delays occur often in complex networks,
however, they are rather complex. For simplification, this
section only discusses the single time delay case. Li & Chen
[10] introduced a delayed complex dynamical network model
as follows:

ẋi(t) = f(xi(t))+c

N∑
j=1

cijAxj(t−τ), i = 1, 2, · · · , N, (11)

where f : Rn → Rn is a continuously differentiable function,
xi = (xi1, xi2, · · · , xin)T ∈ Rn is the state variable of
node i, τ is the time delay, c > 0 is the coupling strength,
A = (aij)n×n ∈ Rn×n is the inner-coupling matrix of the
network, C = (cij)N×N is the coupling configuration matrix
of the network, in which cij is defined as follows: if there
exists a connection between node i and node j(j �= i), then
cij = cji = 1; otherwise, cij = cji = 0(j �= i), and the
diagonal elements of matrix C satisfy the diffusively coupled
conditions as follows:

cii = −
N∑

j=1
j �= i

cij , i = 1, 2, · · · , N .

Moreover, assume that network (11) is also connected in
the sense that there are no isolated clusters, that is, C is
irreducible.

Lemma 1: [10] Suppose that the eigenvalues of the matrix C
satisfy the condition 0 = λ1 > λ2 ≥ λ3 ≥ · · · ≥ λN .
If the following N − 1 n−dimensional linear time-varying
delayed differential equations

ẇ(t) = Df(s(t))w(t)+ cλkAw(t− τ), i = 2, 3, · · · , N, (12)

are asymptotically stable about their zero solutions, then the
synchronized states x1(t) = x2(t) = · · · = xN (t) = s(t)
are asymptotically stable for the delayed dynamical network
(11).

IV. SYNCHRONIZATION CRITERIA OF DISCRETE COMPLEX

DYNAMICAL NETWORKS

Recently, Lu and Chen [9] proposed a general discrete
complex dynamical network model, which is described by

xi(t+1) = f(xi(t))+
N∑

j=1

cijf(xj(t)), i = 1, 2, · · · , N, (13)

where cii = − ∑
j �= i

cij , xi(t) = (xi1(t), xi2(t), · · · , xin(t))T

∈ Rn is the state variable of the ith node, t ∈ N is the
discrete time, f : Rn → Rn is a continuous function, C =
(cij)N×N ∈ RN×N is the coupling configuration matrix of
the network, and its entries satisfy cij ≥ 0 for all i �= j.

Assumption 2: For matrix C = (cij)N× N ∈ RN×N ,

assume that cij ≥ 0 for i �= j, cii = −
N∑

j=1
j �= i

cij for

i = 1, 2, · · · , N , and the real part of eigenvalues of C are
all negative except an eigenvalue 0 with multiplicity one.

Lemma 2: [9] Suppose that Assumption 2 holds. Let λ1 =
0, λk = αk + jβk, where j is the imaginary unit, k =
2, · · · , N . If there exist constants 0 < γ0 < γ < 1 and an
integer t0 > 0 such that

‖Df(s(t))‖2 |1 + λk| ≤ γ0, k = 2, · · · , N, t ≥ t0, (14)

then the synchronization solution S(t) is locally exponential
stable for the discrete network (13).

Lemma 3: [9] Suppose that Assumption 2 holds and f ∈ F(k)
with constant k > 0. If there exist a positive number c >
k and an irreducible symmetric matrix P = (pij)N× N ∈
RN×N satisfying pij = pji ≥ 0 and pii = − ∑

j �= i

pij for

i = 1, · · · , N , such that

(I + C)T P (I + C) − 1
c2

P ≥ 0 , (15)

then the synchronization solution S(t) is globally exponential
stable for the discrete network (13). Moreover, the convergence
rate is O((k

c )t).

V. MAXIMUM SYNCHRONIZABILITY OF TIME-INVARIANT

COMPLEX DYNAMICAL NETWORKS

It is well know that network synchronizability is an impor-
tant property of complex dynamical networks [5]. Networks
with different topological structures and node dynamics have
different degrees of network synchronizability. It has been
discovered that, for any given coupling strength, if the number
of nodes is sufficiently large, then the small-world network will
synchronize, even if the original nearest-neighbor coupled net-
work cannot realize synchronization under the same condition
[12]. However, how to characterize the synchronizability of a
network is an open problem. In this paper, a new concept —
associated feedback system — is proposed for characterizing
synchronizability of the time-invariant network (5) [5].

Definition 4: The self-feedback nonlinear system

ẋ(t) = f(x(t)) + dA (x(t) − s(t)) , (16)

where x = (x1, x2, · · · , xn)T ∈ Rn and d is a constant,
is called the associated feedback system of the time-invariant
network (5).

Let x(t) = y(t) + s(t). Substituting it into (16) yields

ẏ(t) = f(y(t) + s(t)) − f(s(t)) + d A y(t) . (17)

Linearizing system (17) gets

ẏ(t) = [Df (s(t)) + d A] y(t) . (18)

For the given time-invariant network (5), one can obtain the
exponentially stable region, denoted as Γ, of the solution s(t)
of the associated feedback system (16) (or the zero solution
of system (17)) in terms of feedback parameter d.
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Assumption 3: Suppose that F : Ω → Rn(N−1) is contin-
uously differentiable, Ω = {x ∈ Rn(N−1) |‖x‖2 < r}, the
Jacobian matrix DF(t, x(t)) is bounded and Lipschitz on Ω,
uniformly in t, and the coupling configuration matrix C can
be diagonalized.

Assumption 4: Suppose that F̄ : Ω̄ → RnN is continuously
differentiable, Ω̄ = {x ∈ RnN |‖x‖2 < r}, the Jacobian ma-
trix DF̄(t, x(t)) is bounded and Lipschitz on Ω̄, uniformly in t,
and the coupling configuration matrix C can be diagonalized.

Theorem 4: Let s(t) be an orbit of a chaotic attractor of the
given chaotic system ẋ(t) = f(x(t)). Assumption 3 holds. The
chaotic synchronous state x1(t) = x2(t) = · · · = xN (t) =
s(t) of network (5) is exponentially stable if and only if the
eigenvalues λi ∈ Γ , i = 2, 3, · · · N .

Theorem 5: Let x(t) = s(t) be an exponentially stable
solution of the individual node ẋ(t) = f(x(t)). Assumption
4 holds. The synchronous solution S(t) of network (5) is
exponentially stable if and only if all the eigenvalues λi ∈
Γ , i = 2, 3, · · · N .

Remark 2: Note that the stable region Γ is completely
determined by the individual node ẋ(t) = f(x(t)) and the
inner coupled matrix A of network (5), and that the eigenvalues
of the coupled configuration matrix C determine the stability
of synchronous solution of network (5). Γ is the maximum
region of the eigenvalues of the coupled configuration matrix
C.

Definition 5: The ability that the structure of network (5)
can ensure network (5) achieve synchronization is called the
network synchronizability. The maximum possible set

{(A, C) | network (5) realizes synchronization }
is called the maximum synchronizability set, which character-
izes the maximum synchronizability of network (5).

For a given individual node ẋ(t) = f(x(t)) and a inner
coupling matrix A, the maximum synchronizability set of net-
work (5) is completely determined by its associated feedback
system (16). In fact, the maximum synchronizability set of
network (5) is

{C |λi ∈ Γ for i = 2, 3, · · · N} ,

where λi (i = 2, 3, · · · N) are the nonzero eigenvalues of C.
Consider the unidirectional coupled system:{

ṡ(t) = f(s(t)) ,
ẋ(t) = f(x(t)) + d A (x(t) − s(t)) ,

(19)

where A is a constant coupled matrix, and d is a coupling
strength or feedback coefficient. Let the error vector be ξ(t) =
x(t) − s(t). From (17), its variational equation is

ξ̇(t) = [Df(s(t)) + d A] ξ(t) . (20)

Therefore, the associated feedback system (16) of network
(5) is the response system in (19), and the individual node
ẋ(t) = f(x(t)) is the drive system of (19). Furthermore, the

variational equation (20) (or (18)) is the corresponding linear
system of the associated feedback system (16). If the origin
is an exponentially stable equilibrium of system (20), then the
unidirectional coupled system (19) is synchronous. Thus the
associated feedback system (16) and the individual node of
network (5) have their definitely physical meaning in terms of
synchronous communication.

VI. CONCLUSION

This paper introduces several network synchronization cri-
teria for time-invariant, time-varying, delayed, and discrete
complex dynamical network models. Moreover, the maximum
synchronizability of time-invariant networks is also explored.
Synchronization is a fundamental nonlinear phenomenon in
complex dynamical networks. Furthermore, the network syn-
chronization can be classified as identical synchronization,
phase synchronization, partial synchronization, and so on.
Since the space limitation, this paper only deals with identical
synchronization case. It is very important to better understand
the essential nature and mechanism of network synchroniza-
tion in the future.
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[5] J. Lü, X. Yu, G. Chen, and D. Cheng, “Characterizing the synchroniz-
ability of small-world dynamical networks,” IEEE Trans. Circuits Syst.
I, vol. 51, no. 4, pp. 787-796, Apr. 2004.
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