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Estimating Uncertain Delayed Genetic Regulatory
Networks: An Adaptive Filtering Approach

Wenwu Yu, Student Member, IEEE, Jinhu Lü, Senior Member, IEEE,
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Abstract—Uncertain delayed genetic regulatory networks are in-
vestigated from an adaptive filtering approach based on an adaptive
synchronization setting. For an unknown regulatory network with time
delay and uncertain noise disturbance, several adaptive laws are derived
to ensure the stochastic stability of the error states between the unknown
network and the estimated model. The novelty lies in the fact that the
designed adaptive laws are independent of the unknown system states and
parameters, requiring only the output and structure of the underlying
network. A representative simulation example is given to verify the
effectiveness of the theoretical results.

Index Terms—Adaptive filtering, disturbance attenuation, genetic reg-
ulatory network (GRN), stochastic stability, system synchronization, time
delay.

I. INTRODUCTION

Genetic regulatory network (GRN) is a collection of DNA segments
in a cell. GRNs interact with each other indirectly, through their RNA
and protein expression products, and with other substances in the cell,
thereby governing the rates at which genes in the network are tran-
scribed into mRNA. Each mRNA molecule acts for making a specific
protein (or, a set of proteins). In some cases, this protein is structural;
while in some other cases, this protein is merely an enzyme that cat-
alyzes a certain chemical reaction. Some proteins only serve to activate
the other genes, which are the transcription factors binding to the pro-
moter region at the start of other genes turned on by them, initiating the
production of another protein, and so on.

Regulatory networks have been extensively studied particularly in
biological and biomedical sciences [1]–[10], [29]. Basically, there are
two types of genetic network models: the Boolean model [26] and the
differential equation model [3]–[5]. In the Boolean model, the activity
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of each gene is expressed by two states, ON or OFF, which are deter-
mined by a Boolean function. In the differential equation model, the
concentrations of gene products, such as mRNA and proteins, are used
as the state variables or their equivalents for modeling.

In this paper, a particular genetic network model is considered, where
each transcription factor acts additively to regulate a gene, in such a
way that the regulation function sums over all the inputs, therefore is
called the SUM logic [5], [21], [22]. In [4]–[6], [9], the regulation func-
tion with the SUM logic in a GRN model has been studied in some
detail. This paper further investigates the GRN model with time delay
and uncertain disturbance.

It is well known that time delay is ubiquitous in biological, physical,
chemical, and electrical dynamical systems. In biological systems, par-
ticularly in GRNs, time delays are inevitable due to the slow process
of transcription, translation, and translocation processes therein. It has
been observed from both numerical and laboratory experiments that
time delays can derail the stability of the system thereby causing sus-
tained oscillations, bifurcations, or even chaos [11], [14], [15]. More
seriously speaking, mathematical models without addressing time de-
lays may actually provide wrong predictions of the mRNA and protein
concentrations.

In modeling GRNs, on the other hand, molecular noise has been
shown to play an important role in biological functions since noise
is unavoidable in reactions of transcription, translation, and transloca-
tion processes, and also due to external fluctuations. There exist some
studies on GRNs with random disturbances in the literature [7], [8],
where the states of the system are fully known. However, it has been
pointed out that in practice, some concentrations of products, such
as mRNA, protein, and network parameters may not be fully known,
hence estimation becomes impossible based on the previous results.

Moreover, in a real GRN it is still not completely understood today as
how the genes are expressed in the right time and right place, with the
right amount, throughout the development of the organism. Studying
living organisms is a fairly complex process, which requires signifi-
cant work on observing, collecting, and analyzing data. Sometimes, it
is even impossible for biologists to get all the information due to var-
ious technical difficulties. Thus, the study of system biology comes in
place, where it attempts to estimate the missing information from the
available data. This gives rise to the following filtering problem: given
a delayed genetic regulatory network with unknown parameters and
random disturbance, how to estimate the unknown products and pa-
rameters by using the observed data from the network?

Clearly, a combination of time delay, noise disturbance, and un-
known parameters and system states makes the study of uncertain GRN
models very difficult.

In this paper, the adaptive filtering technique is employed to estimate
the unknown parametric information such as the mRNA degradation
rate, transcription rate, protein, and so on, from the available mRNA
data. More precisely, the adaptive filtering problem for unknown de-
layed GRNs with disturbance attenuation is investigated, based on a
system synchronization setting. The adaptive filtering of unknown dy-
namical systems without random disturbance has already been studied
in [12], [13], [16]–[20], [30]. The synchronization of nonlinear systems
with random disturbance, on the other hand, has also been investigated,
in [15], [24], [25], where the noise was assumed to exist only in the re-
sponse system and it vanishes on the synchronization manifold. In this
paper, a more realistic situation where noise exists in the master system
is considered; that is, an uncertain GRN model is considered, where
noise does not vanish on the synchronization manifold. Furthermore,
note that in the aforementioned references, i.e., [12], [13], [15]–[20],
[24], [25], [31], all the states of the networks are supposed to be known,
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which certainly is rare in real biological systems. In contrast, in this
paper, some states and system parameters are allowed to be unknown
in the concerned delayed GRN model with random disturbances.

The rest of this paper is organized as follows: First, in Section II,
model formulation and preliminaries of the GRN model are briefly out-
lined, and a delayed GRN model with unknown parameter and random
disturbance is described. Then, an adaptive filter is designed to estimate
the unknown states and parameters of the model in Section III. To that
end, in Section IV, a numerical example is shown to demonstrate the
effectiveness of the proposed adaptive filtering approach. Finally, con-
clusions are drawn in Section V.

II. MODEL FORMULATION AND PRELIMINARIES

A. Original GRN Model

Consider the delayed GRN model [4]–[6]

������

��
� � ������� ��� ������ � �� ����� � �� � � � �

����� � �� �

������

��
� � 	������ � ������� � � (1)

where �����, ����� � 
 are concentrations of mRNA and protein of
the �th node at time �, �� � � and 	� � � are the degradation rates of the
mRNA and protein, respectively, �� is the translation rate, � is a time
delay, and the function�� represents the feedback regulation of the pro-
tein on the transcription of the �th node, which is generally a nonlinear
monotonically increasing function [3]–[10], for all � � �� �� � � � � 
.

The gene activities are being controlled in a cell, and the gene reg-
ulation function �� plays a key role in determining the dynamical be-
havior of the network. Generally, �� can be very complex. In [5],
[6], it is assumed that each transcription factor acts additively to reg-
ulate the �th gene, and the regulatory function is in the form of �� �

�

���
����������, which is also called the SUM logic [21], [22]. More-

over, each ��� is assumed to be a monotonic function in the so-called
Hill form [8], namely, if the transcription factor � is an activator of gene
�, then
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����������

�

� � ����������
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(2)

if transcription factor � is a repressor of gene �, then

��� ������� � ���
�

� � ����������
�

(3)

where �� are called the Hill coefficients, �� are positive constants, and
��� are the dimensionless transcriptional rate of the transcription factor
� to �.

Thus, system (1) can be rewritten as
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where ����� � ������
� ��� � ������

� �, and �� � ���
��� in

which �� is the set of all the repressors of gene �, with � � ����� �

��� defined as

��� �

��� if transcription factor � is an
activator of gene �,

� if there is no link from node � to �,
���� if transcription factor � is a

repressor of gene �.

System (4) can be further written in a compact matrix form as fol-
lows:
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� ,
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��	�� 	�� � � � � 	��,
� � ��
����� ��� � � � � ���, and � � ��������.

B. The Uncertain GRN Model

In this paper, an uncertain GRN model with random disturbance is
considered
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 ��� �������

����� � 	������ ������ � �
 ��� �������

 ������� (6)

where  is the output, ���� � 	�� ���� �� ���

�

, �� � ������, with ��
and �� denoting the 
-dimension identity and zero matrices, respec-
tively, ���� and ���� are external noise intensity functions, and ����
and ���� are two independent one-dimensional Brownian motions sat-
isfying the mathematical expectations��������� �,�������� � �,
��������� � � and ��������� � �.

The initial conditions of (6) are given by ����� � !���� �
��	��� �
� 
�, which is the set of real-valued continuous functions on
	��� �
 for some � � �.

Sometimes, the concentrations of mRNA can be obtained. However,
the regulation process in mRNA, i.e, the degradation rates ��, transcrip-
tional factors ��� , repressor factors ��, and concentrations of protein
����, are likely unknown and not available for direct measuring. Thus,
assume that in system (6), �, � , � are uncertain matrices and ���� is
unknown but the output  � ���� can be observed. The objective then
is to estimate the concentrations of protein.

To realize this goal, an adaptive filtering approach is adopted below.
In general, a nonlinear filtering is constructed in the following form:
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is the adaptive feedback matrix, � ��� � �����������, ���� �
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are matrix- and vector-valued functions of time �.
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Note that systems (6) and (7) can be considered as the master and
slave systems in a typical synchronization setting, as discussed in [13],
[14], [16].

Now, subtracting (6) from (7) yields the following error dynamical
system:
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where ����� � ���� � ����, ����� � ���� � ����,
����� � �������� ������� � � � � �������

� , ����� �
�������� ������� � � � � �������

� .
Note also that in system (4), the function �� � � � � is monotoni-

cally increasing and satisfies the Lipschitz condition
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with the Lipschitz constants �� � 	 for all � � 
� �� � � � � �.
Next, some useful concept and preliminaries are introduced.
Definition 1 [8]: The two networks (6) and (7) are said to be stochas-

tically synchronous with disturbance attenuation � � 	, if
i) network (8) with ���� � 	 and���� � 	 is asymptotically stable;

ii) with zero initial conditions, there exists a scalar � � 	 such that
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��	���.
Lemma 1: For any vectors �� � � �� and positive definite matrix

� � ����, the following matrix inequality holds:
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III. ADAPTIVE FILTER DESIGN

In this section, some adaptive laws are designed for estimating the
unknown terms of ����, ����, � ���, and 
���, so as to achieve the
asymptotical stability of the error dynamical system (8) with distur-
bance attenuation.

First, some simple sufficient conditions are given, as follows.
Theorem 1: The two networks (6) and (7) are stochastically syn-

chronous with disturbance attenuation � � 	, if
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where  �, "�� , ��, and &� are positive constants, ' � 
�������	'�
,
and ( is a positive constant satisfying ( ) '.

Proof: Consider the Lyapunov functional
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where �, +�, and +� are positive constants to be determined.
From the Itô formula [23], one obtains the following stochastic dif-

ferential:
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According to the Lipschitz condition (9) and Lemma 1, one has
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where � � 	
����������, � and 
 are positive constants.
Substituting (18) and (19) into (17) yields
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where � � 	�
���������, � � 	�
���������, and ������� de-
notes the maximal eigenvalue of the symmetric matrix � .

For � � �, set
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Then, from (15), (16), (22) and under zero initial conditions, for � � �
one has
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Choose sufficiently small values � and 
, so that � � ������� �
�
��������		� � � �, and let � � ������� � �
��������		� �,
� � �� � ����
� � �������������� � � ������� � �. It is then
easy to verfity that the condition i) in Definition 1 is satisfied.

Next, it is to find the disturbance attenuation �, so that condition ii)
in Definition 1 is also satisfied.

By (23), one has
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From (14) and (22), it follows that ���� � �. Consequently
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Therefore, with the designed adaptive laws (10)–(13), the condition ii)
in Definition 1 is satisfied. This completes the proof of the theorem.

Remark 1: Under the adaptive laws (10)–(13), one has
� � ��� ���� ���. By choosing a sufficiently small value �,
one can obtain the low bound of � � ��

�
��. Thus, by adaptive

laws (10)–(13), the network synchronous error dynamical system
(8) is stochastically stable about zero, with disturbance attenuation
� � ��

�
��. In other words, the adaptive filter (7) has been success-

fully designed.
Remark 2: In [15], [24], [25], the synchronization problem of non-

linear systems with stochastic disturbance was investigated. However,
the noise intensity function therein is ������ ���� � �� in the response
system, where � is the error state, which can vanish on the synchroniza-
tion manifold ���� � �. It is not realistic to assume that noise exists
in the response rather than in the master system. In this paper, a more
general and more practical case is considered, thereby it is assumed
that noise exists in the master system, i.e., in the GRN (6), and it may
not vanish on the synchronization manifold.

Remark 3: In [27], [28], robust Kalman filter is used for discrete
linear time-varying uncertain systems with noise and possibly missing
measurements, while in this paper the uncertain system parameters are
assumed fully unknown and the GRN is nonlinear. Hence, the approach
under consideration here is more general.

IV. A SIMULATION EXAMPLE

In this section, a representative numerical example is given to
demonstrate the effectiveness of the proposed synchronization-based
adaptive filtering technique.

The dynamics of the repressilator has been theoretically predicted
and experimentally verified on Escherichia coli [3]. Three repressor-
protein concentrations ��, and their mRNA concentrations !� (where
" is #��#, ���$ or �#) were used as continuous dynamical variables.
The repressilator is a cyclic negative-feedback loop composing of three
genes and their corresponding promoters. The kinetics of the system are
determined by six coupled first-order differential equations, as follows:

�!����
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� �!���� �

%

� � ��	 ���
� &� 

������

��
� � ������� � ��!���� (26)

where " � #��# ���$ �#; ' � �# #��# ���$, and ( is a Hill coefficient.
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Fig. 1. Error states � and � , and adaptive laws � and � .

Taking into account the transcriptional time delay and stochastic dis-
turbance, the following unknown GRN model is considered [4], [5],
[27]:

����� � ������� ��� ����� � �� � 	� ��� 
������

����� � ��
���� ������ � �� ��� �������

� ����� (27)

where � �

��� � �

� ��	
 �

� � ����

, 
 �

��� � �

� ��
 �

� � ��


, � �

��


� � ��

�� � �

� �� �

, � � �

� � �

� � �

� � �

, 	 � ���
 ��
 ��
�� ,


��� � ����������, ���� � ������, ���� � ����� � ���, � � �.
Assume ��� � ���
 and �� � ��
 are unknown, and the adaptive

filter (7) and (10)–(13) is designed. The error states �� and �� in (8),
and the adaptive laws ��� and �� in (11) and (12), respectively, are
shown in Fig. 1, where ��� � �� � ��.

From Fig. 1, it is clear that the adaptive filter (7) and (10)–(13) works
very effectively. It can also be seen that parameters ��� � ���
 and
�� � ��
 could be approximately estimated by��� and ��, as expected.

Remark 4: Somewhat related, in [13], [16] system parameter iden-
tification is carried out using time-series data, where a linear indepen-
dence condition is derived.

V. CONCLUSION

In this paper, an adaptive filtering approach has been developed,
based on the adaptive synchronization setting, for estimating unknown
delayed genetic regulatory networks with noise disturbance. Several
adaptive laws have been derived to ensure the stochastic stability of
the synchronous errors between the unknown delayed genetic regula-
tory network and its estimated model with noise disturbance. The de-
signed adaptive laws are independent of the unknown system states and
parameters, and only the system output and structure are assumed. In
addition to assuming the system parameters to be unknown, noise is al-
lowed to exist in the genetic regulatory network, which may not vanish
on the synchronization manifold. The success of the proposed adaptive

filtering technique shows that it is a powerful and promising approach
therefore should be further explored for more applications in the future.
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On the Stability of Positive Linear Switched
Systems Under Arbitrary Switching Laws

Lior Fainshil, Michael Margaliot, and Pavel Chigansky

Abstract—We consider -dimensional positive linear switched systems.
A necessary condition for stability under arbitrary switching is that every
matrix in the convex hull of the matrices defining the subsystems is Hur-
witz. Several researchers conjectured that for positive linear switched sys-
tems this condition is also sufficient. Recently, Gurvits, Shorten, and Mason
showed that this conjecture is true for the case � �, but is not true in
general. Their results imply that there exists some minimal integer such
that the conjecture is true for all , but is not true for � . We
show that � �.

Index Terms—Metzler matrix, positive linear systems, stability under ar-
bitrary switching law, switched systems.

I. INTRODUCTION

Consider the linear switched system

������� � ������������ ������ � ���� (1)

where ������ � � � �, ��� �� �
���, and ���� � � � ��� �� is

a piecewise constant function of time, referred to as the switching law.
Roughly speaking, this models a system that may switch between the
two linear subsystems: ���� � ����� and ���� � �����.

Recall that a function � � ����� � ����� is said to be of class
� if it is continuous, strictly increasing, and ���� � �. A function
� � ������ ������ ����� is said to be of class �	 if ���� �� is of
class � for each fixed � 
 � and ���� �� decreases to 0 as � � � for
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each fixed � 
 �. We say that (1) is globally uniformly asymptotically
stable (GUAS) if there exists a class �	 function � such that for any
initial condition������ � ���� and any switching law � the corresponding
solution of (1) satisfies �������� � ��������� �� for all � 
 �. This implies
in particular that 	
���� ������ � �.

Denote��	� �� 	�����
	���. By the classic Lie-Trotter product
formula [1, Chapter 2]

	
�
���

�
���	��
�� 
�� ���
 	���
���
� � 
�� ���	��

for any 	 � ��� ��. It follows from this that if ��	� is not Hurwitz for
some 	 � ��� ��, then (1) is not GUAS. Thus, from hereon we assume
the following.

Assumption 1: Every matrix in

������ ��� �� ���	� � 	 � ��� ���

is Hurwitz.
Assumption 1 is a necessary (but not sufficient) condition for GUAS

of (1).
Recently, the problem of establishing conditions that guarantee

GUAS of (1) has attracted considerable interest [2]–[7]. A natural
idea, first suggested by Pyatnitskiy and his colleagues [8], is to try and
characterize the “most unstable” switching law. If the corresponding
trajectory is asymptotically stable, then so are all the other trajectories.
Thus, the problem can be reduced to analyzing the behavior of this
single trajectory. The “most unstable” switching law can be character-
ized using variational principles (see the survey paper [9]).

Recall that a linear system ���� � ����, with � � ���, is called
positive if �

� �� ���� � ���� 
 �� � � �� � � � � �� is an invariant set
of the dynamics, that is, if ������ � �

� implies that ������ � �
� for all

� 
 �. A necessary and sufficient condition for this is that� is a Metzler
matrix, that is, all the non-diagonal elements of � are non-negative.
Positive linear systems play an important role in system and control
theory because in many physical systems the state-variables represent
quantities that can never attain negative values (see e.g. [10]).

If both �� and �� are Metzler and ���� � �
�, then we refer to (1) as

a positive linear switched system (PLS). PLSs were used for modeling
communication systems [11] and formation flying [12] (see also [7]).

Mason and Shorten [13], and independently David Angeli, posed the
following conjecture.

Conjecture 1: A PLS that satisfies Assumption 1 is GUAS.
Recently, Gurvits, Shorten, and Mason [14] proved that this conjec-

ture is true for the case � � � (even when the number of subsystems is
arbitrary). This result was also proved using the variational approach
in [15].

Gurvits, Shorten, and Mason [14] also showed that Conjecture 1 is
in general false. As noted in [14], this naturally raises the following
question. What is the minimal integer �� for which there exists a PLS
that satisfies Assumption 1 but is not GUAS?

In this technical note, we solve this problem by presenting a specific
3-D system for which Conjecture 1 is false. Since �� 
 �, this proves
that �� � �.

The remainder of this note is organized as follows. The next section
provides a brief review of the results in [14]. Section III presents a spe-
cific 3-D counterexample to Conjecture 1. The final section concludes.

II. GURVITS ET AL. COUNTEREXAMPLE

In this section, we explain the construction in [14]. The first step is
an argument that allows transforming a linear switched system with an
invariant cone into a PLS.
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