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Abstract

There are two challenging fundamental questions in pinning control of complex networks: (i) How many nodes should a network with fixed
network structure and coupling strength be pinned to reach network synchronization? (ii) How much coupling strength should a network with
fixed network structure and pinning nodes be applied to realize network synchronization? To fix these two questions, we propose a general
complex dynamical network model and then further investigate its pinning adaptive synchronization. Based on this model, we attain several
novel adaptive synchronization criteria which indeed give the positive answers to these two questions. That is, we provide a simply approximate
formula for estimating the detailed number of pinning nodes and the magnitude of the coupling strength for a given general complex dynamical
network. Here, the coupling-configuration matrix and the inner-coupling matrix are not necessarily symmetric. Moreover, our pinning adaptive
controllers are rather simple compared with some traditional controllers. A Barabási–Albert network example is finally given to show the
effectiveness of the proposed synchronization criteria.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Nowadays complex networks lie in everywhere in our daily
life, such as the Internet, World Wide Web, communication net-
works, power grid networks, social networks, genetic regula-
tory networks, and so on (Chen & Zhou, 2006; Hu, Yang, &
Liu, 1998; Lü & Chen, 2005; Lü, Han, Yu, & Chen, 2004; Lü,
Yu, & Chen, 2004; Lü, Yu, Chen, & Cheng, 2004; Newman,
Barabási, & Watts, 2006; Pandit & Amritkar, 1999; Pavel, 2004;
Strogatz, 2001; Timme, Wolf, & Geisel, 2004; Wang & Chen,
2002; Wu, 2006; Zhou, Lu, & Lü, 2006). A complex network is
a large set of interconnected nodes, where the nodes and con-
nections can be everything. Over the past one decade, complex
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networks have been intensively investigated in various disci-
plines, such as mathematics, physics, biology, engineering, and
social sciences (Lü & Chen, 2005; Strogatz, 2001).

Synchronization is a kind of typical collective behaviors and
basic motions in nature (Pecora & Carroll, 1990; Wu & Chua,
1995). Recently, one of the interesting and significant phenom-
ena in complex dynamical networks is the synchronization of
all dynamical nodes in a network. It is well known that there are
many useful network synchronization phenomena in our real
life, such as the synchronous transfer of digital or analog sig-
nals in communication networks. More recently, adaptive syn-
chronization in networks or coupled oscillators has received an
increasing attention (Newman et al., 2006; Strogatz, 2001).

As we know now, the real-world complex networks normally
have a large number of nodes. Therefore, it is usually difficult
to control a complex network by adding the controllers to
all nodes. To reduce the number of the controllers, a natural
approach is to control a complex network by pinning part of
nodes. Grigoriev, Cross, and Schuster (1997) studied the pin-
ning control of spatiotemporal chaos. Parekh, Parthasarathy,
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and Sinha (1998) further investigated the global and local con-
trol of spatiotemporal chaos in coupled map lattices. Wang and
Chen (2002) proposed an effective measure to pin a scale-free
dynamical network to its equilibrium. Sorrentino, Bernardo,
Garofalo, and Chen (2007) explored the controllability of com-
plex networks via pinning. However, we do not know how
many nodes (at least) a complex network should be pinned
to realize network synchronization. In particular, what is the
minimum number of nodes which can guarantee network syn-
chronization? Therefore, it is very interesting to ask the follow-
ing two fundamental questions in pinning control of complex
dynamical networks: (i) How many nodes should a network
with fixed network structure and coupling strength be pinned
to achieve network synchronization? (ii) How much coupling
strength should a network with fixed network structure and pin-
ning nodes be applied to realize network synchronization? In
the following, based on a given general complex dynamical
network, we will give the positive answers to these two basic
questions. In brief, we provide a simply approximate formula
for estimating the detailed number of pinning nodes and the
magnitude of the coupling strength.

Using Lyapunov stability theory, we attain several locally and
globally asymptotically stable network synchronization criteria
for a general complex dynamical network. In particular, the
coupling configuration matrix and the inner-coupling matrix are
not necessary symmetric. Compared with some similar designs
(Grigoriev et al., 1997; Newman et al., 2006; Parekh et al., 1998;
Sorrentino et al., 2007; Strogatz, 2001; Wang & Chen, 2002),
our pinning adaptive controllers are very simple. In addition,
the pinning nodes can be randomly selected. It indeed provides
some new insights for the future practical engineering design.

The left paper is organized as follows. A general complex
dynamical network model and several mathematical prelim-
inaries are introduced in Section 2. In Section 3, several
locally and globally pinning adaptive synchronization crite-
ria for the general complex dynamical networks are deduced.
A Barabási–Albert (BA) network (Barabási & Albert, 1999)
example is then given to show the effectiveness of the proposed
network synchronization criteria in Section 4. Conclusions are
finally drawn in Section 5.

2. Preliminaries

This section proposes a generally controlled complex dynam-
ical network model and gives several necessary mathematical
preliminaries.

2.1. A generally controlled complex dynamical network model

Consider a generally controlled complex dynamical network
consisting of N identical nodes with linearly diffusive cou-
plings, which is described by

ẋi = g(xi , t) +
N∑

j=1

cij Axj + vi (x1, . . . , xN), (1)

where 1� i�N , xi = (xi1, xi2, . . . , xin)
T ∈ Rn is the state

vector of the ith node, g : �×R+ → Rn is a smooth nonlinear
vector field, node dynamics is ẋ = g(x, t), vi ∈ Rn are the
control inputs satisfying vi (x, . . . , x) = 0. Here, A ∈ Rn×n is
the inner-coupling matrix and C = (cij )N×N ∈ RN×N is the
coupling configuration matrix. If there is a link from node i to
node j (j �= i), then cij > 0 and cij is the coupling strength;
otherwise, cij =0. Assume that C is a diffusive matrix satisfying

N∑
j=1

cij = 0.

Suppose that the coupling matrix C is irreducible. Note that
here the coupling matrix C and inner coupling matrix A do not
need to be symmetric. Hereafter, let x = s(t; t0, x0) ∈ Rn with
x0 ∈ Rn, denoted as s(t), be a solution of the node system
ẋ = g(x, t). Then S(t) = (sT(t), sT(t), . . . , sT(t))T ∈ Rn×N is
a synchronous solution of the controlled complex dynamical
network (1) because it is a diffusive coupling network. Note that
s(t) can be an equilibrium point, a periodic orbit, an aperiodic
orbit, even a chaotic orbit in the phase space.

2.2. Mathematical preliminaries

To begin with, one presents a rigorous mathematical defini-
tion for network synchronization.

Definition 1. Let xi (t; t0, X0)(1� i�N) be a solution of the
controlled network (1), where X0 = (x0

1, x0
2, . . . , x0

N) ∈ Rn×N .
Assume that g : � × R+ → Rn and vi : � × · · · × � →
Rn(1� i�N) are continuously differentiable, � ⊆ Rn. If there
is a nonempty subset � ⊆ �, with x0

i ∈ �(1� i�N), such that
xi (t; t0, X0) ∈ � for all t � t0, 1� i�N , and

lim
t→∞ ‖xi (t; t0, X0) − s(t; t0, x0)‖2 = 0, 1� i�N , (2)

where x0 ∈ �, then the controlled network (1) is said to achieve
network synchronization and � × · · · × � is called the region
of synchrony for the dynamical network (1).

Define error vectors as

ei (t) = xi (t) − s(t), (3)

where 1� i�N . According to the controlled network (1), the
error system is then described by

ėi = g(xi , t) − g(s, t) +
N∑

j=1

cij Aej + vi (x1, . . . , xN), (4)

where 1� i�N .
To realize network synchronization, the controllers vi should

guide the error vectors (3) to approach zero as t goes to infinity.
That is,

lim
t→+∞ ‖ei (t)‖2 = 0, (5)

where 1� i�N .
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In the following, a useful hypothesis and a lemma are intro-
duced.

Hypothesis 1. (H1). Suppose that ‖Dg(s)‖2 is bounded, where
Dg(s) is the Jacobian of g evaluated at x = s. That is, there
exists a nonnegative constant � satisfying ‖Dg(s)‖2 ��.

Hereafter, assume that A �= 0 and ‖A‖2 =� > 0. Denote �min
as the minimum eigenvalue of the matrix (A + AT)/2.

Let �1 ��2 � · · · ��N be the eigenvalues of the matrix (Ĉ+
ĈT)/2, where Ĉ is a modifying matrix of C via replacing the
diagonal elements cii by (�min/�)cii . Note that matrix Ĉ does
not possess the property of zero row sums. Moreover, there
does not exist a definite relationship between the eigenvalues
of C and those of Ĉ for the general matrix C.

Lemma 1. (Wilkinson, 1965; Zheng, Chen, Mo, & Huang,
2002). Assume that E, F are the N × N Hermitian matri-
ces. Suppose that �1 ��2 � · · · ��N , 	1 �	2 � · · · �	N , and

1 �
2 � · · · �
N are the eigenvalues of E, F, E + F, respec-
tively. Then one has

�i + 	N �
i ��i + 	1, 1� i�N .

3. Pinning adaptive synchronization of a controlled
complex dynamical network

This section further investigates the local and global pinning
adaptive synchronization of a controlled complex dynamical
network. Several network synchronization criteria are attained
by using Lyapunov stability theory.

3.1. Local pinning adaptive synchronization

Without loss of generality, assume that the first l nodes
1� i� l are selected and pinned with the adaptive controllers,
which are described by{

vi = −piei , ṗi = qi‖ei‖2
2, 1� i� l,

vi = 0, otherwise,
(6)

where qi(i = 1, . . . , l) are any positive constants. Thus the
controlled network (1) can be rewritten as follows:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋi = g(xi , t) +
N∑

j=1
cij Axj − piei , 1� i� l,

ṗi = qi‖ei‖2
2, 1� i� l,

ẋi = g(xi , t) +
N∑

j=1
cij Axj otherwise.

(7)

According to (4) and (6), linearizing system (7) at zero yields⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ėi = Dg(s)ei +
N∑

j=1
cij Aej − piei , 1� i� l,

ṗi = qi‖ei‖2
2, 1� i� l,

ėi = Dg(s)ei +
N∑

j=1
cij Axj , (l + 1)� i�N,

(8)

where Dg(s) is the Jacobian of g evaluated at x = s.

Theorem 1. Suppose that (H1) holds. If there exists a natural
number 1� l < N satisfying �l+1 < − �

� , then the synchronous
solution S(t) of controlled network (1) is locally asymptotically
stable under the pinning adaptive controllers{

vi = −piei , ṗi = qi‖ei‖2
2, 1� i� l,

vi = 0, (l + 1)� i�N,
(9)

where qi are positive constants for 1� i� l.

Proof. Construct a Lyapunov candidate as follows:

V = 1

2

N∑
i=1

eT
i ei + 1

2

l∑
i=1

(pi − p)2

qi

, (10)

where p are positive constants satisfying p > � + ��1.
Thus the differential coefficient of V is described by

V̇ = 1

2

N∑
i=1

(ėT
i ei + eT

i ėi ) +
l∑

i=1

(pi − p)ṗi

qi

=
N∑

i=1

eT
i

(
Dg(s) + DgT(s)

2

)
ei

+
N∑

i=1

N∑
j=1

cij eT
i Aej −

l∑
i=1

peT
i ei

=
N∑

i=1

eT
i

(
Dg(s) + DgT(s)

2

)
ei +

N∑
i=1

N∑
j=1
j �=i

cij eT
i Aej

+
N∑

i=1

ciieT
i

(
A + AT

2

)
ei −

l∑
i=1

peT
i ei

�
N∑

i=1

�eT
i ei +

N∑
i=1

N∑
j=1
j �=i

�cij‖ei‖2‖ej‖2

+
N∑

i=1

cii�mineT
i ei −

l∑
i=1

peT
i ei

= eT(�IN + �Ĉ − D)e

= eT(�IN + �
Ĉ + ĈT

2
− D)e,

where D = diag{p, . . . , p︸ ︷︷ ︸
l

, 0, . . . , 0︸ ︷︷ ︸
N−l

}, e = (‖e1‖2, ‖e2‖2, . . . ,

‖eN‖2)
T.

Assume that �̂1 � �̂2 � · · · � �̂N are the eigenvalues of

the matrix
(

Ĉ+ĈT

2 − D
�

)
. According to Lemma 1, since

�1 ��2 � · · · ��N are the eigenvalues of the matrix Ĉ+ĈT

2 ,
one has{−p

� + �N � �̂i � − p
� + �1, 1� i� l,

�N � �̂i ��1, l + 1� i�N
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and

−p

�
+ �i � �̂i ��i , 1� i�N .

Since
(

Ĉ+ĈT

2 − D
�

)
is a real symmetric matrix, then there

exists an orthogonal matrix P satisfying
(

Ĉ+ĈT

2 − D
�

)
=

PTdiag{�̂1, . . . , �̂N }P.
Therefore, one gets

V̇ �eT

(
�IN + �

Ĉ + ĈT

2
− D

)
e

= (Pe)Tdiag{(� + ��̂1), . . . , (� + ��̂l ),

(� + ��̂l+1), . . . , (� + ��̂N)}(Pe)

�(Pe)Tdiag{(� − p + ��1), . . . , (� − p + ��1),

(� + ��l+1), . . . , (� + ��N)}(Pe)

= (Pe)TQ(Pe),

where Q = diag{(� − p + ��1), . . . , (� − p + ��1), (� +
��l+1), . . . , (� + ��N)}.

According to the assumption of Theorem 1, p > �+��1, one
has � + ��1 − p < 0. Then � + ��i < 0 for (l + 1)� i�N .

Therefore, Q is a negative definite matrix. It follows that
Pe → 0 as t → +∞. Since P is an orthogonal matrix, the error
vector � = (eT

1 , eT
2 , . . . , eT

N)T → 0 as t → +∞. That is, the
synchronous solution S(t) of controlled network (1) is locally
asymptotically stable under the pinning adaptive controllers (9).

Thus the proof is completed. �

Theorem 1 indicates that the network synchronization de-
pends on three basic elements: node dynamics (�), network
structure (�l+1), and inner coupling means (�, �min). In detail,
the inequality �l+1 <− �

� indeed gives a sufficient condition of
these three basic elements as above for the network synchro-
nization.

Corollary 1. Suppose that H1 holds and C=cC, where C is a
diffusive coupling matrix with c̄ij =0 or 1(j �= i). For a given c
(l), if �̄l+1 <− �/(c�) (�̄l+1 < 0 and c >− �/(��̄l+1)), then the
synchronous solution S(t) of controlled network (1) is locally
asymptotically stable under the pinning adaptive controllers
(9), where �̄1 � �̄2 � · · · � �̄N are the eigenvalues of the matrix

( ˆ̄C + Ĉ
T
)/2 and Ĉ is a modifying matrix of C via replacing

the diagonal elements c̄ii by (�min/�)c̄ii .

The conclusion is obvious and the proof is omitted here.

Remark 1.

(1) From Theorem 1, for the controlled complex dynamical
network (1) with fixed network structure and coupling
strength, one can approximately estimate the minimum
number of the pinning nodes which can achieve network

synchronization. Moreover, one can also randomly select
l (�l+1 < − �

� ) pinning nodes to add the controllers since
Theorem 1 does not limit the detailed positions of the pin-
ning controllers. Furthermore, for the controlled complex
dynamical network (1) with fixed network structure and
pinning nodes, one can approximately estimate the mag-
nitude of the coupling strength which can reach network
synchronization. In addition, all constant gains qi(1� i� l)

are any positive numbers.
(2) Assume that C = cC is symmetric and �min = �. Thus the

eigenvalues satisfy the condition: 0 = �̄1 > �̄2 � · · · � �̄N .
If c >− �

��̄2
, then network (1) can achieve network synchro-

nization under the adaptive controller (9) with l = 1.That
is, a single controller is enough to pin control a complex
dynamical network provided that the coupling strength is
larger than a given upper critical value −�/(��̄2).

3.2. Global pinning adaptive synchronization

This subsection studies the globally pinning adaptive syn-
chronization of the controlled complex dynamical network (1).
Several network synchronization criteria are drawn.

Rewrite the node system ẋ = g(x, t) as follows:

ẋ = Gx + h(x, t),

where Gx is the linear part of the node dynamics with G ∈
Rn×n and h : � × R+ → Rn is a continuously differential
nonlinear function. Thus the controlled network (1) is recasted
as follows:

ẋi = Gxi + h(xi , t) +
N∑

j=1

cij Axj + vi (x1, . . . , xN), (11)

where 1� i�N .
Since G is a given constant matrix, then there exists a non-

negative constant � satisfying ‖G‖2 ��.

Hypothesis 2. (H2). Suppose that h(x, t) is Lipschitz contin-
uous. That is, there exists a Lipschitz constant  satisfying
‖h(xi , t) − h(s, t)‖2 �‖ei‖2 for 1� i�N .

Similarly, one can select the first l nodes as the pinning nodes.
According to (6) and (11), the error system is then described by⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ėi = Gei + h(xi , t) − h(s, t) +
N∑

j=1
cij Aej − piei , 1� i� l,

ṗi = qi‖ei‖2
2, 1� i� l,

ėi = Gei + h(xi , t) − h(s, t) +
N∑

j=1
cij Axj , (l + 1)� i�N.

(12)

Thus one can obtain the following globally pinning adaptive
synchronization criterion.

Theorem 2. Suppose that (H2) holds. If there exists a natural
number 1� l < N satisfying �l+1 < − (� + )/�, then the
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synchronous solution S(t) of controlled network (11) is globally
asymptotically stable under the pinning adaptive controllers{

vi = −piei , ṗi = qi‖ei‖2
2, 1� i� l,

vi = 0, (l + 1)� i�N,
(13)

where qi are positive constants for 1� i� l.

Proof. Similarly, construct Lyapunov function (10) with
p > � +  + ��1, one gets

V̇ = 1

2

N∑
i=1

(ėT
i ei + eT

i ėi ) +
l∑

i=1

(pi − p)ṗi

qi

=
N∑

i=1

eT
i

(
G + GT

2
ei + h(xi , t) − h(s, t)

)

+
N∑

i=1

N∑
j=1

cij eT
i Aej −

l∑
i=1

peT
i ei

�
N∑

i=1

(� + ) eT
i ei +

N∑
i=1

N∑
j=1
j �=i

�cij‖ei‖2‖ej‖2

+
N∑

i=1

cii�mineT
i ei −

l∑
i=1

peT
i ei

= eT[(� + ) IN + �Ĉ − D]e

= eT[(� + ) IN + �
Ĉ + ĈT

2
− D]e

�(Pe)TQ̄(Pe),

where D = diag{p, . . . , p︸ ︷︷ ︸
l

, 0, . . . , 0︸ ︷︷ ︸
N−l

}, e = (‖e1‖2, ‖e2‖2, . . . ,

‖eN‖2)
T, and Q̄ = diag{(�++ ��1 −p), . . . , (�++ ��1 −

p), (� +  + ��l+1), . . . , (� +  + ��N)}.
According to the assumption of Theorem 2, p > �++��1,

one has � +  + ��1 − p < 0. Then � +  + ��i < 0 for (l + 1)

� i�N .
Therefore, Q̄ is a negative definite matrix. It follows that

Pe → 0 as t → +∞. Since P is an orthogonal matrix, the
error vector � = (eT

1 , eT
2 , . . . , eT

N)T → 0 as t → +∞. That
is, the synchronous solution S(t) of controlled network (11)
is globally asymptotically stable under the pinning adaptive
controllers (13).

The proof is thus completed. �

Corollary 2. Suppose that (H2) holds and C=cC, where C is a
diffusive coupling matrix with c̄ij =0 or 1(j �= i). For a given c

(l), if �̄l+1<−(�+)/(c�)
(
�̄l+1<0 and c>−(�+)/(��̄l+1)

)
,

then the synchronous solution S(t) of controlled network (11)
is globally asymptotically stable under the pinning adaptive
controllers (13), where �̄1 � �̄2 � · · · � �̄N are the eigenvalues

of the matrix (Ĉ + Ĉ
T
)/2 and Ĉ is a modifying matrix of C via

replacing the diagonal elements c̄ii by (�min/�)c̄ii .

This conclusion can be easily deduced from Theorem 2 and
thus the proof is omitted here.

4. Numerical simulation

In this section, a simple example is used to explain the ef-
fectiveness of the proposed network synchronization criteria.

Lorenz, Chen, and Lü systems are the typical benchmark
three dimensional chaotic systems (Lü & Chen, 2002; Lü, Chen,
Cheng, & Celikovsky, 2002). Here we assume that the con-
trolled network (1) consists of 500 identical Lü systems (Lü &
Chen, 2002), which is described by

ẋi = Gxi + h(xi ) + c

500∑
j=1

c̄ij Axj + vi , (14)

where 1� i�500, A = diag{1, 1.2, 1}, C = (c̄ij )500×500 is
a symmetrically diffusive coupling matrix with c̄ij = 0 or
1(j �= i). Here the coupling coefficient c = 40. The node
dynamics is then given by

ẋi =
⎛
⎝−r1 r1 0

0 r3 0

0 0 −r2

⎞
⎠
⎛
⎝xi1

xi2

xi3

⎞
⎠+

⎛
⎝ 0

−xi1xi3

xi1xi2

⎞
⎠

= Gxi + h(xi ),

where 1� i�500 and r1 = 36, r2 = 3, r3 = 20.
Obviously, � = ‖A‖2 = 1.2, � = ‖G‖2 ≈ 52.9843, and

h(xi ) − h(s) =
⎛
⎝ 0

−xi1xi3 + s1s3

xi1xi2 − s1s2

⎞
⎠=

⎛
⎝ 0

−xi3ei1 − s1ei3

xi2ei1 + s1ei2

⎞
⎠ ,

where 1� i�500.
It is well known that Lü attractor is bounded. Here we sup-

pose that all nodes are running in the given bounded region. Our
theoretical and numerical analyses show that there exist con-
stants M1=25, M2=30 and M3=45 satisfying ‖xij‖, ‖sj‖�Mj

for 1� i�500 and 1�j �3 (Li, Lu, Wu, & Chen, 2006). Thus
one gets

‖h(xi ) − h(s)‖2

�
√

(−xi3ei1 − s1ei3)
2 + (xi2ei1 + s1ei2)

2

�
√

2M2
1 + M2

2 + M2
3 ‖ei‖2

≈ 64.6142‖ei‖2.

Let  = 64.6142. Then one has

−� + 

c�
= −52.9843 + 64.6142

40 × 1.2
= −2.4500.

Here we assume that the network structure of (14) obeys
the scale-free distribution of the BA model (Barabási & Albert,
1999). The parameters of BA model are given by m0 = m =
5, N = 500. Without loss of generality, one randomly chooses
the pinning nodes. Since �̄26 = −2.4436 and �̄27 = −2.4611,
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Fig. 1. Synchronization errors eij (1� i �500, 1�j �3, 0� t �1) of the controlled network (14). (a) ei1 (1� i �500) for 0� t �1. (b) ei1 (1� i �500) for
0� t �1. (c) ei2 (1� i �500) for 0� t �1.

then there exists a natural number l = 26 satisfying �̄26+1 =
−2.4611 <−2.4500. That is, one only needs to pin 26 nodes of
500 nodes for realizing network synchronization. From Corol-
lary 2, the synchronous solution S(t) of the controlled network
(14) is globally asymptotically stable under the pinning adap-
tive controllers (13).

In all numerical simulations, the parameters are given as
follows: l = 26, qi = 0.1 and pi(0) = 1 for 1� i�26, qi =
pi(0) = 0 for 27� i�500, xi(0) = (4 + 0.5i, 5 + 0.5i, 6 +
0.5i)T, s(0) = (4, 5, 6)T, where 1� i�500. The synchronous
errors ei(1� i�500) are shown in Fig. 1. Clearly, the controlled
network (14) is globally asymptotically stable at zero under the
pinning controllers (13) with l = 26.

Our numerical simulations show that the convergence speed
of the intentional pinning scheme is much faster than that of
the random pinning scheme. However, the random pinning
scheme has more wide application than the intentional pinning
scheme since the random pinning scheme does not need to know
the exact network degree distribution. It should be especially
pointed out that our network synchronization criteria are also

valid for the above two pinning schemes. That is, if we know
the exact network degree distribution information, then we can
use the intentional pinning scheme; however, if we do not know
the exact network degree distribution information, then we can
use the random pinning scheme.

5. Conclusions

We have further explored the following two fundamental
questions in complex dynamical networks: (i) How many
nodes should a network with fixed network structure and cou-
pling strength be pinned to achieve network synchronization?
(ii) How much coupling strength should a network with fixed
network structure and pinning nodes be applied to realize
network synchronization? Based on a given network model,
several adaptive synchronization criteria are attained by using
Lyapunov stability theory and the pinning control method. In
particular, these synchronization criteria indeed give the pos-
itive answers to the proposed two questions. That is, we pro-
vide a simply approximate formula for estimating the detailed
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number of pinning nodes and the magnitude of the coupling
strength for a given complex dynamical network. In addi-
tion, the coupling configuration matrix and the inner-coupling
matrix are not necessarily symmetric. Moreover, our pinning
adaptive controllers are rather simple compared with some
traditional controllers. Finally, these adaptive synchronization
criteria also provide some new insights for the network syn-
chronization and the possible applications in the real-world
engineering systems.
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