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Abstract—This paper introduces a novel fourth-order
double-torus chaotic circuit. Based on this basic circuit, a
systematic theoretical design approach is proposed for generating
1-D torus, 2-D –torus, 3-D torus, and 4-D

torus chaotic attractors. This is the first autonomous
circuit reported in the literature for generating multidirectional
multi-torus (MDMT) chaotic attractors. The dynamical behav-
iors of these MDMT chaotic systems are further investigated,
including equilibrium points, bifurcations, Lyapunov exponents,
and Poincaré maps. Theoretical analysis shows that the MDMT
chaotic attractors can be generated by switching and displacing a
basic linear circuit. Finally, a block circuit diagram is designed for
hardware implementation of the MDMT chaotic attractors. This
is also the first time in the literature to experimentally verify a
maximal 1-D 20–torus, a maximal 2-D 5 5 torus, and a maximal
4-D 5 5 3 3 torus chaotic attractors.

Index Terms—Fourth-order double-torus chaotic circuit, multi-
directional multi-torus (MDMT) attractor, saturated function se-
ries, step function series.

I. INTRODUCTION

AN ORDINARY torus is a special surface with a geomet-
rical “hole.” A stable torus is emerged from a super-crit-

ical Neimark–Sacker bifurcation. In general, the tori are easily
observed in some two-dimensional and periodically forced dy-
namical systems [1]–[3]. However, it is rather rare to observe
a stable torus in a 3-D or 4-D autonomous system. As a result,
there are very few reports on generating tori in 3-D or 4-D au-
tonomous systems in the literature. Moreover, physical circuit
implementations of various torus attractors are quite difficult
[3]–[5].

In the torus-doubling route to chaos, the original torus appears
to split into two circles at the torus-doubling bifurcation point.
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In fact, the so-called torus-doubling route to chaos is reminis-
cent of the period-doubling route to chaos. As far as we know,
previous works on torus breakdown only focused on numer-
ical simulation and experimental observation of a single torus
or a double-torus [1]–[5]. Therefore, it is very interesting to ask
whether there exists a simple third- or fourth-order autonomous
circuit that can generate MDMT chaotic attractors. This paper
gives a positive answer to this question.

To begin with, it is necessary to briefly review some main
advances in multiscroll chaotic attractor generation. Over the
last two decades, the theoretical design and hardware imple-
mentation of various complex multiscroll chaotic attractors
have been a subject of increasing interest due to their potential
applications in various chaos-based technologies and infor-
mation systems [5]–[28]. Historically, Chua first discovered
Chua’s double-scroll circuit [1], [2]. Suykens and Vandewalle
then [8], [9] proposed a family of -double scroll chaotic attrac-
tors. Suykens and Chua [10] also introduced -double scroll
hypercubes by using 1-D cellular neural networks (CNN).
Aziz-Alaoui [11] investigated multispiral attractors in both
autonomous and nonautonomous systems. Tang et al. [13],
[14] proposed a sine-function approach for generating -scroll
chaotic attractors, with a systematical circuit realization that
can physically produce up to as many as ten scrolls visible
on the oscilloscope. Lü et al. [15], [16] presented a switching
manifold method for creating chaotic attractors with multiple
merged basins of attraction. Yalcin et al. constructed a family
of scroll grid chaotic attractors [17], including 1-D -scroll,
2-D –grid scroll, and 3-D -grid scroll chaotic
attractors. Lü et al. [18]–[20], [26] introduced the hysteresis
and saturated functions series approaches for generating 1-D

-scroll, 2-D -grid scroll, and 3-D -grid scroll
chaotic attractors, with rigorously mathematical proof and
physical realization for the chaotic behaviors. Yu et al. [28]
proposed a general jerk circuit for creating various types of

-scroll chaotic attractors. Recently, Lü and Chen [3] reviewed
the recent advances in theories, methods, and applications of
multiscroll chaos generation. In particular, the high complexity
of multidirection multiscroll (or torus) attractors compared with
the single scroll attractors means the generally applied prospect
in the chaos-based information technologies.

In the following, a novel fourth-order circuit is constructed for
generating a double-torus chaotic attractor. Based on this basic
circuit, a systematic theoretical design approach is developed
for creating 1-D -torus, 2-D -torus, 3-D -torus,
4-D -torus chaotic attractors. This is the first au-
tonomous circuit reported in the literature for generating multi-
directional multi-torus (MDMT) chaotic attractors. The dynam-
ical behaviors, including equilibrium points, bifurcations, Lya-
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Fig. 1. Double-torus chaotic attractor. (a) x–y plane projection. (b) Poincaré map on x–z plane with y = 0.

punov exponents, and Poincaré maps, are further investigated
for the MDMT chaotic system. Furthermore, theoretical anal-
ysis reveals that the MDMT chaotic attractors can be generated
by switching and displacing a basic linear circuit. In addition, a
novel block circuit diagram is designed for physically realizing
the MDMT chaotic attractors. This is the first time in the liter-
ature to physically realize a maximal 1-D 20-torus, a maximal
2-D grid 5 5 torus, and a maximal 4-D grid 5 5 3 3 torus
chaotic attractors.

The rest of this paper is organized as follows. In Section II, a
simple fourth-order double-torus chaotic circuit is designed and
its dynamical behaviors are investigated. A systematic theoret-
ical design approach is then proposed for generating MDMT
chaotic attractors in Section III. In Section IV, a novel block
circuit diagram is constructed for hardware implementation of
the MDMT chaotic attractors. Conclusions are finally drawn in
Section V.

II. SIMPLE FOURTH-ORDER DOUBLE-TORUS CHAOTIC CIRCUIT

This section introduces a simple fourth-order double-torus
chaotic circuit. Some typical dynamical behaviors of this system
are then explored.

A. A Simple Fourth-Order Double-Torus Chaotic Circuit

We propose a novel fourth-order double-torus chaotic system,
described by

(1)

where are system parameters and
with . In this section, assume that

and . Elwakil investigated this
model [6], but not for the torus chaotic attractors.

When , system (1) has a double-torus chaotic at-
tractor as shown in Fig. 1(a). Fig. 1(b) shows the Poincaré map

of the double-torus chaotic attractor on the – plane. Its Lya-
punov exponent spectrum is given by , ,

, and .
A novel fourth-order circuit has been designed for physi-

cally verifying the previous double-torus chaotic attractor. Fig. 2
shows the circuit diagram. This circuit diagram includes two
main parts; that is, the first part shows the basic fourth-order
double-torus circuit ; the second part shows the sign function
generator in the –direction . All supply voltages and satu-
rated voltages of operational amplifiers are 15 V and

13.5 V, respectively. All resistances are exactly adjustable re-
sistors or potentiometers. Here, is the transfor-
mation factor of the time scale, in which is the inte-
gral constant of the integrator . Also, .
Then one can get the exact value of by adjusting resistors
and .

It should be pointed out that one adds the capacitance
with high capability ( F) in Fig. 2 for enhancing the coupling
between subcircuits. Our experiments show that the trajectory
can quickly and evenly run through the whole region of the
double tori under the help of . The main function of is
to enhance the current distribution uniformity and prevent the
longterm staying of the current in a local region. However, we
can observe the same phenomena without for enough long
time’s observation.

Fig. 3 shows the experimental observation of the double-torus
chaotic attractor.

B. Dynamical Behaviors of the Double-Torus System

In this subsection, the dynamical behaviors of the double-
torus system (1) are further investigated.

Obviously, system (1) has three equilibrium points:
, , and .

The corresponding Jacobian matrices and their characteristic
equations of the zeros are, respectively

(2)
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Fig. 2. Fourth-order double-torus circuit.

Fig. 3. Experimental observations of double-torus chaotic attractors, where
x = 0.2 V/div, y = 0.1 V/div.

and

(3)

Then, the four roots of (3) are given by

(4)

where

for

for

for

for

in which is a real root of the equation

When , , the three equilibrium points of
system (1) are and and their
corresponding eigenvalues are ,

, . That is, the three equilibrium points
are saddle points with index 2.

Similarly, to generate multi-torus chaotic attractors from
system (1), assume that

(5)

That is, its linearized system evaluated at all equilibrium points
has two negative eigenvalues and one pair of complex conju-
gate eigenvalues with positive real parts. Moreover, all equilib-
rium points are two-dimensionally unstable equilibrium points,
called equilibrium points with index 2.

In addition, the state space of system (1) can be divided into
three different subspaces

where . System (1) has a natural sym-
metry under the coordinates transformation

, which persists for all parameter values.
The variation of the volume of a small element,

in the state space, is determined by
the divergence of the flow

That is, system (1) is dissipative in each subspace.
For subspaces and , the dynamical equations are de-

scribed by

(6)

where

for

for

for
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Assume that (5) holds. The four eigenvalues of system (6) are
. Let their corresponding eigenvectors be

,
, , respectively.

Thus, the exact solution of (6) is given by

(7)

where are real constants to be determined by the
initial condition .

As one can see in Section III, system (6) is also the basic
generator of MDMT chaotic attractors.

III. DESIGN OF MDMT CHAOTIC ATTRACTORS

In this section, a systematic design approach is proposed for
generating MDMT chaotic attractors based on the fourth-order
double-torus chaotic circuit (1).

A. A Fourth-Order MDMT Chaotic System

We propose a novel fourth-order MDMT chaotic system, de-
scribed by

(8)

where are system parameters and
are controllers, which de-

termine the number of tori in the directions,
respectively.

To generate MDMT chaotic attractors from system (8), we
introduces step function series or saturated function series into
system (8). Assume that are the step
function series. That is

(9)

or

(10)

where , , , , ,
and are nonnegative integers, is a sign
function, and are control parameters of the
corresponding step function series with and

.
Similarly, suppose that are satu-

rated function series. That is

(11)

or

(12)

where , , , , , ,
and are nonnegative integers,
and are control parameters of the cor-
responding saturated function series with and

. Moreover, the chaotic regions of
parameter is depending on the magnitudes of parameters
and . That is, the larger the parameters and

, the larger the parameters . The
bifurcation diagrams and Lyapunov exponent spectrum are also
further analyzed, but omitted here for simplicity.

Remark 1: Obviously, system (8) with (9) [or (10), or (11),
or (12)] becomes system (6) in every corresponding subspace
via a simple coordinates transformation. Therefore, system
(6) is the basic generator of the MDMT chaotic system (8)
with (9) [or (10), or (11), or (12)] and plays a key role in
chaos generation. In fact, according to the switching rules
defined by , system (8) can be divided
into many small subspaces, and .

In each subspace, and , system
(8) can be transformed into the basic linear system (6)
by the following linear transformation: ,

, , , where
or .

B. 1-D -Torus Chaotic Attractors

When , system
(8) with (9) [or (10), or (11), or (12)] can generate 1-D multi-
torus chaotic attractors. In this subsection, we always assume
that . In general,
system (8) with (9) can create a –torus chaotic attractor, and
system (8) with (10) can generate a –torus chaotic
attractor. In particular, system (8) with (10) becomes system (1)
for .

Fig. 4(a) and (b) show the bifurcation diagram versus param-
eter and the maximal Lyapunov exponent of system (8) with
(9) for and , respectively.

When , , , ,
system (8) with (10) has a 1-D 6-torus chaotic attractor as shown
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Fig. 4. (a) Bifurcation diagram versus parameter �, where there exists a period-doubling bifurcation route to chaos. (b) Maximal Lyapunov exponent spectrum
versus parameter �.

Fig. 5. 1-D 6-torus chaotic attractor. (a) x–y plane projection. (b) Poincaré map on the x–z plane with y = 0.

Fig. 6. 1-D 8-torus chaotic attractor. (a) x–y plane projection. (b) Poincaré map on the x–z plane with y = 0.

in Fig. 5(a). Fig. 5(b) shows the Poincaré map of this 6-torus
chaotic attractor on the – plane.

Similarly, for , , ,
, system (8) with (9) has a 1-D 8–torus chaotic attractor as

shown in Fig. 6(a). Fig. 6(b) shows the poincaré mapping of
this 8–torus chaotic attractor on – plane.

Since , , all equilib-
rium points of system (8) are with .
For example, when , , ,

, system (8) with (9) has 9 equilibrium points
with as shown by “O” and “ ”
in Fig. 7. Our analysis shows that only equilibrium points “O”
can generate tori, called step equilibrium points, while the equi-
librium points “ ” can connect two neighboring tori, called crit-
ical equilibrium points. From Fig. 7, one can see that every out-
side step equilibrium point can only generate one torus. How-
ever, every insider step equilibrium point can create two tori.
Therefore, the total number of tori is always an even number. In
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Fig. 7. Equilibrium points of 1-D 8-torus chaotic attractor.

particular, every step equilibrium point of the MDMT system
can only generate one torus.

System (8) with (9) can be divided into subspaces

where . Subspaces
and are called the step subspaces and
critical subspaces in the –direction, respectively. System
(8) with (9) has equilibrium points:
with . Every
subspace has one and only one equilibrium point. How-
ever, only the step equilibrium points, with

, can gen-
erate torus. All critical equilibrium points, with

,
cannot create torus.

In each subspace, or , system (8) with (9) can be trans-
formed into the basic linear system (6) by a coordinates trans-
formation: , , , with

. However, system (8) with (10) can gen-
erate torus only in its step subspaces in the –direction. There-
fore, system (6) is the basic generator of the multi-torus chaotic
system (8) with (9). System (8) with (9) creates complex dynam-
ical behaviors via displacement and switching transformations
based on the basic linear system (6). Similarly, system (8) with
(10) [or (11), or (12)] generates complex dynamical behaviors
via displacement and switching transformations based on the
basic linear system (6).

Remark 2: Here the step equilibrium point (or subspace) and
critical equilibrium point (or subspace) are not two proper nouns
but two specific kinds of equilibria with different functions. In
detail, the step equilibrium point can generate torus but the crit-
ical equilibrium point can connect two neighboring tori. The un-
derlying theoretical mechanisms are also unclear and deserve
further investigation in the near future.

C. MDMT Chaotic Attractors

System (8) with (9) [or (10), or (11), or (12)] can also generate
various 2-D, 3-D, or 4–D multi-torus chaotic attractors. For sim-
plification, we will briefly describe the 2-D and 3-D cases and
then further discuss the 4-D case in the following.

When , , , system
(8) with (9) [or (10), or (11), or (12)] can create 2-D multi-
torus chaotic attractors. In general, system (8) with (9) or (10)
can generate various 2-D –torus chaotic attractors for

, , , where
or for . For example, when ,

, , , ,
system (8) with (9) has a 2-D 13 13–torus chaotic attractor as
shown in Fig. 8(a). Fig. 8(b) shows the Poincaré map of this
2-D 13 13–torus chaotic attractor on the – plane. Since

, , , all equilibrium
points of system (8) are with and

.
When , , , ,

system (8) with (9) [or (10), or (11), or (12)] can create 3-D
multi-torus chaotic attractors. In general, system (8) with (9) or
(10) can generate various 3-D grid –torus chaotic
attractors for , , , ,
where or for . For
example, when , , ,

, , , system (8)
with (9) has a 3-D 13 13 7–torus chaotic attractor as shown
in Fig. 9(a) and (b). Fig. 9(c) shows the Poincaré map of this
3-D 13 13 7–torus chaotic attractor on the – plane. Since

, , , , all equilibrium
points of system (8) are with ,

, and .
When , , , , system

(8) with (9) [or (10), or (11), or (12)] can create 4-D multi-
torus chaotic attractors. In the left parts of this subsection, we
always assume that , , ,

. In general, system (8) with (9) or (10) can generate various
4-D –torus chaotic attractors, where

or for . For example,
when , , ,

, , , system (8)
with (9) has a 4-D grid 13 13 7 7–torus chaotic attractor
as shown in Fig. 10(a)–(c). Fig. 10(d) shows the Poincaré map
of this 13 13 7 7-torus chaotic attractor on the – plane.

Since , , , ,
all equilibrium points of system (8) are
with , , and

. For example, when , ,
, , ,
, system (8) with (9) has 9 9 5 5 equilibrium

points with ,
, ,

and .
Define
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Fig. 8. 2-D 13� 13–torus chaotic attractor. (a) x–y plane projection. (b) Poincaré map on the x–y plane with w = 0.

Fig. 9. 3-D 13� 13� 7-torus chaotic attractor. (a) x–y plane projection. (b) y–z plane projection. (c) Poincaré map on the y–z plane with w = 0.

, ,
, where

. Subspaces and
are called the step subspaces and critical

subspaces in the –direction, respectively. System (8) with (9)
can be divided into
subspaces

for ;
; ;

;

; ;
;

, where . System (8) with (9)
has equilibrium
points: with

Every subspace has one and only one equilibrium point. How-
ever, only the 4-D step equilibrium points,
with
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Fig. 10. 4-D 13� 13� 7� 7-torus chaotic attractor. (a) x–y plane projection. (b) y–z plane projection. (c) z–w plane projection. (d) Poincaré map on the x–y
plane with w = 0.

can generate torus. All 4-D critical equilibrium points,
with

but

cannot create torus.
In each subspace, or , system

(8) with (9) can be transformed into the basic linear system (6)
by the following linear transformation: ,

, , with .
However, system (8) with (9) can create torus only in 4-D step
subspaces

Therefore, system (6) is the basic generator of the multi-torus
chaotic system (8) with (9). System (8) with (9) creates complex
dynamical behaviors via displacement and switching transfor-
mations based on the basic linear system (6). Similarly, system
(8) with (10) [or (11), or (12)] generates complex dynamical be-
haviors via displacement and switching transformations based
on the basic linear system (6).

IV. CIRCUIT IMPLEMENTATION OF MDMT
CHAOTIC ATTRACTORS

Based on the operational principles of the MDMT chaotic
attractors, from (8)–(10), we have constructed a circuit diagram
to physically realize various MDMT chaotic attractors.

Fig. 11 shows such a circuit diagram. This circuit diagram
includes six different parts; that is, Part I: basic fourth-order
multi-torus circuit ; Part II: generator of step function
series in the -direction; Part III: generator of step function
series in the -direction; Part IV: generator of step function
series in the -direction; Part V: generator of step function
series in the -direction; Part VI: switch linkages, including

. Assume
that the supply voltages and saturated voltages of all oper-
ational amplifiers are 15 V and 13.5 V,
respectively. Furthermore, switch linkages con-
trol the number of directions for the fourth-order MDMT
chaotic attractors based on the basic fourth-order multi-torus
circuit and capacitance coupling. On the other hand, switch
linkages control the number
of tori in the -direction and switch linkage controls
the number of tori in the -direction for the fourth-order
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Fig. 11. Circuit diagram for implementing multidirectional grid multi-torus chaotic attractors.

MDMT chaotic attractors based on the generators and ,
respectively.

According to the circuit diagram shown in Fig. 11, the state
equation of the circuit in the integral form is described by

(13)

where are the step function series in the
–direction, respectively, given by

(14)
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Fig. 12. Experimental observations of 1-D multi-torus chaotic attractors in the x–y plane. (a) 8-torus, where x = 0.25 V/div, y = 0.1 V/div. (b) 20-torus, where
x = 0.55 V/div, y = 0.1 V/div.

Hereafter, k and nF are the integral re-
sistor and capacitance, respectively. are the
voltage-current conversion resistors. 13.5 V are the
saturated voltages of all operational amplifiers.

, , , are the step voltages of step func-
tion series. are the transformation coeffi-
cients of the anti-summator, where 10 k and

are given in Fig. 11. .
are the switch func-

tions, which are defined as 1 for switching on and 0 for switching
off.

From (13) and (14), one gets

(15)

where , ,
, , and

(16)

Here, are exactly adjustable resistors. In
practice, one can change system parameters by ad-
justing a set of resistors, , , , , , , , and .
Moreover, is the integrator constant of the integrator

shown in Fig. 11, and it is also the transformation factor
of the time scale satisfying . In addition, one can
change the distribution region of the frequency spectrum for a
chaotic signal by tuning integral resistor or integral capaci-
tance . That is, when (or ) is decreasing, one can adjust
the distribution region of the frequency spectrum of the chaotic
signal to the high-frequency end. However, when (or ) is

TABLE I
ON-OFF OF SWITCHES AND THE NUMBER OF 1-D TORI

TABLE II
CIRCUIT PARAMETERS OF 1-D MULTI-TORUS ATTRACTORS

TABLE III
ON-OFF OF SWITCHES AND THE NUMBER OF 2-D MULTI-TORUS ATTRACTORS

TABLE IV
CIRCUIT PARAMETERS OF 2-D MULTI-TORUS ATTRACTORS

increasing, one can tune the distribution region of the frequency
spectrum of the chaotic signal to the low-frequency end.

From the circuit diagram Fig. 11 and Tables I and II, one
can get 1-D 1-, 2-, 6-, 8-, 12-, 16-, 20-torus chaotic attractors.
Fig. 12 shows the experimental observations of the 8- and
20-torus chaotic attractors.

According to the circuit diagram shown in Fig. 11 and
Tables III and IV, one can get 2-D 3 5 and 5 5 torus chaotic
attractors as shown in Fig. 13.

Suppose that are switched on
and are switched off. Then, the circuit di-
agram can generate a 3-D 5 5 3 3 torus chaotic attractor as
shown in Fig. 14, with circuit parameters 13.5 k ,

54 k , 1.00 V 3.00 V,
0.25 V, 0.75 V.

Remark 3: Similarly, one can experimentally verify 3-D
multi-torus chaotic attractors by switching the switcher link-
ages in Fig. 11. For simplicity, all experimental descriptions
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Fig. 13. Experimental observations of 2-D multi-torus chaotic attractors in x–y plane. (a) 3� 5 torus, where x = 0.36 V/div, y = 0.2 V/div. (b) 3� 5 torus,
where x = 0.6 V/div, y = 0.2 V/div.

Fig. 14. Experimental observations of 4-D 5� 5� 3� 3-torus chaotic attractors. (a) the x–y plane, where x = 0.6 V/div; y = 0.2 V/div. (b) y– z plane, where
x = 0.16 V/div; y = 0.1 V/div. (c) z–w plane, where x = 0.12 V/div; y = 0.12 V/div.

and observations are omitted here. In particular, to enhance
the coupling between sub-circuits, one adds the capacitances

with high capability ( ) in
Fig. 11. Our experiments show that the trajectory can quickly
and evenly run through the whole region of all tori under the
help of . The main functions
of these capacitances are to enhance the current distribution
uniformity and prevent the longterm staying of the current in a
local region. However, one can also observe these phenomena
without these capacitances.

V. CONCLUSION

We have proposed a novel fourth-order double-torus chaotic
circuit. By slightly modifying this basic circuit, a systematic the-
oretical design approach has been presented for creating various
1-D -torus, 2-D -torus, 3-D -torus, and 4-D

–torus chaotic attractors. Some typical dynamical
behaviors, including equilibrium points, bifurcations, Lyapunov

exponents, and Poincaré maps, have been further investigated
for the MDMT chaotic system. Our theoretical analysis shows
that the MDMT chaotic attractors can be created by switching
and displacing a basic linear circuit.

It should be pointed out that this is the first autonomous cir-
cuit reported in the literature for generating MDMT chaotic at-
tractors. Also, this is the first time in the literature to physically
implement a maximal 1-D 20-torus, a maximal 2-D 5 5 torus,
and a maximal 4-D 5 5 3 3 torus chaotic attractors. We
have also noticed various complex dynamic mechanisms, in-
cluding very rich bifurcation phenomena, which deserve further
investiagation in the near future.
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