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Abstract

A systematic circuit design approach is proposed for experimental verification of hyperchaotic 2-, 3-, 4-scroll attractors from a generalized
Matsumoto–Chua–Kobayashi (MCK) circuit. Moreover, using appropriate discrete and extended transformations, a novel digital signal processor
(DSP) method is also presented for physically realizing the above hyperchaotic 2-, 3-, 4-scroll attractors. This is the first time in the literature
to report the experimental verification of hyperchaotic 3- and 4-scroll attractors. Some recursive formulas of system parameters are rigorously
derived, useful for improving circuit implementation.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Chaos has been intensively investigated over the last four
decades [1–23]. Especially, hyperchaos attracted increasing at-
tention in the last few years [4–8,11,21]. Hyperchaos was firstly
observed from a real physical system by Matsumoto, Chua and
Kobayashi [4,23]. Then, Yalcin and his colleagues introduced
some hyperchaotic n-double-scroll chaotic attractors by adding
breakpoints in the piecewise-linear (PWL) characteristic of the
MCK circuit and confirmed the hyperchaotic 4- and 6-scroll
attractors by computer simulations [5]. Yu and his colleagues
also proposed hyperchaotic n-scroll attractors and realized hy-
perchaotic 3–10-scroll attractors by computer simulations [6].
Itoh and his colleagues investigated the impulsive synchroniza-
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tion of a hyperchaotic double-scroll attractor and its application
to spread-spectrum communication systems [7].

It has been known that it is much more difficult to realize
multi-scroll chaotic and hyperchaotic attractors by electronic
circuits [11,12,21]. Yalcin and his colleagues experimentally
confirmed 3- and 5-scroll chaotic attractors in a generalized
Chua’s circuit [8], while Zhong and his colleagues proposed
a systematical circuitry design method for physically realizing
up to as many as ten scrolls visible on the oscilloscope [12].
Han and his colleagues constructed a double-hysteresis build-
ing block to physically realize a 9-scroll chaotic attractor [14].
There are some other approaches reported in the literature for
the design and circuit implementation of multi-scroll chaotic
attractors [10,11,15–21]. It is generally quite difficult to phys-
ically realize a nonlinear resistor having an appropriate char-
acteristic with many segments. The main obstacle is that the
device must have a very wide dynamic range [11,12,21], how-
ever, physical conditions always limit or even prohibit such
circuit realization [12].
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In this Letter we describe the design of a novel block circuit
diagram to experimentally confirm hyperchaotic n-scroll at-
tractors. Furthermore, using appropriate discrete and extended
transformations, a novel DSP method is developed to physi-
cally realize the above hyperchaotic 2-, 3-, 4-scroll attractors.
In particular, this is the first time in the literature to report the
experimental verification of hyperchaotic 3- and 4-scroll attrac-
tors. Finally, the derived recursive formulas of system parame-
ters provide a theoretical basis for physical circuit realization of
hyperchaotic attractors with a large number of scrolls.

2. Theoretical design of n-scroll hyperchaotic attractors

The dimensionless state equation of the hyperchaotic MCK
circuit [6,23] is described by

(1)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dx
dτ

= α[g(y − x) − z],
dy
dτ

= β[−g(y − x) − w],
dz
dτ

= γ0(x + z),

dw
dτ

= γy,

where g(y − x) = m1(y − x) + 0.5(m0 − m1)[|y − x + x1| −
|y − x − x1|] is an odd characteristic function. When α = 2,
β = 20, γ0 = 1, γ = 1.5, m0 = −0.2, m1 = 3, x1 = 1, system
(1) has a hyperchaotic double-scroll attractor [4,6,23].

To generate hyperchaotic n-scroll attractors from (1), one
first needs to generalize the characteristic function g(y − x) as
follows [6]:

g(y − x) = mN−1(y − x)

+ 1

2

N−1∑
i=1

(mi−1 − mi)

(2)× (|y − x + xi | − |y − x − xi |
)
.

It can be easily verified that the recursive formulas of positive
switching points xi (i = 2,3, . . . ,N − 1) can be deduced as
follows:

(3)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x2 = (1+k1)
∑1

i=1(mi−mi−1)xi

m1−1 − k1x1,

x3 = (1+k2)
∑2

i=1(mi−mi−1)xi

m2−1 − k2x2,

...

xN−1 = (1+kN−2)
∑N−2

i=1 (mi−mi−1)xi

mN−2−1 − kN−2xN−2,

where mi (0 � i � N − 1) are the slopes of the segments and

radials in various PWL regions, and ki = xi+1−xE
i

xE
i −xi

(1 � i �
N − 2), in which xE

i (1 � i � N − 2) are the positive equi-
librium points of g(x).

To limit the hyperchaotic signal into the region of the oper-
ational amplifier, one may assume that x1 < 1. Here, suppose
that x1 = 0.5. From (3), one determines the system parameters
as follows: (i) when N = 2, m0 = −0.2, m1 = 3, system (1)
with (2) has a hyperchaotic double-scroll attractor with Lya-
punov exponent spectrum: LE1 = 0.240, LE2 = 0.060, LE3 =
0, LE4 = −53.800, as shown in Fig. 1(a); (ii) when N = 3,
m0 = 3, m1 = −0.8, m2 = 3, k1 = 1.4, x2 = 1.8333, system (1)
with (2) has a hyperchaotic 3-scroll attractor with Lyapunov ex-
ponent spectrum: LE1 = 0.247, LE2 = 0.066, LE3 = 0, LE4 =
−54.000, as shown in Fig. 1(b); (iii) when N = 4, m0 = m2 =
−0.7, m1 = m3 = 2.9, k1 = 1.3, k2 = 1.3, x2 = 1.5289, x3 =
3.0239, system (1) with (2) has a hyperchaotic 4-scroll attractor
with Lyapunov exponent spectrum: LE1 = 0.253, LE2 = 0.070,
LE3 = 0, LE4 = −53.600, as shown in Fig. 1(c).

According to (3), one can easily get the recursive formulas of
positive equilibrium points xE

i (i = 1,2, . . . ,N −1) as follows:

(4)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

xE
1 =

∑1
i=1(mi−mi−1)xi

m1−1 ,

xE
2 =

∑2
i=1(mi−mi−1)xi

m2−1 ,

...

xE
N−1 =

∑N−1
i=1 (mi−mi−1)xi

mN−1−1 .

From (4), one can deduce all positive equilibria xE
i (i =

2,3, . . . ,N − 1) based on the given xi and slopes mi (i =
0,1, . . . ,N − 1). Obviously, system (1) with (2) can be clas-
sified into several different linear regions based on the lin-
ear regions of its characteristic function. Figs. 2(a) and (b)
show the linear regions of the characteristic functions of
3- and 4-scroll hyperchaotic attractors, respectively, where
±Di (i = 0,1, . . . ,N − 1) denotes different linear regions,
±xi (i = 1, . . . ,N − 1) are the switching points, and ±xE

i (i =
0,1, . . . ,N − 1) are the equilibrium points.

Since system (1) with (2) is a piecewise-linear system, its dy-
namical behaviors are completely determined by several basic
linear systems. Moreover, the stability of above linear systems
is determined by the stability of the corresponding equilibrium
points ±xE

i (i = 0,1, . . . ,N − 1). Obviously, the Jacobian at
equilibria ±xE

i (i = 0,1, . . . ,N − 1) is given by

(5)Ji =

⎡
⎢⎢⎢⎣

−αmi αmi −α 0

βmi −βmi 0 −β

γ0 0 γ0 0

0 γ 0 0

⎤
⎥⎥⎥⎦ .

For 3-scroll case, xE
0 ∈ D0 and its eigenvalues are given

by λ1 = −65.5816, λ2 = 0.4479, λ3,4 = 0.0669 ± j2.0200;
±xE

1 ∈ ±D1 and their eigenvalues are described by λ1 =
15.8866, λ2 = 1.4570, λ3,4 = 0.6281 ± j2.0667; ±xE

2 ∈ ±D2
and their eigenvalues are given by λ1 = −65.5816, λ2 =
0.4479, λ3,4 = 0.0669 ± j2.0200. Therefore, equilibria xE

0 ,
±xE

2 are saddle points with index 3 which generate three scrolls
in regions D0,±D2, respectively. Moreover, equilibria ±xE

1 are
unstable since they are divergence in regions ±D1, respectively.

Similarly, for 4-scroll case, xE
0 ∈ D0 and its eigenvalues

are given by λ1 = 13.3718, λ2 = 1.6464, λ3,4 = 0.6909 ±
j2.0386; ±xE

1 ∈ ±D1 and their eigenvalues are described
by λ1 = −63.3670, λ2 = 0.4414, λ3,4 = 0.0628 ± j2.0179;
±xE

2 ∈ ±D2 and their eigenvalues are given by λ1 = 13.3718,
λ2 = 1.6464, λ3,4 = 0.6909 ± j2.0386; ±xE

3 ∈ ±D3 and their
eigenvalues are described by λ1 = −63.3670, λ2 = 0.4414,
λ3,4 = 0.0628±j2.0179. Hence, equilibria ±xE , ±xE are sad-
1 3
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(a) (b)

(c)

Fig. 1. Numerical simulations of hyperchaotic n-scroll attractors: (a) 2-scroll; (b) 3-scroll; (c) 4-scroll.

(a) (b)

Fig. 2. Characteristic distribution regions of hyperchaotic n-scroll attractors: (a) 3-scroll; (b) 4-scroll.
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Fig. 3. Circuit diagram for realizing hyperchaotic n-scroll attractors.
dle points with index 3 which generate four scrolls in regions
±D1, ±D3, respectively. Furthermore, equilibria x0, ±xE

2 are
unstable since they are divergence in regions D0, ±D2, respec-
tively.

3. Circuit realization of hyperchaotic n-scroll attractors

In the following, one constructs a circuit diagram to experi-
mentally verify the hyperchaotic 2-, 3-, 4-scroll attractors. The
circuit diagram is designed and its dynamic equation is rigor-
ously derived from Fig. 3.

Fig. 3 shows the circuit diagram, where N1 is the generator
of the negative resistor −R, and NR is the multi-PWL func-
tion generator satisfying IN = f (vC2 − vC1). All operational
amplifiers are selected as Type TL082. All resistors are exactly
adjustable resistors or potentiometers. The voltage of the elec-
tric source is E = 15 V. Thus, the saturating voltages of the
operation amplifiers are Esat = 14.3 V.

According to Fig. 3, the circuit equation is derived as fol-
lows:

(6)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

C1
dvC1
dt

= f (vC2 − vC1) − iL1,

C2
dvC2
dt

= −f (vC2 − vC1) − iL2,

L1
diL1
dt

= vC1 + RiL1,

L2
diL2
dt

= vC2,
where f (vC2 −vC1) = GN−1(vC2 −vC1)+0.5
∑N−1

i=1 (Gi−1 −
Gi)(|vC2 − vC1 +Ei |− |vC2 − vC1 −Ei |) is a piecewise-linear
characteristic function.

Comparing (1) with (6), then one gets the transformation re-
lationship of parameters:

(7)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ0 = 2RC1, τ = t
τ0

, α = 2, β = 2C1
C2

= 20,

γ0 = 2R2C1
L1

= 1, γ = 2R2C1
L2

= 1.5,

x = vC1
VBP

, y = vC2
VBP

, z = RiL1
VBP

, w = RiL2
VBP

,

VBP = 1 V, Gi = miG (i = 0,1,2, . . .), G = 1
R

,

g(y − x) = Rf (vC2 − vC1),

where 1
τ0

= 1
2RC1

is the time-scale transformation factor.
From (7), one has the parameters: L1 = 9 mH,L2 =

6 mH,C1 = 50 nF,C2 = 5 nF,R = 300 �. Then one can get
the theoretical values of resistors based on the given parameters
as follows:

(1) For hyperchaotic 2-scroll attractor:

(8)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G0 = m0
R

= −0.67 mS,

G1 = m1
R

= 10 mS,

E1 = x1VBP,

r1 = R12
R11

= G1R2 − 1 = 1.00,

r2 = R22
R21

= Esat
E1

= 28.6,

r3 = R32
R31

= r2
R2(G1−G0)

− 1 = 12.4.
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(2) For hyperchaotic 3-scroll attractor:

(9)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G0 = m0
R

= 10 mS, G1 = m1
R

= −2.7 mS,

G2 = m2
R

= 10 mS, Ei = xiVBP (i = 1,2),

r1 = R12
R11

= G2R2 − 1 = 1.00,

r2 = R22
R21

= Esat
E2

= 7.80,

r3 = R32
R31

= r2
R2(G2−G1)

− 1 = 2.08,

r4 = R42
R41

= Esat
E1

− 1 = 27.60,

r5 = R52
R51

= − 1+r4
R2(G1−G0)

− 1 = 10.29.

(3) For hyperchaotic 4-scroll attractor:

(10)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G0 = m0
R

= −2.3 mS, G1 = m1
R

= 9.7 mS,

G2 = m2
R

= −2.3 mS, G3 = m3
R

= 9.7 mS,

Ei = xiVBP (i = 1,2,3),

r1 = R12
R11

= G3R2 − 1 = 0.93,

r2 = R22
R21

= Esat
E3

= 4.73,

r3 = R32
R31

= r2
R2(G3−G2)

− 1 = 0.97,

r4 = R42
R41

= Esat
E2

− 1 = 8.35,

r5 = R52
R51

= − 1+r4
R2(G2−G1)

− 1 = 2.90,

r6 = R62
R61

= Esat
E1

= 28.6,

r7 = R72
R71

= r6
R2(G1−G0)

− 1 = 10.90.

Note that capacitance C1 in Fig. 3 connects to the earth. To
exactly adjust C1, one introduces the equivalent capacitance as
shown in Fig. 4. According to the circuit theory, C1 = R2R4C5

R1R3
.

Therefore, it is very easy to adjust the capacitance C1 by tuning
the adjustable resistors R1,R2,R3,R4.

Let R1 = 100 k�, R2 = 0.2 k�, R31 = R51 = R71 = 1 k�,
R11 = R21 = R41 = R61 = 10 k�. Comparing Fig. 3 with sys-
tem (1) under (2), one can calculate the resistors Rn2 (1 �
n � 7) as shown in Tables 1 and 2. As seen from Fig. 3,
when K1, K2 are switched on and K3, K4 are switched off,
the circuit diagram can create a hyperchaotic double-scroll at-
tractor as shown in Fig. 5(a); when K1, K2, K3 are switched
on and K4 is switched off, the circuit diagram can gener-
ate a hyperchaotic 3-scroll attractor as shown in Fig. 5(b);

Fig. 4. Equivalent circuit diagram of adjustable capacitance C1.
Table 1
The ratios of the resistors rn = Rn2

Rn1
(1 � n � 7) and the number of the scrolls N

r1 r2 r3 r4 r5 r6 r7 N

1.00 28.60 12.40 2
1.00 7.80 2.08 27.60 10.29 3
0.93 4.73 0.97 8.35 2.90 28.60 10.90 4

Table 2
The resistors Rn2 = rnRn1 (1 � n � 7) and the number of the scrolls N

R12 R22 R32 R42 R52 R62 R72 N

10k 286k 12.4k 2
10k 78k 2.08k 276k 10.29k 3
9.3k 47.3k 0.97k 83.5k 2.90k 286k 10.9k 4

when K1, K2, K3, K4 are switched on, the circuit dia-
gram can create a hyperchaotic 4-scroll attractor as shown
in Fig. 5(c).

4. DSP realization of hyperchaotic n-scroll attractors

This section proposes a novel DSP method to physically re-
alize hyperchaotic 2-, 3-, 4-scroll attractors.

DSP is a special real time and fast digital signal processing
device. There are several different kinds of DSP series, such as
DSP2000 series, DSP5000 series, and DSP6000 series. Since
DSP concentrates the advanced digital signal processing tech-
nology and the micro-electronic technology into a small chip, it
has been widely applied to the communication, signal process-
ing, and industry control fields.

Here, one uses DSP2812 device with one TMS320F2812
chip and four D/A converters to generate hyperchaotic multi-
scroll signals. DSP2812 has two prominent characteristics: (1)
it has four D/A transformation devices which can simultane-
ously transform four routes of digital signals into the corre-
sponding four routes of analog signals; (2) its highest frequency
is 150 MHz which is enough to satisfy the requirement of our
experiments.

To create high quality hyperchaotic signal from DSP2812,
one needs to transform continuous time signal into discrete
time signal and then do extended transformation. According
to system (1), the discrete difference equation is described
by

(11)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(n) = �T · α{g[y(n − 1) − x(n − 1)] − z(n − 1)}
+ x(n − 1),

y(n) = �T · β{−g[y(n − 1) − x(n − 1)] − w(n − 1)}
+ y(n − 1),

z(n) = �T · γ0[x(n − 1) + z(n − 1)] + z(n − 1),

w(n) = �T · γy(n − 1) + w(n − 1),

where α = 2, β = 20, γ0 = 1, γ = 1.5, and �T is the sam-
pling time which is determined by the original chaotic equation.
Here, �T = 0.03. From (2), the discrete characteristic function
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(a) (b)

(c)

Fig. 5. Experimental observations of hyperchaotic n-scroll attractors: (a) 2-scroll, where x = 0.5 V/div, y = 0.4 V/div; (b) 3-scroll, where x = 1.0 V/div,
y = 0.7 V/div; (c) 4-scroll, where x = 1.3 V/div, y = 0.7 V/div.
is given by

g
[
y(n − 1) − x(n − 1)

]

= mN−1
[
y(n − 1) − x(n − 1)

]

+ 0.5
N−1∑
i=1

(mi−1 − mi)
(∣∣y(n − 1) − x(n − 1) + xi

∣∣

(12)− ∣∣y(n − 1) − x(n − 1) − xi

∣∣),
where mi (i = 0,1, . . . ,N − 1) are the slopes of the linear re-
gions of characteristic function g(·), xi (i = 2,3, . . . ,N − 1)

are the switching points of characteristic function g(·).
To improve the calculating precise of DSP2812, one needs

to do the extended transformation: u = kx, v = ky, s = kz, q =
kw, where k > 1 is the expanding ratio. According to (11) and
(12), one has

(13)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(n) = �T · α{g[v(n − 1) − u(n − 1)] − s(n − 1)}
+ u(n − 1),

v(n) = �T · β{−g[v(n − 1) − u(n − 1)] − q(n − 1)}
+ v(n − 1),

s(n) = �T · γ0[u(n − 1) + s(n − 1)] + s(n − 1),
q(n) = �T · γ v(n − 1) + q(n − 1)
Fig. 6. DSP2812 working principle diagram for realizing hyperchaotic n-scroll
attractors.

and

g
[
v(n − 1) − u(n − 1)

]

= mN−1
[
v(n − 1) − u(n − 1)

]

+ 0.5
N−1∑
i=1

(mi−1 − mi)
(∣∣v(n − 1) − u(n − 1) + kxi

∣∣

(14)− ∣∣v(n − 1) − u(n − 1) − kxi

∣∣),
where k = 30.

Fig. 6 shows the DSP2812 working principle diagram for
realizing hyperchaotic n-scroll attractors. The detailed working
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(a) (b)

(c)

Fig. 7. DSP2812 realization of hyperchaotic n-scroll attractors: (a) 2-scroll, where x = 0.5 V/div, y = 0.4 V/div; (b) 3-scroll, where x = 1.0 V/div, y = 0.7 V/div;
(c) 4-scroll, where x = 1.3 V/div, y = 0.7 V/div.
process can be summarized as follows: (1) generate iterative
series u(n), v(n), s(n), q(n) from (13) and (14), where the ini-
tial values are given by u(0) = 0.01, v(0) = 0.02, s(0) = 0.02,
q(0) = 0.01; (2) do the compressed transformation u′ = 1

k
u,

v′ = 1
k
v, s′ = 1

k
s, q ′ = 1

k
q since the linear dynamic regions of

D/A transformation devices are limited by [−15 V,15 V]; (3)
transform the digital signals u′(n), v′(n), s′(n), q ′(n) into the
analog signals u(t), v(t), s(t), q(t) via D/A transformation de-
vices in DSP2812.

Fig. 7 shows the experimental observations of the hy-
perchaotic 2-, 3-, 4-scroll attractors in the oscillograph of
DSP2812. Similarly, our experimental results show that the
DSP realization has a certain robustness against the variation
of all system parameters of all devices, the sampling time �T

and the extending ration k.

5. Conclusions

This Letter has proposed a novel block circuit diagram for
the hardware implementation of hyperchaotic 2-, 3-, 4-scroll at-
tractors from a generalized MCK circuit. Furthermore, a novel
DSP method is presented for physically realizing the above
hyperchaotic 2-, 3-, 4-scroll attractors by using appropriate dis-
crete and extended transformations. In addition, the derived
recursive formulas of system parameters provide a theoretical
basis for the physical realization of the hyperchaotic attractors
with a large number of scrolls. This is the first time in the liter-
ature to report the experimental verification of hyperchaotic 3-
and 4-scroll attractors.
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