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This paper proposes a general multiscroll Lorenz system family by introducing a novel parameter-
ized nth-order polynomial transformation. Some basic dynamical behaviors of this general multi-
scroll Lorenz system family are then investigated, including bifurcations, maximum Lyapunov
exponents, and parameters regions. Furthermore, the general multiscroll Lorenz attractors are physi-
cally verified by using digital signal processors. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2336739�
he Lorenz system, as the first classical chaotic system,
as been intensively investigated as a benchmark system
or chaotic theory over the past four decades. The general
orenz system family is a natural generalization of the
lassical Lorenz system, which has a similar double-scroll
utterfly-like attractor. Thus, it is very interesting to ask
he following questions: “Is it possible to generate various
omplex multiscroll chaotic attractors from the general
orenz system family via some simple linear transforma-

ions?” “Can one implement these multiscroll chaotic at-
ractors by using some simple physical circuits?” This
aper will give positive answers to these questions. More
recisely, a general multiscroll Lorenz system family is

ntroduced by constructing a novel parameterized
th-order polynomial transformation. Then, the funda-
ental dynamical behaviors of this general multiscroll
orenz system family are further explored. Finally, some
ovel experiments are designed via digital signal proces-
ors (DSP) to physically implement and verify these gen-
ral multiscroll Lorenz attractors.

. INTRODUCTION

In 1963, Lorenz found the first classical chaotic
ystem.1,2 In 1999, Chen and Ueta proposed a dual system of
he Lorenz system,3 called Chen’s system by other research-
rs thereafter, in the sense that the Lorenz system satisfies

12a21�0 while the Chen system satisfies a12a21�0 accord-
ng to the classification of Vaněček and Čelikovský,4 where

12 and a21 are entries in the matrix A= �aij�3�3 of the linear
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part of the quadratic chaotic systems. In 2002, Lü and Chen
found the critical chaotic system between the Lorenz and the
Chen systems, which satisfies a12a21=0.5–7 In the same year,
Lü et al. constructed a unified system that contains the above
three related but nonequivalent chaotic systems.6,7 Other than
this group of generalized Lorenz systems, there are some
other three-dimensional quadratic autonomous chaotic sys-
tems reported in the literature, although not directly related
to the Lorenz system.8–17

Aiming for simple but nonsmooth chaotic systems, a no-
table one is Chua’s circuit, coined in 1984, which has a
double-scroll attractor. Lately, the pursuit of designing cir-
cuits to produce various multiscroll chaotic attractors became
a focal subject for electronic engineers, due not only to the
theoretical interest but more importantly to their potential
real-world applications in various chaos-based technologies
and information systems.18–30 Today, there are several effec-
tive approaches available for designing multiscroll chaotic
attractors, using step functions,18 piecewise-linear
functions,19 sine functions,20 switching manifolds,22,23 hys-
teresis series,24 saturated series,25,27 jerk circuits,26 and so on.
Lü and Chen give a detailed review on the main advances in
multiscroll chaos generation, including theories, methods,
implementations, and applications.29

In 1993, a so-called proto-Lorenz system was formulated
by Miranda and Stone based on a nonparametric quadratic
polynomial transformation.30 A single-scroll proto-Lorenz
system, together with an n-scroll Lorenz system, were con-
structed. A natural question is whether all the three-
dimensional quadratic autonomous chaotic systems can have
similar protosystems. Another question is whether a unified

algebraic form can be designed to realize them. In the fol-

© 2006 American Institute of Physics6-1

 license or copyright, see http://chaos.aip.org/chaos/copyright.jsp

http://dx.doi.org/10.1063/1.2336739
http://dx.doi.org/10.1063/1.2336739
http://dx.doi.org/10.1063/1.2336739


l

L
n
c
m
i
t
v

m
S
m
b
f
n

I
S

L
s

A

w
c

d
t
l
S
r
t

033126-2 Yu et al. Chaos 16, 033126 �2006�

Do
owing, we give positive answers to both questions.
More precisely, this paper presents a general multiscroll

orenz system family by introducing a novel parameterized
th-order polynomial transformation. Some typical dynami-
al behaviors of this new family, including bifurcations,
aximum Lyapunov exponents, and parameters regions, are

nvestigated. Moreover, the general multiscroll Lorenz at-
ractors are physically verified by some novel experiments
ia digital signal processors �DSP� .

The rest of the paper is organized as follows. A general
ultiscroll Lorenz system family is deduced in Sec. II. In
ec. III, some typical dynamical behaviors of this general
ultiscroll Lorenz system family are studied. A new DSP-

ased experimental method is described in Sec. IV for veri-
ying the general multiscroll Lorenz chaotic attractors. Fi-
ally, conclusions are drawn in Sec. V.

I. A GENERAL MULTISCROLL LORENZ
YSTEM FAMILY

In this section, we extend the concept of general proto-
orenz system family,30 for the design of a general multi-
croll Lorenz system.

. A general proto-Lorenz system family

Consider the following general Lorenz system family12:

dx

d�
= a1x + a2y + a13xz + a23yz ,

dy

d�
= b1x + b2y + b13xz + b23yz + d2, �1�

dz

d�
= c3z + c12xy + c11x

2 + c22y2 + c33z
2 + d3,

here ai ,bi ,ai3 ,bi3 for i=1,2, cjj for j=1,2 ,3, and

3 ,d2 ,d3 ,c12 are real constants.
System �1� is a general form for most typical three-

imensional quadratic autonomous chaotic systems including
he Lorenz system,1,2 Chen system,3,7 Lü system,5–7 Lorenz-
ike system,12 Liu-Chen system,13 Ruchlidge system,14

himizu-Morioka system,12 and Sprott systems.15–17 The pa-
ameter settings for these three-dimensional quadratic au-

TABLE I. System parameters of several typical chao

a1 a2 a13 a23 b1 b2 b13 b23

−10 10 0 0 28 −1 −1 0

−35 35 0 0 −7 28 −1 0
−36 36 0 0 0 20 −1 0
2.86 0 0 −1 0 −10 1 0
0.5 0 0 1 0 −10 −1 0
−2 6.7 0 −1 1 0 0 0
0 1 0 0 1 −0.85 −1 0
0 1 0 0 −1 0 0 1
0 0 0 1 1 −1 0 0
0 0 0 1 1 −1 0 0
onomous chaotic systems are tabulated in Table I.
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In 1993, Miranda and Stone proposed the so-called
proto-Lorenz system by introducing a nonparametric qua-
dratic polynomial transformation on the Lorenz system.30

Here, we further propose a novel parameterized quadratic
polynomial transformation:

u = �1
2x2 − �2

2y2, v = �3xy, w = �4z , �2�

where �1 ,�2 ,�3 ,�4 are some control parameters. Compared
with the nonparametric quadratic polynomial transformation
given in Ref. 30, the above control parameters �i�1� i�4�
can be adjusted for controlling bifurcations, maximum
Lyapunov exponents, symmetry, and even the shape of the
phase portraits, for different chaotic systems. These charac-
teristics are very useful for chaos synchronization and secure
communication because they greatly increase the complexity
and controllability of the system, making the reconstruction
of scrolls and hence attacks much more difficult.

The inverse transformation of �2� is given by

x2 =
�N�u,i�vv�� + u

2�1
2 , y2 =

�N�u,i�vv�� − u

2�2
2 ,

�3�

xy =
v
�3

, z =
w

�4
,

where �v=2�1�2 /�3 is the control parameter, N�u , i�vv�
=u+ i�vv is the complex variable function transformation of
the control parameter �v, and �N�u , i�vv� � = �u+ i�vv �
=�u2+ ��vv�2 is the module of N�u , i�vv�.

By differentiating �2�, we have

du

d�
= 2�1

2x
dx

d�
− 2�2

2y
dy

d�
,

dv
d�

= �3y
dx

d�
+ �3x

dy

d�
, �4�

dw

d�
= �4

dz

d�
.

Substituting �1� into �4� leads to

stems.

c3 c12 c11 c22 c33 d3 System

− 8
3 1 0 0 0 0 Lorenz

−3 1 0 0 0 0 Chen
−3 1 0 0 0 0 Lü
−4 1 0 0 0 0 Lorenz-like
−4 −1 0 0 0 0 Liu-Chen
−1 0 0 1 0 0 Ruchlidge

−0.5 0 1 0 0 0 S-M
0 0 0 −1 0 1 Sprott �I�
0 −1 0 0 0 1 Sprott �II�
0 0 −1 0 0 1 Sprott �III�
tic sy

d2

0

0
0
1
0
0
0
0
0
0
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du

d�
= 2�1

2�a1x2 + a2xy + a13x
2z + a23xyz�

− 2�2
2�b1xy + b2y2 + b13xyz + b23y2z + d2y� ,

dv
d�

= �3�a1xy + a2y2 + a13xyz + a23y2z + b1x2 + b2xy

+ b13x
2z + b23xyz + d2x� , �5�

dw

d�
= �4�c3z + c12xy + c11x

2 + c22y2 + c33z
2 + d3� .

Further substituting �3� into �5�, the general proto-
orenz system family can be obtained, and a unified alge-
raic equation is formulated as below:

du

d�
= �a1 + b2 +

�a13 + b23�w
�4

�u

+ �2�a2�1
2 − b1�2

2�
�3

+
2�a23�1

2 − b13�2
2�w

�3�4
�v

+ �a1 − b2 +
�a13 − b23�w

�4
��N�u,i�vv��

+ �2d2�2
��N�u,i�vv�� − u ,

dv
d�

= �−
a2�3

2�2
2 +

b1�3

2�1
2 −

a23�3w

2�2
2�4

+
b13�3w

2�1
2�4

�u

+ �a1 + b2 +
�a13 + b23�w

�4
�v

+ �a2�3

2�2 +
b1�3

2�2 +
a23�3w

2�2�4
+

b13�3w

2�2�4
��N�u,i�vv��
2 1 2 1

nd

wnloaded 15 Oct 2006 to 128.112.23.21. Redistribution subject to AIP
−
d2�3

�2�1

��N�u,i�vv�� + u , �6�

dw

d�
= � c11�4

2�1
2 −

c22�4

2�2
2 �u +

c12�4

�3
v

+ � c11�4

2�1
2 +

c22�4

2�2
2 ��N�u,i�vv��

+ � c33

�4
w2 + c3w + d3�4� .

According to Table I and system �6�, one can obtain the
explicit expressions of various single-scroll protosystems,
such as proto-Lorenz, proto-Chen, and proto-Lü systems,
while the complex variable function N�u , i�vv�=u+ i�vv
plays a key role in the dynamics of the general system �6�.

B. A general multiscroll Lorenz system family

Based on the general single-scroll proto-Lorenz system
family expressed in �6�, a general multiscroll Lorenz system
family can be designed by means of a novel nth-order poly-
nomial transformation.

Recall N�u , i�vv�=u+ i�vv, an nth-order polynomial can
be expressed as follows:

�N�p,i�qq��n = �p + i�qq�n, �7�

where �q=�v is a control parameter. The corresponding
nth-order conjugate polynomial is given by

�Ñ�p,i�qq��n = �p − i�qq�n. �8�

The real and imaginary parts of the nth-order polynomial
n
�N�p , i�qq�� can be described, respectively, by
Pn�p,�qq� = Re	�N�p,i�qq��n
 = �pn + �
l=1

n/2

�− 1�l
 j=0
2l−1�n − j�

�2l�!
pn−2l��qq�2l, n is even

pn + �
l=1

�n−1�/2

�− 1�l
 j=0
2l−1�n − j�

�2l�!
pn−2l��qq�2l, n is odd

�9�

nd

Qn�p,�qq� = Im	�N�p,i�qq��n
 = ��
l=1

n/2

�− 1�l+1
 j=0
2l−2�n − j�
�2l − 1�!

pn−2l+1��qq�2l−1, n is even

�
l=1

�n+1�/2

�− 1�l+1
 j=0
2l−2�n − j�
�2l − 1�!

pn−2l+1��qq�2l−1, n is odd.

�10�

Similarly, the real and imaginary parts of the �n−1�st-order polynomial �Ñ�p , i�qq��n−1 are described respectively by

P̃n−1�p,�qq� = Re	�Ñ�p,i�qq��n−1
 = �pn−1 + �
l=1

�n−2�/2

�− 1�l
 j=0
2l−1�n − j − 1�

�2l�!
pn−2l−1��qq�2l, n is even

pn−1 + �
l=1

�n−1�/2

�− 1�l
 j=0
2l−1�n − j − 1�

�2l�!
pn−2l−1��qq�2l, n is odd

�11�
 license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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Q̃n−1�p,�qq� = Im	�Ñ�p,i�qq��n−1
 = ��
l=1

n/2

�− 1�l
 j=0
2l−2�n − j − 1�

�2l − 1�!
pn−2l��qq�2l−1, n is even

�
l=1

�n−1�/2

�− 1�l
 j=0
2l−2�n − j − 1�

�2l − 1�!
pn−2l��qq�2l−1, n is odd.

�12�
According to the general single-scroll proto-Lorenz sys-
em family �6�, the nth-order polynomial �N�p , i�qq��n and

n−1�th-order polynomial �Ñ�p , i�qq��n−1, after some tedious
lgebraic manipulations, a unified system equation for the
eneral multiscroll Lorenz system family is obtained as
elow:

�
dp

d�

dq

d�

ds

d�

� =�
P̃n−1�p,�qq�

n�N�p,i�qq��2n−2 −
Q̃n−1�p,�qq�

n�N�p,i�qq��2n−2
0

Q̃n−1�p,�qq�
n�N�p,i�qq��2n−2

P̃n−1�p,�qq�
n�N�p,i�qq��2n−2

0

0 0 1

�
��F1�p,q,s,��

F2�p,q,s,��
F3�p,q,s,��

� , �13�

here s=w, n �N�p , i�qq��2n−2=n�p2+ ��qq�2�n−1, P̃n−1�p ,�qq�,
nd Q̃n−1�p ,�qq� are the real and imaginary parts of the

n−1�th-order polynomial �Ñ�p , i�qq��n−1 given by �11� and
12�, respectively.

By replacing u ,v ,w , �N�u , i�vv�� in �6� with
Pn�p ,�qq� ,Qn�p ,�qq� ,s , �N�u , i�vv��n/2, respectively, the
ollowing explicit mathematical expressions of

1�p ,q ,s ,�� ,F2�p ,q ,s ,�� ,F3�p ,q ,s ,�� can be obtained:

1�p,q,s,�� = �a1 + b2 +
�a13 + b23�s

�4
�Pn�p,�qq�

+ �2�a2�1
2 − b1�2

2�
�3

+
2�a23�1

2 − b13�2
2�s

�3�4
�Qn�p,�qq�

+ �a1 − b2 +
�a13 − b23�s

�4
��N�p,i�qq��n/2

+ �2d2�2
��N�p,i�qq��n/2 − p ,

2�p,q,s,�� = �−
a2�3

2�2
2 +

b1�3

2�1
2 −

a23�3s

2�2
2�4

+
b13�3s

2�1
2�4

�Pn�p,�qq�

+ �a1 + b2 +
�a13 + b23�s

�4
�Qn�p,�qq�

+ �a2�3

2�2 +
b1�3

2�2 +
a23�3s

2�2�4
+

b13�3s

2�2�4
�

2 1 2 1

wnloaded 15 Oct 2006 to 128.112.23.21. Redistribution subject to AIP
��N�p,i�qq��n/2 −
d2�3

�2�1

��N�p,i�qq��n/2 + p ,

�14�

F3�p,q,s,�� = � c11�4

2�1
2 −

c22�4

2�2
2 �Pn�p,�qq� +

c12�4

�3
Qn�p,�qq�

+ � c11�4

2�1
2 +

c22�4

2�2
2 ��N�p,i�qq��n/2

+ � c33

�4
s2 + c3s + d3�4� ,

where �= ��1 ,�2 ,�3 ,�4 ,�q�.

III. DYNAMICAL BEHAVIORS OF THE GENERAL
MULTISCROLL LORENZ SYSTEM FAMILY

Rewrite �13� in the following form:

dp

d�
=

P̃n−1�p,�qq�
n�N�p,i�qq��2n−2F1�p,q,s,��

−
Q̃n−1�p,�qq�

n�N�p,i�qq��2n−2F2�p,q,s,�� ,

dq

d�
=

Q̃n−1�p,�qq�
n�N�p,i�qq��2n−2F1�p,q,s,��

+
P̃n−1�p,�qq�

n�N�p,i�qq��2n−2F2�p,q,s,�� , �15�

ds

d�
= � c11�4

2�1
2 −

c22�4

2�2
2 �Pn�p,�qq� +

c12�4

�3
Qn�p,�qq�

+ � c11�4

2�1
2 +

c22�4

2�2
2 ��N�p,i�qq��n/2

+ � c33

�4
s2 + c3s + d3�4� .

The dynamical behaviors of the general multiscroll Lorenz
system family �15�, including bifurcations, maximum
Lyapunov exponents, and parameters regions, are studied.

A. Basic dynamical behaviors

For brevity, only a ten-scroll Lü system is used as an
example for explaining our methodology. The similar proce-

dures are also applicable for all the other cases.

 license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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From Table I and Eqs. �9�–�15� with n=10, the ten-scroll
ü system is described by

dp

d�
=

P̃9�p,�qq�
10 � �p2 + ��qq�2�9F1�p,q,s,��

−
Q̃9�p,�qq�

10 � �p2 + ��qq�2�9F2�p,q,s,�� ,

dq

d�
=

Q̃9�p,�qq�
10 � �p2 + ��qq�2�9F1�p,q,s,��

+
P̃9�p,�qq�

10 � �p2 + ��qq�2�9F2�p,q,s,�� , �16�

ds

d�
=

�4

�3
Q10�p,�qq� − 3s .

Based on Eqs. �9�–�12� and �14�, the mathematical ex-

ressions of P̃9�p ,�qq�, Q̃9�p ,�qq�, P10�p ,�qq�, Q10�p ,�qq�,
1�p ,q ,s ,��, F2�p ,q ,s ,�� are obtained as

IG. 1. Dynamical behaviors of system �16� in case I. �a� Bifurcation dia-

ram and �b� maximum Lyapunov exponent spectrum.

wnloaded 15 Oct 2006 to 128.112.23.21. Redistribution subject to AIP
P̃9�p,�qq� = p9 − 36p7��qq�2 + 126p5��qq�4 − 84p3��qq�6

+ 9p��qq�8,

Q̃9�p,�qq� = − 9p8�qq + 84p6��qq�3 − 126p5��qq�4

+ 36p2��qq�7 − ��qq�9,

P10�p,�qq� = p10 − 45p8��qq�2 + 210p6��qq�4

− 210p4��qq�6 + 45p2��qq�8 − ��qq�10, �17�

Q10�p,�qq� = 10p9�qq − 120p7��qq�3 + 252p5��qq�5

− 120p3��qq�7 + 10p��qq�9

and

F1�p,q,s,�� = − 14P10�p,�qq�

+ �72�1
2

�3
+

2�2
2s

�3�4
�Q10�p,�qq�

+ 58�p2 + ��qq�2�5,

FIG. 2. Dynamical behaviors of system �16� in case II. �a� Bifurcation

diagram and �b� maximum Lyapunov exponent spectrum.
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F2�p,q,s,�� = �−
36�3

2�2
2 −

�3s

2�1
2�4

�P10�p,�qq�

− 14Q10�p,�qq�

+ �36�3

2�2
2 −

�3s

2�1
2�4

��p2 + ��qq�2�5. �18�

TABLE II. Regions of the control parameters of the

�1 �2 Region �

1�5 1�5 �2��1�5 2.0�2.5
1�6 1�6 �1=�2 1.6�2.5
1�3 1�5 �1��2�5 1.5�2.3
1�6 1�6 �1=�2 1.5�2.4
1�6 1�6 �1=�2 2.0
1�6 1�6 �1=�2 1.8�2.2
1�6 1�6 �1=�2 2.0�2.3
1�6 1�6 �1=�2 2.0
1�6 1�6 �1=�2 2.0
1�6 1�6 �1=�2 2.0

IG. 3. Dynamical behaviors of system �16� in case III. �a� Bifurcation
iagram and �b� maximum Lyapunov exponent spectrum.
wnloaded 15 Oct 2006 to 128.112.23.21. Redistribution subject to AIP
Therefore, system �16� is completely determined by the con-
trol parameter vector �= ��1 ,�2 ,�3 ,�4 ,�q�. Hereafter,
�=�3 / ��1�2�.

The dynamical behaviors of system �16� are now further
discussed, under the following three sets of control param-
eters:

Case I: Let �1=�2=2.1, �3=1.5�1�2�2.3�1�2=6.615
�10.143,�4=2 , �q=2�1�2 /�3. Figures 1�a� and 1�b� show
the bifurcation diagram and maximum Lyapunov exponents
of system �16� versus the control parameter �3.

Case II: Let �1=�2=0.4�3.5, �3=1.7�1�2 ,�4=2 , �q

=2�1�2 /�3. Figures 2�a� and 2�b� show the bifurcation dia-
gram and maximum Lyapunov exponents of system �16� ver-
sus the control parameter �1.

Case III: Let �1=1 , �2=1�5, �3=2�1�2 , �4=1 , �q

=2�1�2 /�3. Figures 3�a� and 3�b� show the bifurcation dia-
gram and maximum Lyapunov exponents of system �16� ver-
sus the control parameter �2.

It can be seen from Figs. 1–3 that there exists the typical
route from period-doubling bifurcations to chaos in some
given parameter regions with the positive maximum
Lyapunov exponents.

Table II shows the regions of the control parameters of
the general multiscroll Lorenz system family �15�. According
to Table II, the regions of control parameter �3 are com-
pletely determined by the control parameters �1 ,�2. More-
over, the magnitude of variable s is determined by the con-

ral multiscroll Lorenz system family �15�.

3 �4 �q=2�1�2 /�3 System

�1�2 1�5 0.8�1.0 Lorenz
�1�2 1�5 0.8�1.25 Chen
�1�2 1�5 0.87�1.33 Lü
�1�2 1�6 0.83�1.33 Lorenz-like
�1�2 1�6 1.0 Liu-Chen
�1�2 1�6 0.91�1.11 Ruchlidge
�1�2 1�6 0.87�1.0 S-M
�1�2 1�3 1.0 Sprott �I�
�1�2 1�3 1.0 Sprott �II�
�1�2 1�3 1.0 Sprott �III�

TABLE III. Typical control parameter sets of the general multiscroll Lorenz
system family �15�.

�1 �2 � �3 �4 �q System

3 3 2.0 18.0 3 1.00 Lorenz
4 4 2.0 32.0 5 1.00 Chen
1 5 1.7 8.5 2 1.18 Lü
5 5 1.5 37.5 2 1.00 Lorenz-like
5 5 2.0 50.0 2 1.00 Liu-Chen
3 3 2.2 19.8 2 0.91 Ruchlidge
4 4 2.3 36.8 2 0.87 S-M
1 1 2.0 2.0 2 1.00 Sprott �I�
2 2 2.0 8.0 3 1.00 Sprott �II�
1 1 2.0 2.0 1 1.00 Sprott �III�
gene

�

�3=�

�3=�

�3=�

�3=�

�3=�

�3=�

�3=�

�3=�

�3=�

�3=�
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rol parameter �4. Furthermore, the parameter �=�3 / ��1�2�
an control the symmetry, the shape of phase portraits, and
he number of scrolls of the multiscroll system family �15�.
or example, when �=2.0, the scrolls are arranged in a
ircle; however, when ��2.0, the scrolls are arranged in an
llipse. Such design flexibility has greatly enhanced the po-
ential application of this kind of system in secure commu-
ications, as the complexity of the dynamics can be well
esigned or increased.

. Numerical simulations

A number of simulations have been carried out to verify
ur design. The ten sets of typical control parameters in the
eneral multiscroll Lorenz system family are given in Table
II. With Eqs. �14� and �15� and Tables I and III, the general
en-scroll Lorenz chaotic attractors, including a ten-scroll
orenz attractor, a ten-scroll Chen attractor, a ten-scroll Lü
ttractor, a ten-scroll Lorenz-like attractor, a ten-scroll Liu-
hen attractor, a ten-scroll Ruchlidge attractor, a ten-scroll
-M attractor, and some ten-scroll Sprott attractors, are ob-

ained as shown in Fig. 4.

V. DSP-BASED EXPERIMENTS ON THE GENERAL
ULTISCROLL LORENZ SYSTEM FAMILY

According to �13� �or �15��, the general multiscroll Lo-
enz system family has very complex algebraic form. In gen-
ral, an n−scroll system is a rational fraction with the maxi-
al power of �2n−2�. For example, the ten-scroll system

16� is a rational fraction with the maximal power of 18. In
ddition, some complex algebraic operations in �13�, such as
ivision and extraction, are also involved. Therefore, it is
ery difficult �even impossible� to implement system �13�
nd

wnloaded 15 Oct 2006 to 128.112.23.21. Redistribution subject to AIP
with large number of scrolls by using the conventional ana-
log circuits. However, DSP-based experiments can overcome
these difficulties and easily implement system �13�. It also
provides a basis for the future real-world applications of the
general multiscroll Lorenz system family.

In our experiments, the Texas Instrument DSP device
TMS320F2812 is employed. TMS320F2812 is a 32-bit DSP
running at 150 MHz with fixed point operations. Such a
high-speed clock rate is considered to be sufficient for our
laboratory experiments. It can easily interface with external
devices, such as multichannels digital-to-analog converter
�DAC�, which is useful for displaying the states of the real-
ized chaotic systems, or communicated with personal com-
puters for the ease of software development and debugging.

In order to realize the general multiscroll Lorenz system
family �15�, two major steps are involved. First, the
continuous-time system �15� is discretized. This can be done
by approximating the differentiation with difference, i.e.,

du

dt
=

U�m� − U�m − 1�
�T

,

where �T is the sampling period. Second, rescaling of the
system variables is required in order to increase the compu-
tational precision. From Fig. 4, it can be observed that the
ranges of variables p ,q are very small ��p � , �q � �3�, and
hence a direct implementation will affect the computational
precision. For this reason, a scaling factor E�1 �in our ex-
periment, E=10� is adopted.

Discretizing �15� and letting f =Ep , g=Eq , h=Es, the
difference equations for f�m� , g�m� , h�m� are obtained as
follows:
f�m� = �T · E� P̃n−1� f�m − 1�
E

,�q
g�m − 1�

E
�

n�N� f�m − 1�
E

,i�q
g�m − 1�

E
��2n−2 · F1� f�m − 1�

E
,
g�m − 1�

E
,
h�m − 1�

E
,��

−

Q̃n−1� f�m − 1�
E

,�q
g�m − 1�

E
�

n�N� f�m − 1�
E

,i�q
g�m − 1�

E
��2n−2 · F2� f�m − 1�

E
,
g�m − 1�

E
,
h�m − 1�

E
,��� + f�m − 1� , �19�

g�m� = �T · E� Q̃n−1� f�m − 1�
E

,�q
g�m − 1�

E
�

n�N� f�m − 1�
E

,i�q
g�m − 1�

E
��2n−2 · F1� f�m − 1�

E
,
g�m − 1�

E
,
h�m − 1�

E
,���

+

P̃n−1� f�m − 1�
E

,�q
g�m − 1�

E
�

n�N� f�m − 1�
E

,i�q
g�m − 1�

E
��2n−2 · F2� f�m − 1�

E
,
g�m − 1�

E
,
h�m − 1�

E
,�� + g�m − 1� , �20�
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FIG. 4. Attractors of the general mul-
tiscroll Lorenz system family. �a� Ten-
scroll Lorenz attractor; �b� ten-scroll
Chen attractor; �c� ten-scroll Lü attrac-
tor; �d� ten-scroll Lorenz-like attractor;
�e� ten-scroll Liu attractor; �f� ten-
scroll Ruchlidge attractor; �g� ten-
scroll S-M attractor; �h� ten-scroll
Sprott attractor �I�; �i� ten-scroll Sprott
attractor �II�; and �j� ten-scroll Sprott
attractor �III�.
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�m� = �T · E�� c11�4

2�1
2 −

c22�4

2�2
2 � · Pn� f�m − 1�

E
,�q

g�m − 1�
E

�
+

c12�4

�3
· Qn� f�m − 1�

E
,�q

g�m − 1�
E

�
+ � c11�4

2�1
2 +

c22�4

2�2
2 � · �N� f�m − 1�

E
,i�q

g�m − 1�
E

��n/2

+ � c33

�4
�h�m − 1�

E
�2

+ c3
h�m − 1�

E
+ d3�4��

+ h�m − 1� . �21�

n which the system parameters are given in Table III.

IG. 5. Diagram of DSP working principle for realizing the general multi-
croll Lorenz attractors.

IG. 6. Multiscroll Lorenz attractors, where p=q=0.7 V/div. �a� Nine

croll and �b� ten scroll.

wnloaded 15 Oct 2006 to 128.112.23.21. Redistribution subject to AIP
The sampling period, �T, is determined by the original
chaotic equation, which is usually varied with different cha-
otic systems. For example, �T is selected as 0.015 for the
multiscroll Lorenz system while 0.005 is used for Chen sys-
tem.

Figure 5 shows the basic diagram of working principle,
and the operational procedures are listed as follows: �1� gen-
erating the discrete-time sequence f�m� , g�m� , h�m� �m
=1,2 , . . . � from �19�–�21� with some initial values of f�0�,
g�0�, and h�0�. In our experiments, they are arbitrarily set as
f�0�=0.01, g�0�=0.01, h�0�=0.03; �2� obtaining the
discrete-time sequence of p, q and s, by computing p�m�
= f�m� /E, q�m�=g�m� /E, s�m�=h�m� /E; �3� converting the
digital signals p�m� , q�m� , s�m� to the analog signals
p�t� , q�t� , s�t� using the multichannel DAC.

Figures 6 and 7 show the experimental observations of
the nine- and ten-scroll Lorenz attractors and Chen attractors,
respectively. It is also experimentally found that the use of
DSP can improve the robustness against the variations of
system parameters, the sampling time �T, and the scaling
factor E.

V. CONCLUSIONS

In this paper, a general multiscroll Lorenz system family

FIG. 7. Multiscroll Chen attractors, where p=q=0.7 V/div. �a� Nine scroll
and �b� ten scroll.
has been developed by constructing a novel parameterized

 license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



n
c
t
g
b
o

t
t
u
m
s
s

t
p
t
c
a
p
t
c
f
c
f
p
c
s
f
i
t
m

A

e
2
S
P
N
G
P

033126-10 Yu et al. Chaos 16, 033126 �2006�

Do
th-order polynomial transformation. Some typical dynami-
al behaviors of this new chaotic family, including bifurca-
ions, maximum Lyapunov exponents and parameters re-
ions, have been studied. Moreover, a new DSP system has
een designed and implemented for physically realizing vari-
us general multiscroll Lorenz attractors.

It should be pointed out that the new approach based on
he parameterized nth-order polynomial transformation has
wo prominent features: �a� this approach is self-unified and
niversal; �b� the system parameters can control bifurcations,
aximum Lyapunov exponents, symmetry, and even the

hape of the phase portraits of the general multiscroll Lorenz
ystem family.

It should also be emphasized that the DSP-based realiza-
ion described in this paper provides a feasible way to ex-
erimentally generate the complex multiscroll chaotic attrac-
ors. Given that it is very difficult to physically realize the
omplex multiscroll chaotic systems by solving complicated
lgebraic equations using analog circuit implementations, the
roposed DSP-based approach provides a very efficient al-
ernative. Moreover, our numerical simulations and theoreti-
al analysis reveal that the general multiscroll Lorenz system
amily can easily achieve chaos synchronization, such as
omplete synchronization and phase synchronization. There-
ore, the multiscroll Lorenz system family has alluring pros-
ect in chaos-based information technology, such as secure
ommunications. In particular, comparing with the double-
croll Lorenz system, the general multiscroll Lorenz system
amily has more scrolls and more complex dynamical behav-
ors, which nevertheless can be easily controlled by the sys-
em parameters. All these characteristics are very useful in
any real-world applications.
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