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Abstract

This paper constructs a new hyperchaotic system based on Lü system by using a state feedback controller. The detailed

dynamical behaviors of this hyperchaotic system are further investigated, including Lyapunov exponents spectrum,

bifurcation, and Poincaré mapping. Moreover, a novel circuit diagram is designed for verifying the hyperchaotic behaviors

and some experimental observations are also given.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Over the past two decades, chaos has been found to be very useful and has great potential in many
engineering-oriented applied fields such as in encryption and communications, power systems protection,
liquid mixing, information sciences, and so on [1–3].

In a broad sense, chaos control can be classified into two categories: one is to suppress the chaotic
dynamical behavior when it is harmful, and the other is to generate or enhance chaos when it is desirable—
known as chaotification or anticontrol of chaos [1]. Today, chaotification is a very attractive theoretical
subject, which however is quite challenging technically [4–11].

In 1963, Lorenz discovered the first classical chaotic system. In 1999, Chen and Ueta found the dual system
of Lorenz system via chaotification approach, in the sense of Lorenz system with a12a2140 and Chen system
with a12a21o0 from the definition of Vanĕc̆ek and C̆elikovský [1], where a12 and a21 are the corresponding
elements in the linear part matrix A ¼ ðaijÞ3�3 of the system. In 2002, Lü and Chen discovered the critical
chaotic system between the Lorenz and Chen systems [4,5], satisfying a12a21 ¼ 0. In 2002, Lü et al. unified the
above three chaotic systems into a new chaotic system—unified chaotic system [6].

Hyperchaotic system is usually defined as a chaotic system with more than one positive Lyapunov exponent.
As we know now, there are many hyperchaotic systems discovered in the high-dimensional social and
economical systems [12–15]. Typical examples are four-dimensional (4D) hyperchaotic Rössler system [12], 4D
e front matter r 2005 Elsevier B.V. All rights reserved.
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hyperchaotic Lorenz–Haken system [13], 4D hyperchaotic Chua’s circuit [14], and 4D hyperchaotic Chen
system [15]. Since hyperchaotic system has the characteristics of high capacity, high security and high
efficiency, it has broadly applied potential in nonlinear circuits, secure communications, lasers, neural
networks, biological systems, and so on.

This paper introduced a new hyperchaotic system based on Lü system by adding a state feedback controller.
The rest of this paper is organized as follows. A new hyperchaotic system is proposed in Section 2. Section 3
further investigates the dynamical behaviors of this hyperchaotic system. A novel circuit diagram is constructed
for physically realizing this hyperchaotic system in Section 4. Conclusions are finally drawn in Section 5.

2. Hyperchaotic Lü system

The Lü system is described by [4,5]

_x ¼ aðy� xÞ;

_y ¼ �xzþ cy;

_z ¼ xy� bz;

8><
>: (1)

where a; b; c are real constants. When a ¼ 36; b ¼ 3; c ¼ 20, Lü system has a typically critical chaotic attractor
with Lyapunov exponents l1 ¼ 1:5046; l2 ¼ 0; l3 ¼ �22:5044 and Lyapunov dimension dL ¼ 2:0669 [1].

It is well known that, to generate hyperchaos from the dissipatively autonomously polynomial systems, the
state equation must satisfy the following two basic conditions:
(1)
 The dimension of the state equation is at least 4 and the order of the state equation is at least 2.

(2)
 The system has at least two positive Lyapunov exponents satisfying that the sum of all Lyapunov

exponents is less than zero.
Based on Lü system and above two basic conditions, we construct a simple 4D hyperchaotic system by
introducing a state feedback controller as follows:

_x ¼ aðy� xÞ þ u;

_y ¼ �xzþ cy;

_z ¼ xy� bz;

_u ¼ xzþ du;

8>>><
>>>:

(2)

where a; b; c are the constants of Lü system and d is a control parameter. Hereafter, for simplification, system
(2) is called hyperchaotic Lü system.

3. Dynamical behaviors of hyperchaotic Lü system

This section further investigates the dynamical behaviors of hyperchaotic Lü system, including equilibrium
points, bifurcation, and Poincaré mapping.

3.1. Equilibrium points and phase portrait

If c� ada0, system (2) has three equilibrium points:

Oð0; 0; 0; 0Þ;
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Obviously, P1 and P2 are symmetric about x; y; u-axis for any parameters a; b; c; d. When
a ¼ 36; b ¼ 3; c ¼ 20; d ¼ 1:3, the eigenvalues of equilibrium point O are 20; 1:3;�3;�36. Then O is a two-
dimensional unstable saddle point. Similarly, the eigenvalues of equilibrium points P1;P2 are
0:7356;�14:1698;�2:1329� 23:1139i and it is a one-dimensional unstable saddle point.

Assume that the Lyapunov exponents of system (2) are li for i ¼ 1; 2; 3; 4 satisfying l14l24l34l4. Then
the dynamical behaviors of system (2) can be classified as follows:
(1)
 For l14l240; l3 ¼ 0; l4o0 and l1 þ l2 þ l4o0, system (2) is hyperchaos.

(2)
 For l140; l2 ¼ 0; l4ol3o0 and l1 þ l3 þ l4o0, system (2) is chaos.

(3)
 For l1 ¼ 0; l4ol3ol2o0, system (2) is a periodic orbit.

(4)
 For l4ol3ol2ol1o0, system (2) is a equilibrium point.
Moreover, the Lyapunov dimension dL of system (2) satisfies 2odLo3 for chaos case and 3odLo4 for
hyperchaos case. Our numerical analysis shows that the dynamical behaviors of system (2) switch among
chaotic state, periodic orbit, and hyperchaotic state with the increasing of parameter d. Fig. 1 shows the
Lyapunov exponents spectrum of system (2) with the increasing of parameter d, where a ¼ 36; b ¼ 3; c ¼ 20.

When a ¼ 36; b ¼ 3; c ¼ 20, we have
(1)
 System (2) has a periodic orbit for �1:03pdp� 0:46 as shown in Fig. 2(a).

(2)
 System (2) has a chaotic attractor for �0:46odp� 0:35 as shown in Fig. 2(b).

(3)
 System (2) has a hyperchaotic attractor for �0:35odp1:30 as shown in Fig. 2(c).
Fig. 3 shows various plane projections of hyperchaotic attractor for a ¼ 36; b ¼ 3; c ¼ 20; d ¼ 1:3.
3.2. Bifurcation diagram

Fig. 4 shows the bifurcation diagram of system (2) in the x2d plane. It is noticed that this diagram covers
the whole real parameter region of d.
Fig. 1. Lyapunov exponents spectrum of hyperchaotic Lü system.
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Fig. 2. Typical dynamical behaviors of system (2): (a) d ¼ �0:91; (b) d ¼ �0:35; (c) d ¼ 1.
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According to Fig. 4, it is very clear that the dynamical behaviors of system (2) evolve from chaotic state to
periodic orbit, and then from periodic orbit to hyperchaotic state by going through a chaotic region with the
increasing of control parameter d. In detailed, there are four different regions:

I1 ¼ ½�1:5;�1:03Þ; I2 ¼ ½�1:03;�0:46�; I3 ¼ ð�0:46;�0:35�; I4 ¼ ð�0:35; 1:3�.

I1; I3 are chaotic regions and there is a periodic window in the region I1. I2 is a periodic region and I4 is a
hyperchaotic region.

3.3. Poincaré mapping

Fig. 5 shows the Poincaré mapping of hyperchaotic Lü system in the y2z plane, where
a ¼ 36; b ¼ 3; c ¼ 20; d ¼ 1:3. From Fig. 5, system (2) has a self-similar structure and several sheets of the
attractors are visualized. It is clear that some sheets are folded.

4. Circuit design and experimental observations

This section designs a novel circuit diagram to realize the hyperchaotic Lü system.
Fig. 6 shows the circuit diagram. Here, all resistors shown in Fig. 6 are adjustable resistors with high

precision or potentiometers. Moreover, all original devices shown in Fig. 6 are operational amplifiers of type
TL082 and operational multiplier of type AD633 with voltage supply �15V.
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Fig. 3. Phase portraits of hyperchaotic Lü system (2): (a) x� y; (b) x� z; (c) x� u; (d) y� z; (e) y� u; (f) z� u.
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The detailed switching means of switch K and resistor values are summarized as follows:
(1)
 When switch K lies in position 2 and Ry1 ¼ 5k;Ry ¼ 19k;Ru1 ¼ 110k, system (2) has a periodic orbit as
shown in Fig. 7(a).
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Fig. 4. Bifurcation diagram of hyperchaotic Lü system.

Fig. 5. Poincaré mapping of hyperchaotic Lü attractor.
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(2)
 When switch K lies in position 2 and Ry1 ¼ 3:35k;Ry ¼ 29:4k;Ru1 ¼ 285k, system (2) has a chaotic
attractor as shown in Fig. 7(b).
(3)
 When switch K lies in position 1 and Ry1 ¼ 5k;Ry ¼ 26:1k;Ru1 ¼ 77k, system (2) has a hyperchaotic
attractor as shown in Fig. 8.
According to Figs. 2, 3, 7, 8, the experimental observations are well consistent with our numerical
simulations. In detailed, Figs. 7(a) and (b) are the experimental observations of Figs. 2(a) and (b), respectively.
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Fig. 6. Circuit diagram for realizing hyperchaotic Lü attractor.

Fig. 7. Experimental observations of periodic orbit and chaotic state in x2z plane: (a) x ¼ 1v=div; z ¼ 0:5v=div; (b)

x ¼ 0:8v=div; z ¼ 0:5v=div.
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Figs. 8(a)–(c) are the experimental observations of Figs. 3(a)–(c), respectively. Fig. 8(d) is the experimental
observation of Fig. 3(e).
5. Conclusions and discussions

This paper has reported a new hyperchaotic system, called hyperchaotic Lü system. Some basic dynamical
behaviors are explored by calculating its Lyapunov exponents spectrum, bifurcation diagram, and Poincaré
mapping. Furthermore, the hyperhaotic behaviors are also verified by electronic circuits. Since the
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Fig. 8. Experimental observations of hyperchaotic Lü attractor in various projective planes: (a) x ¼ 1v=div; y ¼ 1v=div; (b)

x ¼ 0:8v=div; z ¼ 0:5v=div; (c) x ¼ 1v=div; u ¼ 3v=div; (d) z ¼ 0:6v=div; u ¼ 3v=div.

A. Chen et al. / Physica A 364 (2006) 103–110110
hyperchaotic systems have more complex dynamical behaviors than the normal chaotic systems, it indicates
that they will have broad applications in various chaos-based information systems.
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[7] J. Lü, G. Chen, D. Cheng, Int. J. Bifurcat. Chaos 14 (2004) 1507.
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