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Design and Implementation of n-Scroll Chaotic
Attractors From a General Jerk Circuit

Simin Yu, Jinhu Lii, Member, IEEE, Henry Leung, Member, IEEE, and Guanrong Chen, Fellow, IEEE

Abstract—This paper proposes a novel nonlinear modulating
function approach for generating n-scroll chaotic attractors based
on a general jerk circuit. The systematic nonlinear modulating
function methodology developed here can arbitrarily design the
swings, widths, slopes, breakpoints, equilibrium points, shapes,
and even the general phase portraits of the n-scroll chaotic at-
tractors by using the adjustable sawtooth wave, triangular wave,
and transconductor wave functions. The dynamic mechanism and
chaos generation condition of the general jerk circuit are further
investigated by analyzing the system stability. A simple block cir-
cuit diagram, including integrator, sawtooth wave and triangular
wave generators, buffer, switch linkages, and voltage-current con-
version resistors, is designed for the hardware implementations of
various 3-12-scroll chaotic attractors via switchings of the switch
linkages. This is the first time to experimentally verify a 12-scroll
chaotic attractor generated by an analog circuit. In particular, the
recursive formulas of system parameters and real physical circuit
parameters are rigorously derived for the hardware implementa-
tions of the n-scroll chaotic attractors. Moreover, the adjustability
of the nonlinear modulating function and the rigorous recursive
formulas together provide a theoretical principle for the hardware
implementations of various chaotic attractors with a large number
of scrolls.

Index Terms—Jerk circuit, modulating function, sawtooth wave,
triangular wave, transconductor wave, n-scroll chaotic attractor.

I. INTRODUCTION

VER the last four decades, chaos has been intensively
O studied within the science, mathematics, and engineering
communities (see, e.g., [1]). Recently, the design and circuit
implementation of chaotic oscillators have been a subject of in-
creasing interest due to their applications in various chaos-based
technologies and information systems [2]-[38]. Firstly, it pro-
vides a powerful tool for further investigating the complicated
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dynamical behaviors of chaos oscillators. Secondly, it deepens
the understanding of the inherent architectures of chaotic oscil-
lators, which are very useful for systematic electronic design.
Moreover, it stimulates the current research on generating
various complex multiscroll chaotic attractors by using some
simple electronic circuits and devices.

There have been a large number of publications devoted to
this research topic of circuits design for generating multiscroll
chaotic attractors. Suykens and Vandewalle [2], [3], for in-
stance, proposed a family of n-double scroll chaotic attractors,
and then Suykens et al. [4] introduced a more complete family
of n-scroll instead of n-double scroll attractors. Suykens and
Chua [5] also studied the n-double scroll hypercubes in 1-D
CNN. A piecewise linear (PWL) implementation of n-double
scrolls was presented by Arena et al. in [6]. Aziz-Alaoui [7]
proposed a method for generating multispiral attractors from
both autonomous and nonautonomous differential equations.
A family of hyperchaotic n-scroll attractors was introduced by
Yalcin et al. in [8]. Yalcin et al. [9] also suggested a simple
circuit model for creating n-scroll chaotic attractors. The main
idea of these approaches is the same—to add breakpoints into
the piecewise-linear characteristic function of the nonlinear
resistor in Chua’s circuit [10], [11]. Noticed that hysteresis
can also generate chaos [12]. Some hysteresis-based chaotic
oscillators were further investigated by Elwakil and Kennedy
in [13]. Then, Tang et al. [14], [15] presented a sine-function
approach for generating n-scroll chaotic attractors, with a sys-
tematical circuit realization that can physically produce up to as
many as ten scrolls visible on the oscilloscope. A class of cir-
cuit-independent chaotic oscillators was constructed by Elwakil
and Kennedy in [16]. Ozoguz et al. [17] introduced a nonlinear
transconductor approach for creating m-scroll attractors. A
switching manifold approach for generating chaotic attractors
with multiple-merged basins of attraction was proposed by Lii
etal.in [18], [19]. Yalcin et al. introduced a family of scroll grid
attractors by using a step function approach, including one-di-
rectional (1-D) n-scroll, two-directional (2-D) n X m-grid
scroll, and three-directional (3-D) n X m X [-grid scroll chaotic
attractors [20]. Cafagna and Grassi [21], [22] developed a
hyperchaotic coupled Chua’s circuit approach by using sine
nonlinearity instead of PWL nonlinearity for creating 1-D
n-scroll, 2-D n x m-grid scroll, and 3-D n X m X [-grid scroll
chaotic attractors. Lii et al. [23]-[27] presented a hysteresis
series approach for generating 1-D n-scroll, 2-D n X m-grid
scroll, and 3-D n X m x [-grid scroll chaotic attractors, with a
rigorously mathematical proof for the chaotic behaviors. More
recently, Lii et al. [28], [29] initiated a saturated function series
method for creating 1-D n-scroll, 2-D n x m-grid scroll, and
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3-D n x m x [-grid scroll attractors whose chaotic behaviors
were verified via a rigorous theoretical approach. Last but not
least, Yu ef al. [30] introduced a family of hyperchaotic n-scroll
chaotic attractors in a four order system.

It should be noticed that most of the aforementioned multi-
scroll chaotic attractors were verified by numerical simulations.
However, it is much more difficult to generate n-scroll chaotic
attractors by physical electronic circuits. In this endeavor, Mat-
sumoto et al. [31] designed a simple circuit to experimentally
verify hyperchaotic attractors. Yalcin et al. [32] physically re-
alized a 6-scroll attractor in a generalized Chua’s circuit via a
rescaling breakpoints approach, and Yalcin et al. [33] experi-
mental confirmed the 3- and 5-scroll chaotic attractors in a gen-
eralized Chua’s circuit. Elwakil and kennedy [34] proposed a
systematic circuit design method for the realization of a class
of hysteresis chaotic oscillators, and Elwakil et al. [35] intro-
duced an autonomous system for chaos generation based on
a third-order abstract canonical mathematical model with two
hardware implementations demonstrated, using commercially
available components and CMOS chip. Finally mentioned, Yu
et al. [36] constructed a novel circuit to verify n-scroll chaotic
attractors in a generalized Chua’s circuit. Noticed also that it is
very difficult to physically realize a nonlinear resistor that has an
appropriate characteristic with many segments [15]. In doing so,
the main obstacles are: 1) the device must have a very wide dy-
namic range [6], [15], [32]; 2) the slopes of those segments and
their breakpoints must be adjustable easily and independently.
Yet physical conditions always limit or even prohibit such cir-
cuit realizations [15].

It is well known that the Poincaré-Bendixson theorem im-
plies that some necessary conditions for chaos to exist in an
autonomous ordinary differential equation (ODE) system are
three variables with at least one nonlinearity [37], [38]. Linz
and Sprott [39] asked the following basic question: “What are
the simplest functional forms of three-dimensional autonomous
dynamical systems that still possess chaotic behavior at least
for some ranges of the control parameters?” In 1979, Rossler
[38] found a toroidal chaotic system of six terms with only
one quadratic nonlinearity. In 1994, Sprott [40] found fourteen
chaotic systems of six terms with one quadratic nonlinearity
and five systems of five terms with two quadratic nonlineari-
ties, via exhaustive computer searching. Zhang and Heidel [41],
[42], then, analytically proved that many classes of systems
being simpler than Sprott’s models cannot be chaotic. Neverthe-
less, the algebraically simplest chaotic flow has not been iden-
tified to date. Further progress in this direction is to consider
a special class of three-dimensional dynamical systems—the
so-called jerk systems. Their functional forms are described by
2" = J(x,z,%), where the first derivative of the position &
is called velocity, the second & is called acceleration, and the
third z " is called jerk. In 1996, Gottlieb [41], [42] simplified the
basic question as follows: “What is the simplest jerk function
that gives chaos?” Sprott [40] answered the question and dis-
covered the algebraically simplest dissipative quadratic form:
i = —fi+ (£)? — x with 2.017 < 3 < 2.057. Eichhorn et
al. [41] further pointed out that the fourteen Sprott’s models of
six terms with one quadratic nonlinearity as well as the simplest
dissipative quadratic flow and Rossler’s toroidal model can all
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be grouped into seven classes of polynomial functions with in-
creasing complexity. The discovery of these simple jerk systems
stimulated the present research for a general jerk system [42]:
X +pPi+x = f(x), where f(z) is a simple nonlinear function.

Today, it is known that jerk circuits have some practical
applications in, for example, broad-band signal generations
and secure communications. This is because they are simple
circuits that are easy to build, to be re-scaled (to any desired
frequencies), and to analyze, predict, and control with very
high accuracy [42]. On the other hand, multiscroll chaotic
attractors have many practical applications [43], [44], but the
aforementioned general jerk system can only generate one-
or double-scroll attractors [39]-[42]. Therefore, it is very
interesting to ask whether or not the general jerk circuits can be
slightly modified so as to generate n-scroll chaotic attractors.
This paper gives a positive answer to this question. More
precisely, this paper proposes a nonlinear modulating function
approach for creating n-scroll chaotic attractors based on a
general jerk circuit. The dynamic mechanism and chaos gener-
ation condition of the general jerk circuit are then investigated
by analyzing the system stability. In particular, this systematic
nonlinear modulating function approach can arbitrarily design
the swings, widths, slopes, breakpoints, equilibrium points,
shapes, and even some phase portraits of the n-scroll chaotic
attractors via the adjustable sawtooth wave, triangular wave,
and transconductor wave functions. In comparison, most of the
reported n-scroll attractors can only design different numbers
of scrolls and equilibrium points, where many technical param-
eters such as swings, widths, slopes, shapes, and phase portraits
cannot be designed at one’s will. In this paper, moreover, the
recursive formulas of system parameters and real physical
circuit parameters will be rigorously derived for the hardware
implementations of the n-scroll chaotic attractors. In addition,
this paper reports for the first time an experimental verification
of a 12-scroll chaotic attractor.

The rest of the paper is organized as follows. In Section II, a
general jerk circuit is introduced and some conditions for chaos
generation are derived. The proposed design approach is then
discussed in Section III, for generating n-scroll chaotic attrac-
tors via the general jerk circuit. In Section IV, circuit implemen-
tations of the chaotic attractors with a large number of scrolls
are further investigated, and the recursive formulas of system
parameters and real physical circuit parameters are also rigor-
ously derived. Conclusions are finally drawn in Section V.

II. GENERAL JERK CIRCUITS
In this section, a general jerk circuit is introduced and some
conditions for chaos generation are derived.
A. General Jerk Circuit

The general jerk circuit is described by
'+ B + i = f(z) (1

where 3, are real parameters, f(z) is a nonlinear function,
i = ((dr)/(dr)) is the velocity, & = ((d%z)/(dr?)) is the ac-
celeration, # = ((d3x)/(d73)) is the jerk (or, the rate of change
of the acceleration by mechanical means), 7 = (¢/(RoCp)), in
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which (1/RyCY) is the transformation factor of the time scale,
and also the integral constant of the integrator. For simplicity,
assume that 3 = 0.6,y = 1. Sprott and Linz [39]-[42] inves-
tigated the dynamical behaviors of system (1). When f(z) =
|z] — 1, system (1) has a single-scroll chaotic attractor, as shown
in Fig. 1(a); when f(z) = sgn(z) — z, system (1) has a double-
scroll chaotic attractor, as shown in Fig. 1(b).

A fundamental question is: How far the functional form of
the nonlinearity in f(z) can be weakened while keeping the
chaotic behavior of system (1)? In this concern, Arneodo et al.
[45], [46] discovered chaos in a cubic nonlinearity and a special
PWL function. Rul’kov, et al. [47] constructed an RLC circuit
via a nonlinear amplifier to generate a specific form of f(z).
Sprott [42] proposed some elementary functions f(x) for cre-
ating chaos, such as the absolute function +(B|z| — C'), max-
imum value function —Bmax{z,0} + C, sign function Bx —
Csgn(z), polynomial function +B(((2?)/C) — C'), sine (or co-
sine) function & ((B sin(Cz))/C'), and transconductor function
— B[z — 2((tanh(Cz))/C)]. Elwakil and Kennedy [16], [35]
designed a bipolar switching constant to produce chaos in the
jerk system (1). Moreover, some other simple functions such as
hysteresis function and delta function can also create chaos in
the jerk system (1), [42].

B. Preliminaries

In this subsection, some conditions for chaos generation are
discussed.
Integrating system (1) with respect to time 7, one has

T+ P+ yx = /OT f(z)dr. 2)

System (2) is a damped harmonic oscillator driven by a non-
linear memory (self-feedback) term [ f(z)dr. Note that
system (2) often appears in feedback control of an oscillator,
in which the experimentally available variable is a transformed
and integrated version of the original dynamical variable [41].
Moreover, system (2) is also a special case of the so-called
Newtonian jerk dynamics [39]. In system (2), for bounded
solutions, f(z) must be averaged to zero along the system
orbits, which means that any continuous f(z) must have at
least one zero at x = z¢ [39].

Chaotic attractors of jerk system (1). (a) Single-scroll. (b) Double-scroll.
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The following is a result for the stability of equilibrium point
(20,0,0) of the jerk system (1).

Lemma 1: Assume that f(z) is differentiable at the equilib-
rium point (zg,0,0). A necessary and sufficient condition for
the stability of the equilibrium point (z¢, 0, 0) is that > 0 and
—By < f' <0, where f" = ((df)/(dz))|z=z,-

Proof: The characteristic equation of the jerk system (1)
is

NN+ - f =0 3)

where f' = ((df)/(dz))|z=z,- From the Routh-Hurwitz Crite-
rion, the real parts of the roots A are negative if and only if the
following conditions hold:

B>0, —f >0, By+f >0.

That is, the equilibrium point (z, 0,0) is stable if and only if
B > 0and —(3y < f’ < 0. Thus, the proof is completed.

It is easy to see that the jerk system (1) undergoes a Hopf bi-
furcation at f' = —f~, where A = +i for v = 1. According to
Lemma 1, one should design some equilibrium points to satisfy
f' > 0or f' < —f in order to generate chaos in system (1).
That is, one should design the nonlinearity with either a positive
slope at its equilibrium point or a suitable negative slope that
implies a negative resistance in the corresponding circuit [41].
The jerk system (1) with f/ > 0 apparently requires at least
two equilibrium points for chaos generation; however, system
(1) with f* < —(3 only need one [41].

Jerk circuits are easy to build and to be re-scaled over a wide
range of frequencies. Moreover, jerk circuits have a variety of
dynamical behaviors and are similar in spirit to Chua’s circuit
[10], [11]. However, Chua’s circuit has a very complicated ana-
lytical form in terms of z, with more than four terms including
step functions, delta functions, and their products with deriva-
tives of x. Therefore, such a Chua’s circuit is difficult to con-
struct, to re-scale, and to analyze, due also to the needed inductor
with its frequency-dependent resistive losses [42].

Denote p = v — (1/3)8%,q = (2/27)8* — (1/3)By —
Floand A = —((*f)/27) — ((8*7%)/108) + ((B1f")/6) +
((v*)/27) + ((f"®)/4). Then, solving (3) gives

A1:—§+§/—%+\/Z+§/—%—\/Z @)
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Obviously, for 3 = 0.6,y =1,p = 0.88,¢ = —0.184 — [/,
and A = 0.25f? + 0.092f" + (7/1500). If A > 0, then
7> ((—0.552 4+ 24/0.034176)/3) ~ —0.0608 and [’ <
((=0.552 — 21/0.034 176) /3) ~ —0.3072. Numerical calcula-
tion shows that the jerk system (1) may generate chaos under the
conditions that A > 0, A\; < 0, and o > 0. That is, there exists
a saddle point of index 2 in system (1), [27]-[29]. Indeed, the
saddle points of index 2 play a key role in the chaos generation
in system (1).

III. DESIGN OF 1n-SCROLL CHAOTIC ATTRACTORS

In this section, a systematic design approach is presented for
generating n-scroll chaotic attractors in the general jerk system

(1).

A. Designing Scroll Nesting Chaotic Attractors via Modulating
Function

In this subsection, a swing modulating function of double
sawtooth wave is constructed to generate multiscroll chaotic at-
tractors in the jerk system (1). The function is described by

f(@) = |F(z)[sen(z) — = (6)

where F'(x) is the swing modulating function, which controls
the swings of scrolls and equilibrium points of system (1).
Fig. 2 shows the constructing graph of f(z). In more detail,
Fig. 2(a) shows the constant case for F'(z) = 4, 8,12; Fig. 2(b)
and (c) shows the sine function cases for F'(z) = 5sin(1.27z)
and F(z) = 10sin(1.28z), respectively. When the modulating
function increases, system (1) with (6) creates a large-scale
double-scroll attractor; when the modulating function de-
creases, system (1) with (6) generates a smaller double-scroll
attractor. Especially, when the modulating function varies
with variable z, system (1) with (6) produces various nesting
double-scrolls to form a complex multiscroll attractor.

It is noticed that the modulating function F'( - ) may be a au-
tonomous function, or a nonautonomous function produced by

|F(x)|sgn(x) — x. (a) F(z) = 4,8,12.

(b) F(z) = 5sin(1.27x); (¢) F(x) = 10sin(1.28x).

external signals. Of course, F( - ) can be a constant in the special
case. To generate chaos in system (1) with (6), the modulating
function F'( - ) has to satisfy some conditions. In the following,
assume that

F(z) = Asin(axz) @)
where A, a > 0 are parameters.

If (1/A) > a,f(z) has a unique zero, zg = O0; if
((2a)/(37)) < (1/A) < a, f(x) has three zeros, zg, T+1;
if (1/4) = ((2a)/((2k + 1)7)) for k € N, f(x) has 4k + 1
zeros, xo,x4;(1 = 1,...,£2k); if ((2a)/((2k +3)7)) <
(1/A4) < ((2a)/((2k + 1)7)) for k € N, f(z) has 4k + 3 zeros,
xo,xxi(i =1,..., +(2k+1)). Obviously, ' = Aacos(az)—1

for ((2k7r)/a) g z < ((2k+1D)m)/a)(k = 0,1,...)
and (((2k —1)m)/a) < = < ((2km)/a)(k = 07—1,...),
and f' = —Aacos(ar) — 1 for (((2k—1)m)/a) <
z < ((2km)/a)(k = 1,2,...) and (2k7/a) < z <

((2k+ Dr/a)(k = —1,-2,...).

It is easy to verify the stabilities of the equilibrium points
(z;,0,0) of the jerk system (1) with (6) and (7), by using Lemma
1, (4) and (5) together.

Assume that A = 5, a = 1.27. Then, system (1) with (6) and
(7) has a scroll-nesting 4-scroll attractor, as shown in Fig. 3(a)
and (b). Similarly, assume that A = 10, ¢ = 1.28. Then, system
(1) with (6) and (7) has a scroll-nesting 8-scroll attractor, as
shown in Fig. 3(c) and (d).

B. Designing Multiscroll Chaotic Attractors via Adjustable
Sawtooth Wave

In this subsection, an adjustable sawtooth wave is constructed
for generating various multiscroll chaotic attractors.

To create the chaotic attractor with an even number of scrolls,
the adjustable sawtooth wave is described by

A+ A; + 2 <
fi(z) = Agsgn(x +Z T sgn x—EZAj
=0
1—1
A + A P
+ Z ! + = S 4 Bz (8)
§=0

where all parameters A; > 0(¢ = ..
B € [0.7,1.2], which can generate 2M + 2(M = 27 3,...)
scrolls in a attractor.
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Fig. 3.

Similarly, to generate the chaotic attractor with an odd
number of scrolls, the adjustable sawtooth wave is described
by

M i—1
A1+ A; 1
fz(x):z 1fsgn T- 3 2ZAJ—A0
i=1 7=0
M
A1+ A
+ ; — sgn | T
1 i—1
+ 5 QZAj—AO — Bz 9)
7=0
where all parameters 4, > 0( = 0,1,2,...) and
B € [0.7,1.2], which can create 2M + 1(M = 1,2,3,...)

scrolls in the attractor.

Note that all characteristic quantities of the multiscroll
chaotic attractor, including the swing, width, slope, and equi-
librium points, can be determined beforehand by the system
parameters A;(¢ = 0,1,...,M) and B. By adjusting these
parameters, one can arbitrarily design the swing, width, slope,
and equilibrium points, to generate various multiscroll attrac-
tors. For example, when Ag = A; = --- = Ay, systems (8)
and (9) produce multiscroll attractors with the same swing and

Scroll nesting chaotic attractor. (a) and (b) 4-scroll (A = 5, = 1.27). (c) and (d) 8-scroll (4 = 10, v = 1.28).

Af(x)
AN AN ANE (AE s
-B ‘AQ _B A| -B 4o |A° ’Ai x
A /(%)
Ai‘ 4 N AN-B qu _B
Al a4 4 ’Ax x

Fig. 4. Adjustable sawtooth wave fi(z) and fo(x).

width via the sawtooth wave with the same swing and width,
which is a special case of the general adjustable sawtooth wave.
Fig. 4 shows the adjustable sawtooth waves fi(z) in (8) and
fa(z) in 9).

Here, assume that: (i) f1(«) and f2(x) are odd functions; (ii)
the zeros of f1 () and f2(x) lie in the centers of two neighboring
breakpoints. Then, one can rigorously deduce a set of recursive
formulas on the parameters of sawtooth wave. Due to the sym-
metry of the odd functions f;(z) and f2(z), one only needs to
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consider the case x > 0 for the sawtooth wave. One can derive
the recursive formulas as follows.

1) The slopes of the sawtooth waves f1(z) and f2(z) are
— B, satisfying B € [0.7,1.2].

2) Denote the swings of the scrolls of the sawtooth waves
fi(z) and fo(z) by E;( = 0,1,..., M). Then, the re-
cursive formulas of F; are

EO = 2A0, E, = Ai—l + A@' (10)

where: = 1,..., M.

3) Denote the widths between two neighboring scrolls
of the sawtooth waves fi(z) and fo(z) by W;(i =
0,1,...,M — 1). Then, the recursive formulas of W;

(except the outside edge scroll) are

24;
B
where; = 0,1,...,. M — 1.
4) Denote the breakpoints of the sawtooth waves f1(x) and
fa(z) by S;(i = 0,1,..., M). Then, the recursive for-
mulas of S; are

Wi = (1)

1—1
1
Sip = B ZZAJ
=0
L (i (12)
Sir =% ZozAj — Ay
j=

where s = 1,2,..., M.

5) Denote the zeros of the sawtooth waves fi(z) and fa(z)
by P;(i = 0,1,..., M). Then, the recursive formulas of
P; are

i—1
1
Pin=5 D 24, - A
=0

- (13)
1 (<
Py, = 5 ;Mj —Ai_ — A

where: = 1,..., M.

Moreover, the stabilities of the equilibrium points (P; ¢, , 0, 0)
fort =1,...,M and j = 1 (or j = 2) of the jerk system (1)
with (8) [or (9)] can be confirmed by Lemma 1, (4) and (5).

In the following, all the parameters of the chaotic attractor
with even number of scrolls are calculated by using the recursive
formulas (10)-(13). Let M = 5, so that 2M + 2 = 12. It is fur-
ther investigated four kinds of 12-scroll chaotic attractors with
different sizes. That is, Type I: multiscroll attractors, with the
sizes of the scrolls gradually increasing from the center to both
sides; Type 1I: multiscroll attractors, with the sizes of the scrolls
gradually decreasing from the center to both sides; Type III:
multiscroll attractors, with the scrolls alternating between small
and large scrolls; Type IV: multiscroll attractors, with all scrolls
being same in size. Tables I-V show the detailed parameters
values for 4,(0 < ¢ < 5), slope —B, swings E;(0 < i < 5),
widths W;(0 < 4 < 4), breakpoints S;(0 < ¢ < 5), and zeros
P;(0 < i < 5) of the 12-scroll attractor.
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TABLE 1
PARAMETERS A;(0 < i < 5) AND B OF 11- AND 12-SCROLL ATTRACTORS

Type Ao Aq As Az Ay As B
I 0.30 | 0.34 | 0.38 | 0.42 | 0.46 | 0.50 | 1.00
II 0.50 | 046 | 0.42 | 0.38 | 0.34 | 0.30 | 1.00

I ;035 ] 025 035] 025 035|025 | 1.00
IV 1025 1025] 025 025|025 | 025 | 1.00
TABLE 1I

SWINGS E; (0 < ¢ < 5) OF 12-SCROLL ATTRACTOR

Type Eo E1 Ez E3 E4 E5
I 0.60 | 0.64 | 0.72 | 0.80 | 0.88 | 0.96
11 1.00 | 0.96 | 0.88 | 0.80 | 0.72 | 0.64

1T 0.70 | 0.60 | 0.60 [ 0.60 | 0.60 | 0.60
v 0.50 | 0.50 [ 0.50 | 0.50 | 0.50 | 0.50
TABLE 1II

WIDTHS W;(0 < i < 4) OF 11- AND 12-SCROLL ATTRACTORS

Type | Wo | Wi | Wo | W5 | Wy
I 0.60 | 0.68 | 0.76 | 0.84 | 0.92
11 1.00 | 0.92 | 0.84 | 0.76 | 0.68
11 0.70 | 0.50 { 0.70 | 0.50 | 0.70
v 0.50 | 0.50 | 0.50 | 0.50 | 0.50

TABLE IV
BREAKPOINTS S;(0 < ¢ < 5) OF 12-SCROLL ATTRACTOR

Type | So S1 Sa S3 Sa Ss
1 0.00 | 0.60 | 1.28 | 2.04 | 2.88 | 3.80
11 0.00 | 1.00 | 1.92 | 2.76 | 3.52 | 4.20
111 0.00 | 0.70 | 1.20 | 1.90 | 2.40 | 3.10
1\ 0.00 | 0.50 [ 1.00 | 1.50 | 2.00 | 2.50

TABLE V
ZEROS P;(0 < ¢ < 5) OF 12-SCROLL ATTRACTOR

Type Po P1 P2 P3 P4 P5
I 030 | 0.94 [ 1.66 | 2.46 | 3.34 | 4.30
11 0.50 2.34 | 3.14 | 3.86 | 4.50
111 0.35 1.55 | 2.15 | 2.75 | 3.35
IV | 025 1.25 | 1.75 | 2.25 | 2.75

TABLE VI
SWINGS E;(1 < 4 < 5) OF 11-SCROLL ATTRACTOR

Type Ey E2 E3 E4 E5
I 0.64 | 0.72 | 0.80 | 0.88 | 0.96
11 0.96 | 0.88 | 0.80 | 0.72 | 0.64
11 0.60 | 0.60 | 0.60 | 0.60 [ 0.60
v 0.50 | 0.50 | 0.50 | 0.50 | 0.50

Similarly, one can calculate all the parameters of the chaotic
attractor with odd number of scrolls by using the recursive for-
mulas (10)—(13). Let M = 5, so that 2M + 1 = 11. It is to fur-
ther investigate four kinds of 11-scroll chaotic attractors with
different sizes, including Types I, II, III, IV specified above.
Tables I, III, and VI-VIII show the detailed parameters values
for A;(0 <7 < 5), B, swings E;(0 < ¢ < 5), widths W;(0 <
i < 4), breakpoints S;(0 < ¢ < 5), and zeros P;(0 < i < 5) of
the 11-scroll attractor, respectively.
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TABLE VII
BREAKPOINTS 5;(1 < ¢ < 5) OF 11-SCROLL ATTRACTOR

Type | Si So Ss Sy Ss
I 0.30 | 098 | 1.74 | 2.58 | 3.50
1T 0.50 | 1.42 | 2.26 | 3.02 | 3.70
111 0.35 | 0.85 | 1.55 | 2.05 | 2.75
vV 0251075 | 1.25 | 1.75 | 2.25

TABLE VIII

ZEROS P;(0 < i < 5) OF 11-SCROLL ATTRACTOR.

Type | Po P, P, Py Py Ps
)

0.00 | 0.64 | 1.36 | 2.16 | 3.04 | 4.00
11 0.00 | 0.96 | 1.84 | 2.64 | 3.36 | 4.00
I | 0.00 | 0.60 | 1.20 | 1.80 | 2.40 | 3.00
IV _10.00 | 0.50 [ 1.00 | 1.50 | 2.00 | 2.50

According to (1), (8), and Table I, one can get four kinds of
12-scroll chaotic attractors, as shown in Fig. 5. From (1), (9),
and Table I, one can get four kinds of 11-scroll chaotic attractor,
as shown in Fig. 6.

C. Designing Multiscroll Chaotic Attractors via Adjustable
Triangular Wave

In this subsection, an adjustable triangular wave is con-
structed, to create various multiscroll chaotic attractors.

In most chaotic circuits, such as Chua’s circuit, four-di-
mensional MCK chaotic circuit, and some Sprott’s chaotic

1465

1.2
1.0F
0.8}
0.6} \
0.4f YAV~
0.2f ‘;3."',‘ @ 1
= 0.0t ‘i‘{@‘
-0.2f in

=

-0.4f
-0.6f
-0.8f
-1.0f

-1.2

Numerical simulations of a 12-scroll attractor. (a) Type L. (b) Type IL. (c) Type III. (d) type IV.

jerk circuits, their PWL functions have constant breakpoints
and slopes. In the following, a PWL function with varying
breakpoints and slopes is constructed, to generate single-scroll
and double-scroll attractors in the jerk system (1). The function
is described by

f(@)

%(|x+ a| — |z — «|) — Bz
—Bx — A,
A—aB

«
—Bx+ A, x>«

where parameters A > 0, B € [0.8,1.2], and o € (0, (A/B)]
represents the varying breakpoints.

Fig. 7 shows the evolving graph of f(z) with parameter «,
where the slopes of two side radials are kK = — B, and the slope
of the middle segment is k = ((A — aB)/«).

In system (1) with (14), assume that A = B = 1. Then,
a € (0, 1]. Fig. 8(a) shows the bifurcation graph of the breaking
parameter « of system (1) with (14). Fig. 8(b) displays the Lya-
punov exponent spectrum of the breaking parameter « of system
(1) with (14). Fig. 8(c) shows the maximum Lyapunov exponent
spectrum of the breaking parameter « of system (1) with (14).
Fig. 8(d) displays the power spectrum of the breaking param-
eter a of double-scroll attractor. It is clear from Fig. 8(a) that
system (1) gradually evolves into a chaotic region through a typ-
ical doubling-period bifurcation route, where the black areas are
chaotic areas and the white areas in the black areas are periodic

T < —a
(14)

—a<z<a«a
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Fig. 7. PWL odd function f(«) with varying breaking parameter cv.

windows. Further numerical investigations reveal that system
(1) with (14) can generate both single- and double-scroll at-
tractors in the chaotic region. When 0.465 < a < 0.483 and
0.50 < a < 0.52, there exists a single-scroll attractor, as shown
in Fig. 8(e); when 0 < «a < 0.3, there exists a double-scroll
attractor, as shown in Fig. 8(f). It is very interesting to see that
the single-scroll and double-scroll coexist in the chaotic region
of system (1) with (14).

Based on (14), to generate the chaotic attractor with an even
number of scrolls, the adjustable triangular wave is constructed
as

M

where parameters A > 0,0.8 < B < 1.2,a,, € (0,((34)/
10B)](n = 0,£1,...,£M),M = 1,2,..., which can create
2M + 2 scrolls in the chaotic attractor.

Similarly, to create a chaotic attractor with an odd number of

scrolls, the adjustable triangular wave is constructed as

M

4 Af, Inl
p= 3 g [|(e-5 (- ) oo

"n#0

A |n|
— (a,—E(Zn—?))—an}—Bm (16)

where parameters A > 0,08 < B < 12,qa, €
(0,((3A/10B)|(n = £1,£2,...,2M),M = 1,2,..,

which can create 2M + 1 scrolls in the chaotic attractor.

It is noticed that the characteristic quantities of the multi-
scroll attractor, such as the swings, widths, and slopes, can
be determined by parameters A, B, «,. Moreover, the neg-
ative slopes of the above triangular waves are k- = —B;
and the positive slopes of the above triangular waves are
kr = ((A—a,B)/way,). Especially, when «,, — 0, the
triangular wave moves to the sawtooth wave. Furthermore, the
following are true.

1) If fi(z) and fo(z) are odd functions, then a; = a_; for

1=1,2,..., M.

2) Parameters «,, can adjust the swings and widths of the

scrolls of the multiscroll attractor. If all «,, are same, all
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scrolls of f(z) have the same swings and widths; other-
wise, all scrolls of f(x) have different swings and widths.
The detailed formulas are similar to those of the sawtooth
wave, so they are omitted here.

Parameters «,, can also adjust the shapes and even the
phase portrait of the multiscroll attractor. Assume that pa-
rameters A, B are constants. Thus, the phase portraits will
be away from the equilibrium points as the parameter «,,
increases; and the phase portrait will be close to the equi-
librium points as the parameter «,, decreases. Fig. 9(a)
shows the case of the phase portrait being away from
the equilibrium points, where A = 0.8, B = 1.2, «;
0.18 (# = 0,%1,+2). Fig. 9(b) shows the case of the

phase portrait being close to the equilibrium points, where
A=08,B=12,a; =0.018 (i = 0,+1, £2).

In the following, it is to further investigate the dynamical be-
haviors of system (1) with the triangular wave (15).

Denote the corresponding zeros of the segments with positive
and negative slopes of the triangular wave f;(z) as E(;" », and
-

q,n’

respectively; that is

2nA
+ _
El, = 5 (n=0,%£1,...,£M)
_ |n|) A
Eq,n = <27‘L —_ 7 e ( = :i:172t2 ..... ZEM)
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(b)

Fig. 9. 6-scroll chaotic attractor. (a) Phase portrait being away from equilibrium points (ov = 0.18). (b) Phase portrait being close to equilibrium points (o =

0.018).

Let x = y and £ = z. Then, the corresponding Jacobian ma-
trices and their characteristic equations of the zeros EJr and

E,, are
0 1 0
J=10 0 1 a7
ko — -8B
and
N8 +9A—k=0. (18)
where & = ((A — aB)/a) for the zeros E, and k = —B

for the zeros E . Furthermore, the stablhtles of equilibrium
points (Eqim 0 0) of the jerk system (1) with (15) (or (16)) can
be confirmed by using Lemma 1, (4), and (5) together.
Theoretical analysis shows that all equilibrium points
(E’jE ,0,0) can be classified into two different kinds: saddle
points of index 1 (E},,0,0) and saddle points of index 2
(E;,,0,0). That is, there exist saddle points of index | and
saddle points of index 2 in the triangular wave. However, there
only exists a saddle points of index 2 in the sawtooth wave.
Therefore, the inherent mechanisms of chaos generation are

different for the triangular wave and sawtooth wave.

For example, when A = 0.8,B = 1.2,a; = 0.18(¢i =
0,+1,£2), system (1) has a 6-scroll attractor as shown
in Fig. 9(a). The corresponding eigenvalues are \[ =
11146, 53 = —0.8573 + 1.4751j for all Ef, and
AT = 09237, X5 5 = 0.1619 £ 1.12825 for all E_ .
Therefore, all (E';r s 0,0) are saddle points of index I and all
(Eg 0, 0,0) are saddle points of index 2.

It follows from the above theoretical analysis that the eigen-
values Ay, A; 5 can drive the trajectories in the neighboring re-
gions of (E ,0,0) to rotate around the saddle points of index
2(E,,,0, 0) so as to form a scroll; the eigenvalues A", AT 3 can
drive the trajectories in the neighboring regions of (EJr 0,0)
to move away from the saddle points of index 1 E 4n and to go
from a scroll to its neighboring scrolls so as to form the whole
multiscroll chaotic attractor. Therefore, these saddle points are
important to the formation of the multiscroll attractors.

D. Designing Multiscroll Chaotic Attractors via Adjustable
Transconductor Wave

In this subsection, a smooth nonlinear function (the ad-
justable transconductor wave) is constructed to replace the
sawtooth wave and triangular wave, to create multiscroll
chaotic attractors in the jerk system (1).

To generate the chaotic attractor with an even number of
scrolls, the adjustable transconductor wave is constructed as

Z Atanh[ @—%)]—ng 19)

n=—M

where A, B, C,, are adjustable parameters, and M € N.
Similarly, to create a chaotic attractor with an odd number of
scrolls, the adjustable transconductor wave is constructed as

- £ o (- ) )]

n=—M
n#0
(20)

where A, B, C,, are adjustable parameters, and M € N.
Notice that the parameters A, B, C,, have the same physical
meanings as the parameters A, B, «, of the triangular wave.
Similarly, one can determine the stabilities of the equilibrium
points. Fig. 10(a) and (b) shows the numerical simulation results
of the 8- and 7-scroll attractors, respectively, where A = 2, B =
1,C, =

IV. CIRCUIT IMPLEMENTATION FOR MULTISCROLL
CHAOTIC ATTRACTORS

In this section, some fundamental principles are discussed,
for designing circuits to generate multiscroll chaotic attractors,
especially n-scroll attractors with a large number of scrolls (n >
10). Some experimental observations are also presented.

A. Fundamental Principle for Circuit Design for Multiscroll
Attractor

Based on the operational principles of sawtooth wave and tri-
angular wave, according to (1), (8), (9), (15), and (16), one can
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Fig. 10. Parameters A = 2, B = 1,C,, = 5. (a) 7-scroll. (b) 8-scroll.

design a circuit diagram to realize various multiscroll chaotic
attractors.

Fig. 11 shows the circuit diagram. This circuit diagram
includes five different parts; that is, Part I: integrator Ny;
Part II: sawtooth wave and triangular wave generator Ni;
Part III: buffer Ny; Part IV: switch linkages, including
K7 K107 th K127K137K14,K15; Part V: voltage—current
conversion resistors R10 ~ R15.

Note that the buffer N5 can greatly improve the load-ability
of OP1, which is very important for generating more than 10
scrolls attractor by using a physical circuit. The number of
scrolls can be completely controlled by the switchings of the
switch linkages, Ky, K11, K12, K13, K14, K15. The circuit
diagram can physically realize 3—12-scroll chaotic attractors by
adjusting the switch linkages. Also, the generator N7 can create
sawtooth wave and triangular wave via the switching of the
switch linkage K. The difference between the sawtooth wave
oscillator and the triangular wave oscillator is the changing
time between the charging and the discharging of the capacitor.
When the output of the operational amplifier is a positive
voltage, it is being charged rapidly to a small resistance value.
When the output of the operational amplifier is a negative
voltage, it is being charged gradually to a large resistance value.
Here, (1/(RoCy)) is the integral constant of the integrator Ny,
and the transformation factor of the time scale.

Assume that Ry = 1 k€). Then, the transformation factor of
the time scale will vary with Cj, which leads to the change of the
spectrum range of the chaotic signal. In all experiments, Ry =
1k and Cy = 33 nF. Moreover, all original devices shown in
Fig. 11 are operational amplifiers of type TLO82 with voltage
supply £15 V. The experimental results show that the saturated
voltage of the operational amplifier is close to +13.5 V. For con-
venience, all resistors shown in Fig. 11 are adjustable resistors
with high precision, or potentiometers.

The circuit experimental results show that the dynamic ranges
with high precision of the operational amplifiers are limited.
Under the condition of small input signals, the input and output
of the operational amplifier can keep a high operational preci-
sion. However, under the condition of large input signals, the
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input and output of the operational amplifier cannot keep a high
operational precision, which often causes an increasing error.
Moreover, the parameter scatters of various operational ampli-
fiers and other devices (such as resistors and capacitances) also
increase the error. For these reasons, it is almost impossible for
the physical chaotic circuit to generate chaotic attractors with a
large number of scrolls, especially for more than ten scrolls in
the attractor. Up to now, there does not seem to be any result
reported in the literature on physical circuit implementation for
chaotic attractors with more than ten scrolls.

To overcome these difficulties, one has to decrease the er-
rors of the operational amplifiers as quickly as possible. Note
that it is important to select suitable system parameters A;(i =
0,..., M) and B for the circuit implementation if one wants to
generate attractors with more than ten scrolls. Here, we decrease
the input signals of all operational amplifiers by decreasing the
system parameters A;(i = 0,..., M). However, the values of
A;(i = 0,...,M) cannot be too small for technical reasons.
After numerous real circuit experimental trials, we select a set
of suitable system parameters for A;(¢ = 0,...,5) and B as
listed in Table I. According to (12), one can deduce the voltages
S;(i = 1,...,5) of the breakpoints for sawtooth wave and tri-
angular wave, given in Tables IV and VII, respectively.

To generate four kinds of chaotic attractors with an even
number of scrolls, including Types I, II, III, and IV, one needs
to adjust all potentiometers R, in the sawtooth wave generator
N; to ensure all input voltages of the operational amplifiers to
satisfy the values listed in Table IV.

According to the circuit diagram shown in Fig. 11, when the
switch linkage K is off, one can get the relationship between
the output voltages z;(j = 0, %1, ...,+5) and input voltage
for the operational amplifier; which is

z; = —|Vzatlsgn(z — Sj) 2n

where 7 = 0,%1,...,45, Voo =~ 13.5 V. Since the sawtooth

wave is an odd function, S_; = —S;, whose values are listed
in Table IV, where all voltages are in volt.
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Denote the voltage-current conversion resistor of the output
of the operational amplifier in Ny as Rq;(j = 0,£1,...,£5).
From the circuit diagram shown in Fig. 11, one has

Vsa
ij = —| t|Sgl’l(.ﬁE — S]) (22)
1y
where j = 0,%1,...,£5, Ry _; = R, ;, and the units of the
current 4;(j = 0,1, ..., +£5) are milliampere. Therefore
x
i7 = ——. (23)
7 T
Define
_ |1, if Ky is switched on
Ky = { 0, if Ky, is switched off @4
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Fig. 11. Circuit diagram for realizing n-scroll attractors.

where 5 = 0,1,...,5. According to Fig. 11 and (22)-(23), one
can get the total current of the sawtooth wave generator with an
even number of scrolls, as follows:

1 =1g+i7
= Kioto+ K11(i1 +i-1) + K12(i2 +1-2)
+ Ki3(iz +i-3) + Kia(ig +i4) + Ki5(is +i5) +i7
L Vi x
= Z tlsen(z — 8)) — — (25)
j=—M L Iy
where M =1,...,5,R; _; = Ry jforj =0,1,...,5, and the

units of all currents are milliampere.
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TABLE IX
ON-OFF OF SWITCH LINKAGES K19 ~ K15 AND NUMBER OF EVEN SCROLLS
Ko | Kiin | Ki2 | Ki3 | Ky | Kis | 2M +2
on on off off off off 4
on on on off off off 6
on on on on off off 8
on on on on on off 10
on on on on on on 12
It follows from (8) and (25) that
|‘/sat|
Rig=—"—
0 A,
2|V,
Ryj = ﬂ (26)
Aj_1 + A
1
Ry = —
"B
where j = 1,...,5, and the parameters A;(j = 0,...,5) and

B are listed in Table 1.

To generate an even number of n-scroll (n = 4,6,8,10,12)
attractor from the circuit diagram shown in Fig. 11, let K19 =
K11 = 1, and adjust the switch linkages K12, K13, K14, K15
based on Table IX.

Similarly, from the circuit diagram shown in Fig. 11, one can
get the total current of the sawtooth wave generator with an odd
number of scrolls, as follows:

1= 1¢g + 17
Ki1(i1 +i21) + Kio(ia +i-2) + Kq3(iz + i—3)
+ K14(ta+i-4) + K15(i5 +i-5) + i7

sat
= § Eetloon(z — §:) — — (27)
j=—M le ¢ ( j) Rb
70

the units of all currents are milliampere. Here, Ry; for j =
0,1,...,5and R, are determined by (26), S_; = —.S; are given
in Table VII, and K; for j = 0,1,...,5 are defined in (24).

To create an odd number of n-scroll (n = 3,5,7,9,11) at-
tractor from the circuit diagram shown in Fig. 11, let K19 =
0, K11 = 1, and adjust the switch linkages K12, K13, K14, K15
based on Table X.

To generate four different kinds of multiscroll chaotic attrac-
tors with an odd number of scrolls, including Types I, I1, III, and
IV, one needs to adjust all potentiometers R4 of the sawtooth
wave generator N; to ensure all input voltages of operational
amplifiers to satisfy the values listed in Table VII.

According to Table I and (26), one can calculate the voltage-
current conversion resistors Ry; for 7 = 0,1,...,5 and Ry,
which are listed in Table XI.

where M = 1,..., 5 Ri,—j; = Ry forj =0,1,...,5, and

B. Example

In this subsection, the operational principle of the circuit dia-
gram shown in Fig. 11 is further explained via a simple example
of triangular wave.

As can be seen from the circuit diagram shown in Fig. 11,
when the switch linkages K, K1¢ are switched on and the
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TABLE X
ON-OFF OF SWITCH LINKAGES K19 ~ K15 AND NUMBER OF ODD SCROLLS
Kio | Kin | Ki2 | Kiz | Kia | K15 | 2M + 1
off on off off off off 3
off on on off off off 5
off on on on off off 7
off on on on on off 9
off on on on on on 11
TABLE XI

RESISTOR VALUES OF R1;(0 < j < 5) AND R;, FOR FOUR DIFFERENT
TYPES OF ATTRACTORS

Resistor Type 1 Type 11 Type III | Type IV
Rio 45k 27kS2 38.57kS) 54kS2
R 42k 28.13k2 45k 54k
Rio 37.5k2 30.7kQ2 45k 54k
Ris3 33.75k€) | 33.75kQ2 45k 54k€)
Riq 30.7kQ2 37.5k2 45k$) 54k€)
Ris 28.13k<2 42k€) 45k$) 54kS)
Ry 1k€2 1kQ 1kQ2 1k82

other switch linkages K1;(1 < j < 5) are switched off, the
circuit diagram generates a double-scroll attractor. Obviously,
when the absolute value of the input signal z is less than
the voltage value of the breakpoint ag = (Rs30/R20)|Vzatl;
that is, || < (Rso0/Rz20)|Vsat|, the output voltage xo and
the input voltage = of the last sub-circuit in Ny satisfy the
linear relationship zg = —((Rsox)/R20). When the input
signal z exceeds the voltage value of the breakpoint, satis-
fying |z| > (Rs0/R20)|Vzat|, the operational amplifier enters
into the saturated state and the output voltage is a constant,
Viat = £13.5 V. That is

|‘/sat|; x<_§_;g|‘/sat|
wo = —fox, — 0|V <@ < 0|V

_|‘/sat|> T > g—zgﬂfsad

where the units of the resistors are k{2, and the unit of x is volt.

According to the characteristic properties of the ideal opera-
tional amplifier and the reference direction of the current 2, one
has

Zo

" Rio

19 =
where the unit of the resistor is k€2, and the unit of current 7 is
milliampere. Fig. 12(a) shows the voltage-ampere relationship
for circuit 7.

From the reference direction of the current 77, one has

T

i7 = ——
Ry

where the unit of the resistor is k€2, and the unit of current g is
milliampere. Fig. 12(b) shows the voltage-ampere relationship
for current 27.

According to the circuit diagram shown in Fig. 11, the entire
current of Ny is ¢ = ¢ + 27 = 29 + ¢7. Fig. 12(c) shows the
voltage-ampere relationship for the entire current :. Fig. 12(d)
shows the function of f(z) = Ryi, where Ry = 1 k§2. Note that
f(z) and 7 have the same diagrams but different units; that is,
the unit of 4 is milliampere and the unit of f(z) is volt.
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Fig. 12. Forming process for the triangular wave f(x) in generator Nj.
(a) Voltage-ampere relationship for current ¢,. (b) Voltage-ampere relationship
for current i . (c) Voltage-ampere relationship for synthesis current i = g + ¢7.
(d) Function relationship of f(x).

Fig. 12 clearly reveals the forming process for the triangular
wave f(x) in generator Ny. The whole forming process can be
divided into four different phases: Phase I [Fig. 12(a)]: the sat-
urating process of current ig; Phase II [Fig. 12(b)]: the forming
process of current i7; Phase III [Fig. 12(c)]: the synthesizing
process of iy and i7; Phase IV [Fig. 12(d)]: the forming process
of f(z).

Moreover, if the resistor Ry is off, that is, the switch linkage
K of Fig. 11, is off, Ry9g — oo and the voltage value of the
breakpoint ag = (R30/R20)|Viat| — 0. Therefore, the trian-
gular wave tends to the sawtooth wave in the limit case.

C. Theoretical Analysis on the Multiscroll Chaotic Circuit

In this subsection, the jerk circuit (1) is derived from the cir-
cuit diagram shown in Fig. 11.
According to circuit theory and the circuit diagram shown in
Fig. 11, one can get the current equation
18 + 19 + 110 = & (28)
where ¢ is defined by (25) or (27). From the circuit diagram, one
has

jo = L dz
8 = Ry dr
. 1 d’x
9 = R, dr2 (29)

: d (d*
i10 = Cog; (dﬁ)

where Ry = 1 k). Multiplying both sides of (28) by Ry, from
(28) and (29), one can deduce the following equation:
RoCoi <d2x) _ Ry d?z  dx

_R—GF_E_‘_JC(J?) (30)

dt \ dr?
where Ry = 1k, R, = 1.67kQ,5 = (Ro/Rp) = 0.6, and
f(z) € {fi(z), f2(x)}, in which f1(z) and fo(z) are defined
by (8) and (9) [or (15) and (16)], respectively.
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Fig. 13. Experimental observations of Type-IV n-scroll attractors. From up to
down: (a) 9-scroll, where » = 0.5 V/div, y = 0.33 V/div; (b) 10-scroll, where
2 = 0.55 V/div, y = 0.33 V/div; (c) 11-scroll, where x = 0.6 V/div, y = 0.33
V/div; (d) 12-scroll, where x = 0.66 V/div, y = 0.33 V/div.

It is noticed that the mathematical form of (28) does not
change after multiplying both sides of (28) by Ry. However, the
unit of (28) has been changed from milliampere to volt. More-
over, (1/(RoCy)) is the integrator constant of the integrator Ny
shown in Fig. 11, and it is also the transformation factor of the
time scale. It is clear that (30) can be transformed into the jerk
circuit (1) via a simple transformation t = RyCyT.

D. Circuit Implementation

In this subsection, the multiscroll chaotic attractors are exper-
imentally confirmed via circuit design and oscilloscope obser-
vations.

Based on the circuit diagram shown in Fig. 11 and the calcu-
lated resistor values listed in Table XI, we have performed the
following real physical experiments.

1) Switch off the switch linkage K, let N; be sawtooth wave,
adjust the resistors 2y for j = 0,1,...,5 and R} from
the type IV in Table XI, and change the status of the
switch linkages K ; for j = 0,1,...,5. Then, we get the
Type-1V sawtooth wave with 3—12 scrolls. Fig. 13 shows
the oscilloscope-observed results for 9—12-scroll attrac-
tors.

2) Similarly, adjust the resistors I2;; for j = 0,1,...,5 and
Ry, from the Types I, II, III in Table XI. Then, one obtains
three different kinds of sawtooth waves, including types
L, II, III. Fig. 14 shows the oscilloscope-observed results
for 11- and 12-scroll attractors.

3) Switch on the switch linkage K, and let N; be triangular
wave. Then, we get various multiscroll attractors based on
this triangular wave. Let R3g = R31 = R3o = R33 =
R3y = Rs; = 1 k€, and adjust the resistors values
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Fig. 14. Experimental observations of n-scroll attractors. From up to down: (a) 11-scroll of Type I, x = 1.0 V/div, y = 0.4 V/div; (b) 11-scroll of Type II,
x = 0.95 V/div, y = 0.6 V/div; (c) 11-scroll of Type III, x = 0.73 V/div, y = 0.4 V/div; (d) 12-scroll of Type I, « = 1.1 V/div, y = 0.4 V/div; (e) 12-scroll of
Type I, « = 1.05 V/div, y = 0.5 V/div; (f) 12-scroll of Type III, z = 0.8 V/div, y = 0.4 V/div.

Ry; for j = 0,1,...,5. Then, one can change the corre- to the equilibrium points as «; decreases. Fig. 15 shows
sponding values of the breakpoints o; for 7 = 0,1,...,5 the oscilloscope-observed results for 5-scroll and 6-scroll
of the triangular wave. The function relationships between attractors.

Qa; and jo, jo are

o = —|Vsat| G1) V. CONCLUSION
' This paper has developed a nonlinear modulating function
where j = 0,1,...,5. Notice that o; for j = 0,1,...,5 approach for creating n-scroll chaotic attractors from a general
can modify the shapes and even the phase portraits of the jerk circuit. The dynamic mechanism and chaos generation
triangular waves. The phase portraits move away from the  condition of the general jerk circuit have been investigated by
equilibrium points as o increases; and they will be close  analyzing the system stability. A novel block circuit diagram
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Fig. 15. Experimental observations of n-scroll attractors. From up to down:
(a) 5-scroll attractor with phase portraits close to equilibrium points, where
x = 0.8 V/div, y = 0.8 V/div, and o = 0.018; (b) 5-scroll attractor with
phase portraits away from equilibrium points, where x = 0.8 V/div, y =
0.8 V/div, and « = 0.18; (c) 6-scroll attractor with phase portraits close to
equilibrium points, where # = 0.9 V/div, y = 0.8 V/div, and @ = 0.018;
(d) 6-scroll attractor with phase portraits away from equilibrium points, where
x = 0.9 V/div, y = 0.8 V/div, and o« = 0.18.

has been designed for hardware implementation of various
3—12-scroll chaotic attractors; it includes integrator, sawtooth
wave and triangular wave generators, buffer, switch linkages,
and voltage-current conversion resistors. Moreover, the recur-
sive formulas of system parameters and real physical circuit
parameters have been rigorously derived, useful for hardware
implementation of a chaotic attractor with a large number of
scrolls.

The novel circuit design approach developed in this paper
has many advantages over the classical methods: (i) one can
arbitrarily design the swings, widths, slopes, breakpoints, equi-
librium points, shapes, and even the phase portraits of the
multiscroll chaotic attractors by using the adjustable sawtooth
wave and triangular wave functions; (ii) all system design pa-
rameters and real physical circuit parameters can be rigorously
derived from the recursive formulas (10)—(13). Therefore, our
circuit design method has high reliability, diversity, and prac-
ticability. More importantly, the adjustability of the sawtooth
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wave and triangular wave as well as the rigorous recursive
formulas provide a theoretical principle for physically realizing
chaotic attractors with a large number of scrolls.

Our physical experiment results have verified that the high
precision region of the operational amplifiers is limited. That
is, the input and output of the operational amplifier have a high
operational precision for small input signals. However, it is very
difficult for the input and output of the operational amplifier to
retain the high operational precision under the condition of large
input signals. Also, there are other technical reasons that cause
difficulties in hardware implementation for generating chaotic
attractors with a large number of scrolls, such as the parameters
scatters, the dynamic range of the available physical devices,
and the variations of the input and output impedances of the
real operational amplifier. This reveals the reason why there are
very few (if any) results reported in the literature for physical
circuit implementation of chaotic attractors with more than ten
scrolls. Nevertheless, in this paper we have already overcome
these difficulties by accurately calculating the parameters and
designing a suitable block circuit diagram, thereby physically
realizing a 12-scroll chaotic attractor.

It should be pointed out that one can arbitrarily design the
desired swings, widths, slopes, breakpoints, equilibrium points,
shapes, and even the phase portraits of the n-scroll chaotic at-
tractor by using the proposed systematic methodology. In par-
ticular, the adjustability of nonlinear modulating function and
the rigorous recursive formulas together form a theoretical basis
for hardware implementation of various chaotic attractors with
a large number of scrolls. Furthermore, the block circuit struc-
ture, adjustability, diversity, and high-reliability of the circuitry
design will further facilitate some engineering applications of
multiscroll chaotic attractors, such as monolithic IC realization
via the CMOS technology.
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