
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 51, NO. 4, APRIL 2004 787

Characterizing the Synchronizability of
Small-World Dynamical Networks
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Abstract—Many real-world complex networks display a small-
world feature—a high degree of clustering and a small average
distance. We show that the maximum synchronizability of a net-
work is completely determined by its associated feedback system,
which has a precise meaning in terms of synchronous communi-
cation. We introduce a new concept of synchronizability matrix to
characterize the maximum synchronizability of a network. Several
new concepts, such as sensitive edge and robust edge, are proposed
for analyzing the robustness and fragility of synchronization of a
network. Using the knowledge of synchronizability, we can pur-
posefully increase the robustness of the network synchronization
and prevent it from attacks. Some applications in small-world net-
works are also discussed briefly.

Index Terms—Associated feedback system, robust edge, sensitive
edge, small-world network, synchronizability matrix.

I. INTRODUCTION

MANY natural and man-made systems, such as nervous
systems of living organisms, social systems, the World

Wide Web, metabolic systems, food webs, and electrical power
grids, can be represented by means of a graph in mathematical
terms. In such a graph, the nodes are the single elements of the
system, such as neurons in the brain, human beings in a society,
a hyperlink in the WWW, etc, while the edges are connections
preparing measures of the interactions among the individual ele-
ments [1], [2]. These graphs are called complex networks. Over
the last decade, complex networks have been intensively studied
in many fields, such as social, biological, mathematical, and en-
gineering sciences.

To well understand the complex dynamical behaviors of many
natural systems, we need to study the topological structures
of the underlying networks. In fact, the properties of a com-
plex network are mainly determined by its topological struc-
ture—connections between nodes. At one extreme are the reg-
ular networks, such as chains, lattices, grids, and fully connected
graphs, while at the other extreme are the random networks
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where the nodes are connected randomly. Regular networks are
clustered but do not exhibit the small-world effect [3]–[5]. How-
ever, random networks display the small-world effect but do
not show clustering. To bridge the gap between these two ex-
treme cases, Watts and Strogatz introduced an interesting con-
cept of small-world network [4]. In general, small-world net-
works have intermediate connectivity properties but exhibit a
high degree of clustering as in the regular networks and a small
average distance between two nodes as in the random networks.
Small-world networks have an ordered local structure but are
random on a global scale. Small-world networks are charac-
terized by two quantities: a high clustering coefficient like
regular lattices and a short average path length like random
graphs. represents the degree of local order and is defined to
be the probability that two nodes connected to a common node
are also connected to each other. , which measures the effi-
ciency of information propagation between nodes, is defined to
be the average number of links in the shortest path between a
pair of nodes in the network [6]. It has been demonstrated that
many real-world networks, such as social networks, metabolic
networks, communication networks, power grids, and collab-
oration graphs of film actors, display small-world behaviors.
Many numerical and analytic results for small-world networks
have been obtained in several directions, including the empirical
work for determining the exact structure of a real-world network
and the theoretical work for studying the properties of various
network models. It has been found that small-world networks
have many applications in various fields, such as social studies,
scientific collaboration, the Internet, telecommunication, busi-
ness, and life sciences [7].

Collective motions of complex networks have recently been
the subject of considerable interest within the science and
technology communities. Especially, one of the interesting
and significant phenomena in complex dynamical networks
is the synchronization of all dynamical nodes in a network
[8]–[11], [14]–[16]. In fact, synchronization is a kind of basic
motions in nature. The synchronization of coupled oscillators
can well explain many natural phenomena [8], [12]–[14].
Moreover, many real-world problems have close relationships
with network synchronization, such as the synchronous phe-
nomena on the Internet, and the synchronous transfer of digital
or analog signals in the communication networks. Recently,
synchronization in networks of coupled chaotic systems has
received a great deal of attention [8]–[26]. Most of the existing
works have focused on completely regular networks, such as
the continuous-time cellular neural network (CNN) and the dis-
crete-time coupled map lattice (CML) [14], while some studies
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Fig. 1. Formation of a small-world network [7].

address the synchronization of randomly coupled networks
[15]. However, many real-world networks, such as the WWW,
food webs, and metabolic networks are neither completely
regular nor completely random. Knowing this, very recently,
Wang and Chen have further investigated the synchronization
of small-world and scale-free networks [8], [9].

Many complex networks display a surprising degree of ro-
bustness against disturbances and network errors. For example,
simple organisms may grow, produce, and persist despite drastic
pharmaceutical or environmental interventions, an error toler-
ance attributed to the robustness of the underlying metabolic
network [27]. Complex communication networks also display a
surprising degree of robustness: although key components reg-
ularly malfunction, local failures rarely lead to the global loss
of network information-carrying ability.

Although there are many papers which discuss the network
synchronization problem [8]–[10], [15], [23]–[26], there are few
results reported in the literature on how to rigorously charac-
terize the network synchronizability. In fact, so far, we are still
not able to answer the basic question “What is the maximum
synchronizability of a complex network?” Most of the existing
works were based on numerical or statistical results [23], lack of
rigorous theoretical analysis. In this paper, we show that max-
imum synchronizability of a network is completely determined
by its associated feedback system, which has a precise meaning
in terms of synchronous communication, based on some rig-
orous mathematical methods. We introduce a new concept of
synchronizability matrix to characterize the robustness of syn-
chronization of a network. At the same time, the concepts of
sensitive edge and robust edge of a network are defined based
on the synchronizability matrix. Using the knowledge of syn-
chronizability, we can purposefully increase the maximum syn-
chronizability to, for example, prevent the network from attacks.
To that end, some applications in small-world networks are dis-
cussed briefly.

This paper is organized as follows: The Watts and Strogatz
(WS) model is first reviewed, and a general dynamical net-
work model and its synchronization theorems are then proposed
in Section II. In Section III, the concepts of associated feed-
back system, synchronizability matrix, robust edge, and sensi-
tive edge of a network are introduced to characterize the syn-
chronizability of a dynamical network. An example is analyzed,
and some applications are discussed in Section IV. Conclusions
are given in Section V.

II. PRELIMINARIES

A. Small-World Models

In 1998, Watts and Strogatz introduced a single-parameter
small-world network model that bridges the gap between a reg-
ular network and a random graph [4]. The original WS model is
described as follows.

1) Start with order: Start with a nearest-neighbor coupled
ring lattice with nodes, in which each node is con-
nected to its neighboring nodes ,
where is an even integer. Assume that

, which guarantees that the network is con-
nected but sparse at all times.

2) Randomize: Randomly rewire each link of the net-
work with probability such that self-connections and
duplicated links are excluded. Rewiring in this sense
means transferring one end of the connection to a ran-
domly chosen node. This process introduces
long-range links, which connect some nodes that other-
wise would not have direct connections. One can thus
closely monitor the transition between order and
randomness by adjusting .

Fig. 1 shows that a small-world network lies along a con-
tinuum of network models between the two extreme networks:
regular and random ones. Lately, Newman and Watts improved
the original WS model [5]. Most of the recent works on small-
world models were performed using the Newman and Watts
(NW) model. The NW model, instead of rewiring links between
nodes, extra links called shortcuts are added between pairs of
nodes chosen at random, but no links are removed from the ex-
isting network. Obviously, the NW model reduces to the origi-
nally nearest-neighbor coupled network for ; while it be-
comes a globally coupled network for . Moreover, the NW
model is equivalent to the WS model for sufficiently small and
large . The WS and NW models show a transition with an in-
creasing number of nodes from a “large-world” regime in which
the average distance between two nodes increases linearly with
the system size, to a “small-world” one in which it increases
only logarithmically.

B. General Dynamical Network Model

Recently, Wang and Chen have proposed a uniformly dynam-
ical network model [9], which has the same coupling strength
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for all edges and the inner coupling matrix is a constant 0–1
diagonal matrix. However, most real-world complex networks
have different coupling strengths for different edges, and their
inner coupling matrix is required to not to be a diagonal matrix.
To better characterize the real-world complex networks, a gen-
eral dynamical network model is introduced here

(1)

where are the state
variables of node is a constant inner
coupling matrix between nodes, and is the cou-
pling configuration matrix of the network, where is defined
as follows: If there is a connection from node to node ,
then, the coupling strength ; otherwise, ,
and the diagonal elements of are defined by

(2)

Obviously, the uniform network modeled in [9] is a special case
of network (1), where is a 0–1 symmetric matrix and is a
0–1 diagonal matrix. Since real-world complex networks may
be directed networks, such as the WWW, whose coupling con-
figuration matrix is not symmetric, here it is not assumed that

is symmetric and its off-diagonal elements are nonnegative.
Note that matrix has some interesting properties. Ac-

cording to [16, Lemma 2], the real parts of all eigenvalues of
matrix are less than or equal to 0, and all eigenvalues with
zero real part are the real eigenvalue 0. Hereafter, suppose that

is an irreducible matrix; therefore, 0 is an eigenvalue of
multiplicity 1 [16]. If all the eigenvalues of are real numbers
satisfying , then

and (3)

C. Several Lemmas

At first, a rigorous mathematical definition is introduced for
the concept of network synchronization.

Definition 1: Let be
a solution for the dynamical network

(4)

where and
are continuously differentiable, . If there

is a nonempty open subset , with
, such that for all

, and

for (5)

then, the dynamical network (4) is said to realize synchroniza-
tion and is called the region of synchrony
for the dynamical network (4).

Note that the diffusively coupled condition (2) of network (1)
ensures that the synchronous solution

be a solution of an individual node described
by , denoted as , namely

(6)

Obviously, synchronization in network (1) corresponds to the
motion in the invariant manifold:

. Here, can be either an equilibrium point, or a pe-
riodic orbit, or an orbit of a chaotic attractor.

It is very important to point out that since a chaotic attractor
is an attracting invariant set, the stability of the chaotic syn-
chronous state is equivalent
to the stability of the zero transverse errors of the synchronous
manifold for the dynamical network (1) [10]. However, it is
quite different from the nonchaotic case. Since it is not assumed
the stability of , then the stability of the synchronous solu-
tion of network (1) is equivalent to
the stability of the error vector about
its zero solution, where .

In the following, we consider two cases: 1) chaos synchro-
nization of network (1) and 2) nonchaotic synchronization of
network (1).

1) Case 1): Chaos Synchronization: Suppose that
is a chaotic system and is one of the orbits of its

chaotic attractor. Denote

(7)

where is the reference direction of synchronous
manifold [10], and

. Then, (7) can be
written as

(8)

Denote by the maximum eigenvalue of matrix
.

Hypothesis 1: (H1) Assume that is con-
tinuously differentiable, , the
Jacobian matrix is bounded and Lipschitz on ,
uniformly in , and the coupling configuration matrix can be
diagonalized.

Lemma 1: Suppose that (H1) holds. The chaotic syn-
chronous state of
dynamical network (1) is exponentially stable if and only if the
linear time-varying systems

(9)

are exponentially stable about their zero solutions, where
are the nonzero eigenvalues of matrix .

The proof of Lemma 1 is similar to that of Lemma 1 in [9].
Note that Lemma 1 is a sufficient and necessary condition for
chaos synchronization. Since the Jacobian matrix
is bounded and Lipschitz on , uniformly in , according to the
Lyapunov converse theorem [28], the origin is an exponentially
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stable equilibrium point for the nonlinear system (8) if and only
if it is an exponentially stable equilibrium point for the linear
time-varying system

(10)

Moreover, the origin is an exponentially stable equilibrium point
for the linear system (10) if and only if exponentially
as . Since , one has
exponentially as if and only if exponentially
as , where .
The rest of the proof is similar to the proof of [9, Lemma 1] and,
therefore, is omitted.

Lemma 2: Suppose that (H1) holds. Assume that all eigen-
values of are real numbers satisfying . If

is a positive semi-definite matrix, and
for all , then, the chaotic synchronous

state of dynamical net-
work (1) is exponentially stable.

Proof: Since all eigenvalues of are real numbers, from
(3), and . Consider the linear time-
varying systems (9). Since is a positive semi-definite
matrix, one has

for . Since for
all , one has . That is, all linear
time-varying systems (9) are exponentially stable about their
zero solutions. From Lemma 1, the chaotic synchronous state
of dynamical network (1) is exponentially stable. The proof is
thus completed.

2) Case 2): Nonchaotic Synchronization: Let
be an exponentially stable solution of the individual node

. Denote

(11)

where
. Then, (11) can be

written as

(12)

Hypothesis 2: (H2) Assume that is continu-
ously differentiable, , the Jacobian
matrix is bounded and Lipschitz on , uniformly in
, and the coupling configuration matrix can be diagonalized.

Lemma 3: Suppose that (H2) holds. The synchronous solu-
tion of dynamical network

(1) is exponentially stable if and only if the linear time-varying
systems

(13)

are exponentially stable about their zero solutions, where
are the nonzero eigenvalues of matrix .

The proof of Lemma 3 is also similar to that of Lemma 1
in [9]. Here, Lemma 3 is a sufficient and necessary condition.
Since the Jacobian matrix is bounded and Lipschitz
on , uniformly in , from the Lyapunov converse theorem [28],
the origin is an exponentially stable equilibrium point for the
nonlinear system (12) if and only if it is an exponentially stable
equilibrium point for the linear system

(14)

Moreover, the origin is an exponentially stable equilibrium point
for the linear system (14) if and only if exponentially
as , and exponentially as if and
only if exponentially as , where

. The rest of proof is similar
to the proof of [9, Lemma 1] and so, is omitted.

Lemma 4: Suppose that (H2) holds. Assume that all eigen-
values of are real numbers satisfying . If

is a positive semi-definite matrix, and
for all , then, the synchronous solution of dy-

namical network (1) is exponentially stable.
The proof of Lemma 4 is similar to that of Lemma 2 and is

omitted here.
It is noticed that Lemmas 1 and 3 have the same result under

the conditions of (H1) and (H2), respectively. It means that,
whether is an orbit of a chaotic attractor or an exponentially
stable solution, network (1) achieves synchronization under the
same conditions: Systems (9) or (13), respectively, are exponen-
tially stable about their zero solutions.

III. CHARACTERIZATION OF SYNCHRONIZABILITY

A. Maximum Synchronizability of Dynamical Networks

Network synchronizability is an important property of com-
plex dynamical networks. Networks with different topological
structures have different degrees of network synchronizability.
It has been demonstrated that, for any given coupling strength,
if the number of nodes is sufficiently large, then the small-
world dynamical network will synchronize, even if the original
nearest-neighbor coupled network cannot realize synchroniza-
tion under the same condition [8]. However, how to characterize
the synchronizability of a network is an open problem. In the
following, a new concept—associated feedback system—is in-
troduced for characterizing synchronizability of network (1).

Definition 2: The self-feedback nonlinear system

(15)

where and is a constant, is
called the associated feedback system of the dynamical net-
work (1).

Letting , and substituting it into (15), yields

(16)
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and its corresponding linear system is

(17)

For the given dynamical network (1), one can obtain the expo-
nentially stable region, denoted as , of the solution of the
associated feedback system (15) [or the zero solution of system
(16)] in terms of feedback parameter .

Theorem 1: Let be an orbit of a chaotic attractor of the
given chaotic system . Suppose that (H1) holds.
The chaotic synchronous state

of dynamical network (1) is exponentially stable if and only
if the eigenvalues .

Proof: From (H1), the Jacobian matrix is
bounded and Lipschitz on , uni-
formly in . According to the Lyapunov converse theorem [28],
the origin is an exponentially stable solution for the nonlinear
system (16) if and only if it is an exponentially stable equilib-
rium point for the linear time-varying system (17). Therefore,

is also the exponentially stable region of the zero solution of
the linear time-varying system (17) with respect to feedback
parameter . From Lemma 1, the chaotic synchronous state

of dynamical network
(1) is exponentially stable if and only if all the eigenvalues

. The proof is thus completed.
Theorem 2: Let be an exponentially

stable solution of the individual node .
Suppose that (H2) holds. The synchronous solution

of dynamical network
(1) is exponentially stable if and only if all the eigenvalues

.
Proof: According to (H2), the Jacobian matrix

is bounded and Lipschitz on ,
uniformly in . From the Lyapunov converse theorem [28],
the origin is an exponentially stable solution for the nonlinear
system (16) if and only if it is an exponentially stable equilib-
rium point for the linear time-varying system (17). Therefore,

is also the exponentially stable region of the zero solution
of the linear time-varying system (17) in terms of feedback
parameter . From Lemma 3, the synchronous solution of
dynamical network (1) is exponentially stable if and only if all
the eigenvalues . This thus completes
the proof.

Remarks:

1) Theorems 1 and 2 give sufficient and necessary conditions
for the exponential stability of the synchronous solution
of network (1). It is noticed that the stable region is com-
pletely determined by the individual node
and the inner coupled matrix of network (1) and that
the eigenvalues of the coupled configuration matrix
determine the stability of synchronous solution of net-
work (1).

2) is the maximum region of the eigenvalues of the cou-
pled configuration matrix . Note that Theorems 1 and
2 give the same result under different conditions of (H1)
and (H2).

Note that for a given individual node , the net-
work synchronizability is completely determined by the inner

coupling matrix and the coupling configuration matrix . It is
noticed that the unique hypothesis for matrix is the diagonal-
ized condition, which is a rather general condition for complex
networks. However, under the condition of positive semi-defi-
nite for , we can derive some very good results as
shown in Lemma 4. Moreover, is a positive semi-def-
inite matrix for many real-world small-world networks.

Definition 3: The ability that the structure of network (1)
can ensure network (1) achieve synchronization is called the
network synchronizability. The maximum possible set

network (1) realizes synchronization

is called the maximum synchronizability set, which characterizes
the maximum synchronizability of network (1).

Obviously, for a given individual node and
a inner coupling matrix , the maximum synchronizability set
of network (1) is completely determined by its associated feed-
back system (15). In fact, the maximum synchronizability set of
network (1) is

for

where are the nonzero eigenvalues of .
Consider the following unidirectional coupled system:

(18)

where is a constant coupled matrix, and is a coupling
strength or feedback coefficient. Let the error vector be

. According to (16), its variational equation
is

(19)

Obviously, the associated feedback system (15) of network (1)
is the response system in (18), and the individual node

is the drive system of (18). Moreover, the variational
(19) [(or (17)] is the corresponding linear system of the asso-
ciated feedback system (15). If the origin is an exponentially
stable equilibrium of system (19), then the unidirectional cou-
pled system (18) is synchronous. Therefore, the associated feed-
back system (15) and the individual node of network (1) have
their precise meaning in terms of synchronous communication.

B. Characterizing the Robustness of Synchronization

The robustness of synchronization is a key characteristic
quantity of complex dynamical networks. Networks with dif-
ferent topological structures are likely to have different degrees
of robustness of synchronization. Moreover, in a network,
different edges may have different degrees of robustness of
synchronization. It has been demonstrated that a scale-free
network is robust against random removal of nodes but is
fragile to specific removal of the most highly connected nodes
[9]. Therefore, it is very important to give a mathematical
characterization for the robustness of synchronization. In
the following, a new concept of synchronizability matrix is
introduced to characterize the robustness of synchronization
for dynamical network (1).
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Definition 4: Suppose that network (1) can achieve synchro-
nization for a given inner coupled matrix and a coupled con-
figuration matrix . If network (1) remains synchronized after
removing one edge, , from the network, then network (1) is
said to be robust in synchronization against the removal of edge
; otherwise, network (1) is said to be fragile in synchronization

with respect to the removal of edge .
Definition 5: Consider the dynamical network (1), and let

be the exponentially stable region of the zero solution of system
(17) with respect to feedback parameter . The real matrix

(20)

is called the synchronizability matrix for one-edge removal of
network (1), where

if or
if for

otherwise,
otherwise

(21)

in which are the nonzero eigenvalues of trans-
formation matrix satisfying the following: If

and , then and ; other-
wise, . If , then the dynamical network (1) is
said to be globally robust in synchronization against one-edge
removal; if , then the dynamical network (1) is said to be
globally fragile in synchronization with respect to one-edge re-
moval. If , then, the edge from node to node is robust
in synchronization against removal and this edge is called a ro-
bust edge of network (1); if , then the edge from node

to node is fragile in synchronization with respect to removal,
and this edge is called a sensitive edge of network (1).

Note that the synchronizability matrix characterizes the ro-
bustness of synchronization against one-edge removal of net-
work (1). Moreover, the synchronizability matrix concretizes
the robustness and fragility of synchronization against one-edge
removal of network (1). Similarly, one can introduce the syn-
chronizability matrices for multi-edge removals of network (1).

For the case of adding edges, one can similarly define the syn-
chronizability matrix of one-edge addition (or multi-edge addi-
tion) for network (1). The only difference is that in this case

if or
if for

otherwise
otherwise

(22)

where are the nonzero eigenvalues of the trans-
formation matrix satisfying the following: If

and , then and ; otherwise,
.

Suppose that is a positive semi-definite matrix,
and let for .
According to the stability theory of linear time-varying systems
[18], if , then, the linear time-varying system (17) is expo-
nentially stable about its zero solution. Therefore, . As-

sume that are real. From (3) and Lemma 2 (or
Lemma 4), if (or ), then, the chaotic synchronous
state (or the synchronous
solution ) of dynamical net-
work (1) is exponentially stable.

Suppose that is a chaotic orbit of the individual node
. Then is unstable. That is,

. Theoretical analysis and numerical simulations both
show that for most coupled matrices

[11]. Since is
not stable, in order to make system (17) exponentially stable,
the feedback should be a negative feedback. Since

, one has . Assume that
are real. From Theorem 1 and (3), the chaotic

synchronous state
of dynamical network (1) is exponentially stable if and only
if . That is, the exponential stability of synchronous
state of network (1) is
completely determined by the exponential stability of the linear
time-varying system

(23)

Therefore, linear time-varying system (23) determines the syn-
chronizability of network (1).

Let be the maximum of the feedback parameter , which
can exponentially stabilize the associated feedback system (15)
about . Obviously, . Then, (21) can be
simplified as follows:

if or
if

otherwise
otherwise . (24)

Thus, the maximum nonnegative eigenvalue (or the
second-largest eigenvalue) of the coupling configuration
matrix determines the synchronizability of the dynamical
network (1): if , then network (1)
will synchronize; otherwise, it will not synchronize. Therefore,

is the synchronous threshold of the dynamical network
(1). This is in sharp contrast to the case where is chaotic.

If is an exponentially stable solution of ,
then . Here, in order to make system (17) exponentially
stable, the feedback need not be a negative feedback.

C. Comparing With Regular Coupled Networks

Section II has reviewed two typical small-world network
models: the WS model and the NW model. It is noticed that the
NW model reduces to the nearest-neighbor coupling network
for , while it becomes a globally coupling network
for . Obviously, the small-world network bridges the
gap between the nearest-neighbor coupling network and the
globally coupling network and realizes the transformation
from one to the other. It has been shown that for any given
coupling strength, if the number of nodes is large enough,
then the globally coupling network eventually synchronizes,
while the nearest-neighbor coupling network cannot achieve
synchronization under the same condition. Recently, Wang and
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Fig. 2. Network (1) with ten nodes. (a) Simplest nearest-neighbor coupling network. (b) Nearest-neighbor coupling network with four nearest-neighbor coupled
nodes. (c) Small-world network. (d) Fully connected network.

Chen [8] show that, for any given coupling strength, and with
a sufficiently large number of nodes, a uniform small-world
dynamical network will synchronize. In the following, it will
explain why they have different situations of synchronizability
by analyzing their synchronizability matrices for the case where

is a chaotic orbit of the individual node .
The nearest-neighbor coupling network consists of nodes

being arranged in a ring and coupled to the nearest neighbors.
Fig. 2(a) shows a single nearest-neighbor coupling network.
Assume that and the corresponding
coupling configuration matrix is

. . .
. . .

. . . (25)

Its eigenvalues are

(26)

Assume that . If

(27)

then, the nearest-neighbor coupling network will asymptotically
synchronize.

For , the NW model is a small-world network and
can be described by the dynamical network model (1). More-
over, the small-world network can be generated as follows: in
the nearest-neighbor coupling network , if , then let

with probability . Thus, one obtains the coupling
configuration matrix and its second-largest eigenvalue . It
is known that if

(28)

then the small-world network will synchronize. Numerical re-
sults show that will asymptotically decrease toward as

for any given . Moreover, there exists a critical value
such that the small-world network (1) will synchronize for

. These results coincide with the numerical results
[8, Fig. 1] and the theoretical analysis of [8]. For a given prob-
ability , if one calculates its corresponding synchronizability

matrix for one-edge addition, then it can be seen that the syn-
chronizability of the small-world network (1) increases. Also,
there exists a critical value satisfying for ,
which means that the small-world network (1) is synchronous
and is also robust against one-edge addition for . Fur-
thermore, . Therefore, these theoretical results coincide
with the numerical results of [8]. Here, the critical probability
(or ) is called the saturated synchronization probability.

For , the NW model becomes a globally coupled net-
work, as shown in Fig. 2(d). The corresponding coupling con-
figuration matrix is

...
. . .

. . .
. . .

... (29)

and its eigenvalues are 0 with multiplicity 1 and with mul-
tiplicity . Similarly, if

(30)

then, the globally coupled network will synchronize, which
means that, for any given irreducible coupling configuration
matrix , the globally coupled network will synchronize
when the number of nodes is large enough. Note that is
only dependent on the individual node and the
coupling matrix , which implies that the irreducible coupling
configuration matrix may be arbitrarily small for a given
satisfying (30). However, for a given large , (27) shows that
the nearest-neighbor coupling network will not synchronize for
any large coupling configuration matrix .

In the above, a large enough is chosen to satisfy (30) but not
(27). That is, for a given large , the nearest-neighbor coupling
network may not synchronize but the globally coupled network
does. Therefore, in the NW model, the synchronizability of the
dynamical network (1) will gradually increase when the proba-
bility increases from 0 to 1.

IV. SEVERAL EXAMPLES

A. The Example of Simulation

In the following, Theorem 1 and Definition 5 are illustrated
by using the Lorenz system as the dynamical node in network
(1). For simplicity, consider network (1) with ten nodes as
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Fig. 3. Lorenz chaotic attractor. (a = 10; b = 8=3; c = 28).

shown in Fig. 2. The classical Lorenz system of node is
described by [13]

(31)
which has a chaotic attractor as displayed in Fig. 3 when

. The system Jacobian is

(32)

Fig. 2 shows four typical network structures. Their average
path lengths and clustering coefficients are, respectively,
as follows:

• Fig. 2(a), a nearest-neighbor coupling network:
and ;

• Fig. 2(b), a nearest-neighbor coupling network:
and ;

• Fig. 2(c), a small-world network: and
;

• Fig. 2(d), a fully connected network: and .
In the following, four typical network structures are studied,

as shown in Fig. 2 with different inner coupled matrix :

. From (15), the associated feedback system of net-
work (1) is

(33)

where is an orbit of the Lorenz
chaotic attractor. Numerical results show that the exponentially
stable regions of the zero solution of system (33) in terms of
feedback parameter are

for

for

for

for (34)

According to Theorem 1, the chaotic synchronous state
of dynamical network (1) is

exponentially stable if and only if the following conditions hold:

for

for

and for

for (35)

Let . Only calculate the synchroniz-
ability matrix for one-edge removal of the small-world network
[Fig. 2(c)]. The coupled configuration matrix is shown in (36)
at the bottom of the page, and its synchronizability matrix (for
one-edge removal) is

(37)

Since , the small-world network will
synchronize. Moreover, , so the small-world network ex-

(36)
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hibits global robustness of synchronization against one-edge re-
moval, and all edges are robust edges.

B. Some Examples of Applications

As seen from the above, the synchronizability matrix
is a powerful tool for analyzing the robustness of syn-

chronization for network (1). In fact, one can improve or
construct some small-world dynamical network models for
possible engineering applications based on the knowledge of
synchronizability.

For example, consider a small-world network model of
common vibration. For a given nearest-neighbor coupling
network, how can one add some edges (i.e., links) to make the
whole network simultaneously vibrate (i.e., synchronize)? It is
noticed that the more edges, the more difficult to implement.
Let be the number of the edges added that can then make
the network synchronize. Assume that the number of nodes
is large enough to make the corresponding globally coupled
network synchronize. Now, compare the results of two different
ways of adding edges: in one way, the edges are added at
random and in the other they are chosen to be robust edges
based on the knowledge of the synchronizability matrix. It is
clear that the choice of edges using robust edges has a definite
advantage over the random choice. That is, the number of
robust edges is clearly less than that of random additions.

Similar methods can be applied to real-world communication
networks. In many communication networks, synchronous
transfers of digital or analog signals are very important.
Sometimes, one needs to construct or improve the existing
network to increase its synchronizability. In doing so, one only
needs to add or adjust several edges using the knowledge of
synchronizability.

Nowadays, the robustness of synchronization of complex net-
works has become more and more important for network secu-
rity. For a large-scale complex dynamical network, the random
failures and attacks to the network structure or connections are
often unavoidable, for example, the recent King of Worm, on
25 January 2003 spreading over the Internet. In some real small-
world networks, there are some sensitive edges that are easily
attacked. These key edges should be replaced by adding some
robust edges so as to increase the robustness of synchronization
of the network.

It is shown that the spread of an epidemic (or computer virus)
is much faster in small-world networks than in regular networks,
and the speed is almost close to that in random networks. How
does an epidemic (or a computer virus) spread on the social net-
work (or the Internet)? Recently, many researchers have already
obtained some elementary results that address this issue [29],
[30]. It is now possible to control the spread of a computer virus
or increase the advertisement function of a network by using the
concepts of sensitive and robust edges.

Theoretical analysis and numerical simulations show that
there are many similarities and differences regarding the
synchronizability of dynamical systems on small-world and
scale-free networks. In general, the small-world networks are
easier to realize network synchronization [8]. However, the
scale-free networks are more robust against random removal

of nodes, but is more fragile to specific removal of the most
highly clustering nodes [9].

V. CONCLUSION

In this paper, it has been shown that maximum synchroniz-
ability of a network is completely determined by its associated
feedback system. Also, a new concept—the synchronizability
matrix—can be used to characterize the maximum synchroniz-
ability of the network. Moreover, the concepts of sensitive edge
and robust edge are useful for analyzing the robustness and
fragility of synchronization of the network. Based on the knowl-
edge of synchronizability, one can purposefully increase the ro-
bustness of synchronization thereby protecting against attacks
to the small-world networks.

The sensitive edges of a small-world network have a higher
degree of influence on the network synchronization, which is
very important for increasing or controlling the synchroniz-
ability of the network. The mechanism of sensitive edges need
to be further explored in the near future. Our results strongly in-
dicate that for a small-world dynamical network, the associated
feedback system, the synchronizability matrix, and robust and
sensitive edges are the key elements responsible for the special
network properties, such as the maximum synchronizability
and the robustness and fragility of synchronization. However,
how to construct a robust small-world network for network
security, say protecting against attacks to the Internet, remains
an important but challenging problem.
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