Available online at www.sciencedirect.com

SGIENOE@DIREGT°
PHYSICS LETTERS A

ELSEVIER Physics Letters A 329 (2004) 327-333

www.elsevier.com/locate/pla

Adaptive feedback synchronization of a unified chaotic system

Junan L&, Xiaogun W, Xiuping Har?, Jinhu L{P*

@ School of Mathematics and Statistics, VWuhan University, Wuhan 430072, China
b |ntitute of Systems Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080, China

Received 3 July 2003; received in revised form 14 February 2004; accepted 14 July 2004
Available online 29 July 2004
Communicated by A.R. Bishop

Abstract

This Letter further improves and extends the work of Wang et al. [Phys. Lett. A 312 (2003) 34]. In detailed, the linear feedback
synchronization and adaptive feedback synchronization with only one controller for a unified chaotic system are discussed here.
It is noticed that this unified system contains the noted Lorenz and Chen systems. Two chaotic synchronization theorems are
attained. Also, numerical simulations are given to show the effectiveness of these methods.
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1. Introduction

Chaotic behavior can be observed in many real-world jghysystems, such as chemical reactors, feedback
control devices, and laser systems. Recently, chaosatarid synchronization atict more and more attention
from various fields. Over the last decades, many metlodsstechniques for chaos cosltand synchronization
had been producgd-7], such as OGY methoé], PC method7], feedback approadi], adaptive metho{l],
time-delay feedback approaf2i, backstepping design techniqi8}, etc.

In 1963, Lorenz found the first classical chaotic attra¢&r In 1999, Chen found another similar but not
topological equivalent chaotic attrac®]. In 2002, LU and Chen found the critical chaotic attractor between the
Lorenz and Chen attractfitQ]. It is noticed that these systems can bessified into three different types from the
definition of Varécek andéelikovsky[ll]: the Lorenz system satisfies the conditigaaz; > 0, the Chen system

Y Supported by the National Naturaliece Foundation of China (No. 50209012, 86304017, and No. 20336040/B06) and the National
Key Basic Research Development 973 Program of China (No. 2003CB415200).
* Corresponding author.
E-mail addresses: jalu@wuhee.edu.c@. Lu),lvjiinhu@mail.amss.ac.c(l. LU).

0375-9601/$ — see front mattéi 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.physleta.2004.07.024


http://www.elsevier.com/locate/pla
mailto:jalu@wuhee.edu.cn
mailto:lvjinhu@mail.amss.ac.cn

328 J. Luetal./ Physics Letters A 329 (2004) 327-333

satisfiesuoan1 < 0, and the L system satisfiegyaz1 = 0, wherea12 andap; are the corresponding elements in
the linear part matri¥A = (a;;)3x3 of the system. Very recently, LU et al. unified above three chaotic systems into
a new chaotic system—unified chaotic sysfér2], which is described by

X =(25x¢ 4+ 10)(y — x),
y=(28—35)x + (2% — 1)y — xz, (D)
=Xy — 8+T°‘z,
wherea € [0, 1]. System(1) is chaotic fora € [0, 1]. Whena € [0, 0.8), system(1) is called the general Lorenz
system; whermx = 0.8, it becomes the general LU system; whea (0.8, 1], system(1) is called the general Chen
system.
Recently, there are some results reported about this unified chaotic §¢8eb6] Lu et al. further investigated
the PC synchronization and its application in secure communic§l®ln Lu et al. also studied its parameter
identification and tracking probleffi4]; Tao et al. investigated its linear feedback synchronization, non-linear
feedback synchronization and generalized synchroniz§tijy Wu and Lu studied the backstepping con{&]};
Chen and LU discussed the adaptive fesxksynchronization with three controlldds®]. This Letter introduces
the linear and adaptive feedback synchronization methods with only one controller, which contain the adaptive
feedback synchronization of the Lorenz and Chen systems. In this sense, we improve and extend the results of
Wang et al[1]. Numerical simulations show thé&ectiveness of these techniques.
Let system(1) be the drive system, then the response system is

it = (250 + 10)(v — u),

b= (28— 350)u + (2% — D)v — uw + uo, )

u';:uv—B'*'T“w.

2. Linear feedback synchronization
In the following, we present a theorem for the linear feedback synchronization of sfstem

Theorem 1. Let up = —k(v — y), where k > ko = ming<g g, k(c, B), in which

(o +8) [3(250 +10) + 63+ M3)?

2% — 1, 3
12 + @)

k(a, ) =

(250 +10)(@+8) - 7

4

= —— (250 + 10)(x + 8), 4

Bo(a) 3M22( )(a + 8) (4)

where M»> and M3 arethe bounds: |y|, |[v| < M2, |z|, lw| < M3. Thusthe response system (2) and the drive system
(1) reach synchronization for all « € [0, 1].

Proof. Let the synchronous errors be=u — x,e2 =v — y, e3 = w — z. Then we have the error system

é1=(25x¢ 4+ 10)(e2 — e1),
é7 = (28— 35x)e1 + (2% — 1)e2 — xe3 — weq — keo, (5)

é3=—8%3+ xep + ver.

Consider the Lyapunov candidate

1/1
vzi(ﬁegﬂgﬂg). ®)
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From systen{l) and systen{2), then we get

-1 . .
V= Belel + ezen + e3e3

_ _25“7; 002 (k—2e+12- ; 82, [25“; 10 4 28— 350 — wi|elez+ veies
< _725“; 1Oe§ — (k= 290 + 1)e2 — & ; Seg; [25“; 10 63+ Ms]lelllezl + Mzleq|les|
:—eTPe, @)
wheree = (le1], |ez, |e3])T, and
252410 — 5[0 1 63+ M) M2
pP= _%[%+63+M3] k—2% +1 0
_ M 0 Ba

To ensure that the origin of error syst€h) is asymptotically stable, then the symmetrical mattishould be
positive-definite. If the symmetrical matri® satisfies the following conditions:

25« + 10 ~0, ®)
p
250 +10)(k — 2% 4+ 1) 1[25x +10 2
(25 + 10/ * )——[ i +63+M3] >0, 9)
B 4
25« + 10 8k —-2%+1 8[ 25« + 10 2 (k—2% + 1)M?
(2o 10+ O D et 10 63y ay| - ET2RHDME 4 (10)
38 12 B 4
P is a positive-definite matrix.
Obviously, condition(8) holds. If
M2
(250 +10(@+8 Mj 0 1)

38 4

andk > k(a, B), condition(10) holds. Moreover, if conditioif10) holds, condition(9) holds. Note that condition
(11)is equivalent tg8 < Bo().
Therefore, there exists a real numbesuch that, when

k>ko= min k(a,
0=, min_ (v, B)
for a € [0, 1], the matrixP is positive-definite. According to the hypothesisidfeorem 1the response systef)
and the drive systerfl) realize synchronization. That ig (¢), e2(2), e3(t) — 0 ast — oc.
The proofis thus completed.0

Remark. Since we do not know the detailed upper boumisand M3, it is very difficult to determine the detailed
valueko from the hypothesis ofheorem 1 However, we can attain the approximative upper bouvigsnd M.
Also, we have found that there is a determined relation between the feedback gain and the system pasmdeter
the largest conditional Lyapunov exponertL5].

To avoid above real difficulties, we present the adaptive feedback synchronization method in the following
section.
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3. Adaptive feedback synchronization
In this section, we introduce a new adaptive feedback synchronization method.

Theorem 2. The response system (2) can synchronize the drive system (1) if up = —k(¢) (v — y) = —k(t)e2 and
k(t) =60 — y)?> =6e3, (12)

where constant 8 > 0.

Proof. Let the synchronous errors be=u — x, e =v — y, e3 = w — z. Then we have the error system

é1=(25x + 10)(e2 — e1),
7 = (28— 35x)e1 + (2% — 1)e2 — xe3 — weq — ke, (13)

é3= —8+Ta63 + xeo + ves.

Define a Lyapunov candidate
1/1 (k — k*)?
V:§<Ee%+e%+e§+T , (14)

where the constart > 0 andk* is a real constant.
According to systen(l) and systeng2), then we have

*

-1 . .
V = —e161+ e2¢2 4 eze3 +

k
B
25« + 10 8 25« + 10
_ _T—i_e% — (k* — 2% + 1)6‘% _¢ —; e% + [7/;_ + 28— 350 — w]elez + veyes
250 + 10 +8 25¢ + 10
< —Tef — (k* — 29 4 1)e5 — aTeé + [7/3 + 63+ Ms} le1]lea| + Ma|e1]les]
=—e' P*e, (15)
wheree = (|eq], 2], e3])T, and
280 [0 634 ay] -
P*=| —3[2H0 1 63+ M3] k* — 2% + 1 0
_Mp 0 Bia

2 3
Simila(ly, whenk* > kg, wherekg is defined inTheorem 1the symmetrical matrixP* is positive—definite.
SinceV < 0, theney, ez, e3, k — k* € Lo. From the error systeifi3), é1, é2, é3 € Loo. SinceV < —e' P*e and
P* is a positive-definite matrix, then we have

1 t t
/lmin(P*)IIEIIZdt é/eP*ert é/—\'/dtz V(0) = V() <V(0),
0 0 0

where Amin(P*) is the minimum eigenvalue of positive-definite matiX. Thus,e1, ez, e3 € L. According to
the Barbalat's lemmae (1), e2(¢), e3(t) — 0 ast — oo. Therefore, the response syst€isynchronize the drive
system(1) by using the adaptive feedback controller.

This completes the proof.O0
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Remark. The proof of Theorem 2has improved the proof in Refl]. Since the Lyapunov functio(iL4) is a
function of variable®1(z), e2(t), e3(¢), (k — k*), we cannot directly dedueg (1), e2(1), e3(t) — 0 ast — oo from
the positive-definite matri®*.
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Fig. 2. The synchronous errors for the atil@feedback synchronization. (&)(r), (b) e2(z), (C) e3(z).
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Fig. 3. The parametei(r) for the adaptive feedback synchronization.
4. Numerical simulations

In this section, some numerical simulations are given to verify the effectiveness of above two kinds of methods.
In all simulations, assume that= 0.8, the initial conditions of drive and response systems(&re, 3) and
(4,5, 6), respectively.

Fig. 1 shows the synchronous errors for linear feedback control method. Obviously, the response and drive
systems cannot realize synchronizationet 4.

Figs. 2, 3display the effectiveness of adaptive feedback control approach, whergé andk(0) = 7. The
synchronous errors are shownHig. 2and the parametén) is displayed irFig. 3.

5. Conclusions

This Letter further investigates the linear feedback synchronization and adaptive feedback synchronization with
only one controller for the unified chaotic system. Especially, since the unified system contains the Lorenz and
Chen systems as special cases, our methods are also valid for the Lorenz and Chen systems. Moreover, our proo
for the adaptive feedback synchronization theorem is rigorous, which improves the proof [A]JRBlumerical
simulations also show the effectiveness of above appesmdturthermore, the adapifeedback synchronization
method with only one controller has widely applicative prospect in secure communication.
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