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Abstract

This paper introduces a systematic method—a hysteresis series switching approach—for generating multi-scroll chaotic attractors from
a three-dimensional linear autonomous system, including 1-D n-scroll, 2-D n × m-grid scroll, and 3-D n × m × l-grid scroll chaotic
attractors. The chaos generation mechanism is studied by analyzing the system trajectories and the hysteresis switching dynamics of
the controlled chaotic systems are explored. Moreover, a two-dimensional Poincar:e return map is rigorously derived. This map and its
maximum Lyapunov exponent are applied to verifying the chaotic behaviors of the generated 3-D multi-scroll chaotic attractors.
? 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Over the last two decades, chaos has been found to be
useful with great potential in many technological disciplines
such as information and computer sciences, biomedical en-
gineering, power systems protection, >ow dynamics and liq-
uid mixing, encryption and communications, etc (Chen &
Dong, 1998). Recently, there has been some increasing inter-
est in exploiting chaotic dynamics for real-world engineer-
ing applications, in which much attention has been focused
on eBectively generating chaos from simple systems by us-
ing simple controllers (Chen & Dong, 1998; Chen, 1999;
L'u, Lu, & Chen, 2002a).
Today, generating n-scroll chaotic attractors is no longer

a diCcult task. Suykens and his colleagues proposed some
eBective methods for generating n-scroll attractors with
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simple circuits (Suykens & Vandewalle, 1993; Yalcin,
Ozoguz, Suykens, & Vandewalle, 2001; Yalcin, Suykens,
Vandewalle, & Ozoguz, 2002). By introducing some addi-
tional breakpoints in the piecewise-linear characteristic of
the nonlinear resistor of Chua’s circuit, they are able to gen-
erate not only numerically but also electronically n-double
scroll chaotic attractors (Suykens & Vandewalle, 1993).
Also, they are able to create a large family of grid-scroll
attractors (Yalcin et al., 2002). Kennedy and his colleagues
have also constructed a class of circuit-independent chaotic
oscillators (Elwakil, Salama, & Kennedy, 2000; Elwakil &
Kennedy, 2000, 2001; Ozoguz, Elwakil, & Salama, 2002).
Along this line, Tang et al. also designed and simulated some
simple sine-function circuits to generate n-scroll chaotic at-
tractors, with circuit realization that can physically produce
up to as many as ten scrolls visible on the oscilloscope
(Tang, Zhong, Chen, & Man, 2001; Zhong, Man, & Chen,
2002). L'u and his colleagues recently presented a switching
piecewise-linear control approach for generating chaotic
attractors with multiple-merged basins of attraction (L'u,
Zhou, Chen, & Yang, 2002b; L'u, Yu, & Chen, 2003).
It is well known that hysteresis can easily generate

chaos (Newcomb & El-Leithy, 1986; Saito, 1990; Saito &
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Nakagawa, 1995; Nakagawa & Saito, 1996; Kennedy &
Kennedy, 1999; Storace, Parodi, & Robatto, 1999; Kataoka
& Saito, 2001; Han, L'u, Yu, Chen, & Feng, 2004). In
fact, it was reported that double-scroll chaotic attractors
can be generated by a second-order analog circuit con-
sisting of only two capacitors, two resistors, one linear
voltage control voltage source (VCVS), and one hysteresis
VCVS (Nakagawa & Saito, 1996). Some hysteresis chaotic
oscillators were introduced lately (Kennedy & Kennedy,
1999). Chaotic hysteresis circuit realization was reported
by Newcomb and El-Leithy (1986), with dynamics and
applications being investigated in some details by Storace
et al. (1999). Moreover, Saito and his colleagues proposed
some higher-dimensional hysteresis chaos generators (Saito,
1990; Saito & Nakagawa, 1995; Kataoka & Saito, 2001).
Very recently, we developed a systematic method for gen-
erating multi-scroll chaotic attractors in a two-dimensional
linear system with hysteresis (Han et al., 2004). These re-
ported results and the need of real-world applications alto-
gether have thus stimulated the present research on generat-
ing complex multi-scroll chaotic attractors by using simple
systems with only lower-order polynomial nonlinearities.
In this paper, a new systematical method is developed for

generating one-directional (1-D) n-scroll, two-directional
(2-D) n×m-grid scroll, and three-directional (3-D) n×m×
l-grid scroll chaotic attractors. A two-dimensional Poincar:e
return map is used to analyze the chaotic behaviors of the
multi-scroll chaotic attractors in a three-dimensional systems
with hysteresis series. Furthermore, the hysteresis switch-
ing dynamics and chaos generation mechanism of the con-
trolled systems are further investigated by a careful analysis
of their trajectories. It should be pointed out that the method
proposed here is completely diBerent from the method sug-
gested in Yalcin et al. (2002). This is because the basic
generator in this paper is the hysteresis function, while the
basic generator in Yalcin et al. (2002) is the stair function.
Especially, hysteresis function and stair function belong to
two diBerent kinds of functions, which have diBerent form-
ing mechanisms.
Note also that there is a substantial diBerence between

the analysis of the 2-D hysteresis system studied by us (Han
et al., 2004) and the 3-D hysteresis system studied here, in
that the latter presents much complex dynamical behaviors.
By proposing the tailored Poincar:e map, we are able to
give rigorous mathematical proofs for the chaotic behav-
iors of the 3-D multi-scroll systems. Moreover, our method
for verifying the chaotic behaviors of the 3-D multi-scroll
systems is completely diBerent from that of the 2-D case
used in Han et al. (2004). That is, we prove the chaotic
behaviors of the 3-D multi-scroll systems in this paper by
constructing a two-dimensional Poincar:e return map. How-
ever, we verify the chaotic behaviors of the 2-D multi-scroll
systems in Han et al. (2004) by analyzing the trajectory
distribution. Furthermore, our method here is generic and in
principle can be used to deal with k-D (k¿ 3) multi-scroll
systems.

The rest of this paper is organized as follows: In Sec-
tion 2, a hysteresis series is introduced and some fun-
damental conditions of chaos generation are discussed
for a given three-dimensional linear autonomous system.
In Section 3, a new systematic method for generating
multi-scroll chaotic attractors, including 1-D n-scroll,
2-D n × m-grid scroll, and 3-D n × m × l-grid scroll
attractors, are presented for a given three-dimensional
linear autonomous system with hysteresis series switch-
ings. The hysteresis switching dynamics of the con-
trolled chaotic systems are further analyzed, and a
two-dimensional Poincar:e return map is rigorously de-
rived for verifying the chaotic behaviors of the multi-scroll
systems, in Section 4. Conclusions are Qnally drawn in
Section 5.

2. Preliminaries

This section introduces the hysteresis series concept
and gives some fundamental conditions for generating
multi-scroll chaotic attractors from a three-dimensional
linear autonomous system.

2.1. Hysteresis series

Consider the following hysteresis function:

h(x) =

{
0 for x ¡ 1;

1 for x ¿ 0;
(1)

where h(x) is switched from 1 to 0 if x reaches the threshold
0 from above and is switched from 0 to 1 if x reaches 1 from
below, as shown in Fig. 1.

De�nition 1. The following function,

h(x; p; q) =
p∑

i=1

h−i(x) +
q∑

i=1

hi(x); (2)

is called a hysteresis series, where p and q are positive
integers, and hi(x) = h(x − i + 1) and h−i(x) =−hi(x).

Fig. 1. Hysteresis function.
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Note that the hysteresis series h(x; p; q) can be recast as
follows:

h(x; p; q) =




−p for x ¡ − p+ 1;

i for
i − 1¡ x ¡ i + 1;

i =−p+ 1; : : : ; q − 1;

q for x ¿ q − 1:

(3)

2.2. Some fundamental conditions for chaos generation

It is well known that chaos is characterized by trajectory
boundedness, continuous spectrum, fractional dimensions,
strange attractors, etc. In this paper we consider the follow-
ing two conditions as the main criteria for chaos genera-
tion: (i) the trajectories of system are bounded; (ii) there are
not any stable ordinary attractors such as stable equilibrium
points or stable limit cycles in the bounded region. Other
factors will be further considered in the near future. Consider
the following three-dimensional linear autonomous system:


ẋ

ẏ

ż


=




0 1 0

0 0 1

−a −b −c







x

y

z


 ≡ A




x

y

z


 ; (4)

where x; y; z are state variables, and a; b; c are real constants.
To generate chaos from the linear system (4), it needs to
design a controller to stretch and fold repeatedly the trajec-
tories of the system. System (4) has a unique equilibrium
point (0; 0; 0) and its corresponding characteristic equation
is

�3 + c�2 + b�+ a= 0: (5)

Denote Tp=b− 1
3 c2, Tq= 2

27 c3− 1
3 bc+a, and �=ac3=27−

b2c2=108 − abc=6 + b3=27 + a2=4. According to the clas-
sical formula of the solution of the cubic equations, solv-

ing Eq. (5) gives �1 = − c
3 +

√
− Tq
2 +

√
� +

√
− Tq
2 − √

�

and �2;3 = − c
3 − 1

2

(√
− Tq
2 +

√
�+

√
− Tq
2 − √

�
)

±
√
3
2 i

(√
− Tq
2 +

√
� −

√
− Tq
2 − √

�
)

≡ � ± �i.

Numerical simulations have shown that the linear system
(4) can generate chaos by using the hysteresis series switch-
ings under the conditions of �1 ¡ 0, � ¿ 0, and � �= 0. That
is, Eq. (5) has a negative eigenvalue and a pair of complex
conjugately eigenvalues with positive real parts. Moreover,
the equilibrium point (0; 0; 0) is a two-dimensionally unsta-
ble saddle point. Therefore, one may assume that

�= ac3

27 − b2c2

108 − abc
6 +

b3

27 +
a2

4 ¿ 0;

�1 =− c
3 +

√
− Tq
2 +

√
�+

√
− Tq
2 −

√
� ¡ 0;

�=− c
3 − 1

2

(√
− Tq
2 +

√
�+

√
− Tq
2 −

√
�

)
¿ 0: (6)

In the following, we present a systematic method for gen-
erating multi-scroll chaotic attractors via hysteresis series
switchings in the linear autonomous system (4).

3. Generating multi-scroll chaotic attractors

This section presents a new systematic method—hystere-
sis series switching approach—for generating multi-scroll
chaotic attractors, including 1-D n-scroll, 2-D n × m-grid
scroll, and 3-D n×m×l-grid scroll, in the linear system (4).
Consider a uniQed hybrid system, which can be regarded as
a linear system with a hysteresis series feedback nonlinear-
ity and is described by

Ẋ = AX + B�(X ); (7)

where X = (x; y; z)T is the state vector, and A is deQned
in (4) and B = −A. Here, one has three diBerent cases as
follows.

3.1. Generating n-scroll chaotic attractors

In the following, a hysteresis series controller is added
to system (4), aiming to generate n-scroll chaotic attractors.
Assume that

�(X ) =




h(x; p1; q1)

0

0


 ; (8)

where u = h(x; p1; q1) is deQned by (3). Obviously, the
equilibrium points of system (7) with controller (8) are all
located along the x-axis, given by

Ox = [−p1; −p1 + 1; : : : ; 0; : : : ; q1 − 1; q1] : (9)

Thus, system (7) with controller (8) has the potential to cre-
ate a (p1 +q1 +1)-scroll chaotic attractor for some suitable
parameters a; b; c. Fig. 2 shows a 7-scroll chaotic attractor

-5 -4 -3 -2 -1 0 1 2 3 4 5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x

y

Fig. 2. A 1-D 7-scroll chaotic attractor.
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of system (7) with controller (8), where a = 0:8, b = 0:72,
c = 0:6, p1 = q1 = 3.
It is noticed that system (7) with controller (8) is a

four-dimensional system of (x; y; z; u) and can be regarded
as a conQguration of (p1 + q1 + 1) three-dimensional linear
systems on (p1 + q1 + 1) subspaces connected one another
via switchings by the hysteresis series h(x; p1; q1). Denote

S−r1 (�) = {�|� ¡ − r1 + 1};

Si(�) = {�|i − 1¡ � ¡ i + 1} for

− r1 + 16 i6 r2 − 1;

Sr2 (�) = {�|� ¿ r2 − 1}: (10)

When � = x, r1 = p1, and r2 = q1, denote Si(x) = Si for
−p16 i6 q1. The subspaces are Vi = { TX |x ∈ Si; u = i},
where−p16 i6 q1 and TX =(x; y; z; u). It is clear that there
exists one and only one equilibrium point in every subspace
Vi(−p16 i6 q1). Moreover, system (7) with controller (8)
is unstable in each subspace Vi, thus the system trajectories
will not stay in any subspace forever.
For a given initial value (x0; y0; z0; u0)∈ Vi, as t → +∞,

the trajectory of system (7) with controller (8) spirally di-
verges around its equilibrium point in subspace Vi; when
the trajectory reaches the boundaries of subspace Vi, it
jumps onto another neighboring subspace Vj (j �= i) hold-
ing (x; y; z) constant, and then continuously to do so. Here,
the switching boundaries are planes rather than lines for
the two-dimensional case. Note that the trajectory will go
through every subspace Vj(−p16 j6 q1). After a long
enough time, the trajectory deQnitely returns to the original
subspace Vi, and then repeats similar motion for inQnitely
many times. As t → +∞, the system changes its dynami-
cal behaviors (folding and stretching dynamics) repeatedly
as the trajectory goes through the (p1 + q1 + 1) regions
alternately and repeatedly. It should be emphasized that the
switching planes of the hysteresis series h(x; p1; q1) play a
key role in creating chaos. Also, it is clear that the switching
mechanics of the controlled system (7) with controller (8)
are more complex than that of the two-dimensional case.

3.2. Generating 2-D n × m-grid scroll chaotic attractors

In this subsection, a hysteresis series controller is added
to system (4) for creating 2-D n × m-grid scroll chaotic
attractors. Suppose that

�(X ) =




h(x; p1; q1)

h(y; p2; q2)

0


 ; (11)

where u= h(x; p1; q1) and v= h(y; p2; q2), both are deQned
by (3). Obviously, system (7) with controller (11) has (p1+
q1 + 1)× (p2 + q2 + 1) equilibrium points located in the x
–y plane, given by

Oxy = {(i; j)| − p16 i6 q1; −p26 j6 q2}: (12)
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Fig. 3. A 2-D 5× 7-grid scroll chaotic attractor.

Thus, for some suitable parameters a; b; c, system (7) with
controller (11) can create a (p1+q1+1)×(p2+q2+1)-scroll
chaotic attractor, called 2-D n×m-grid scroll chaotic attrac-
tor. Fig. 3 shows a 5× 7-grid scroll chaotic attractor, where
a=0:8, b=0:7, c=0:6, p1 = q1 =2, p2 = q2 =3. It is clear
that there are 5 scrolls in the x-direction and 7 scrolls in the
y-direction, as shown in Fig. 3.
Note that system (7) with controller (11) is a Qve-

dimensional system of (x; y; z; u; v) and can be regarded
as a conQguration of (p1 + q1 + 1) × (p2 + q2 + 1) 3-D
linear systems on (p1 + q1 + 1)× (p2 + q2 + 1) subspaces
connected one another via the switchings by the hysteresis
series h(x; p1; q1) and h(y; p2; q2). From (10), when �= y,
r1 = p2, and r2 = q2, denote Sj(y) = Tj for −q26 j6 q2.
Thus, the subspaces are

V(i; j) = { TX |x ∈ Si; y ∈ Tj; u= i; v= j}; (13)

where −p16 i6 q1, −p26 j6 q2, and TX = (x; y; z; u; v).
It is clear that there exists one and only one equilibrium

point in each subspaceV(i; j)(−p16 i6 q1; −p26 j6 q2).
Moreover, the system trajectories will not stay in any sub-
space forever since system (7) with controller (11) is unsta-
ble in every subspace V(i; j). Note that those 2-D n × m-grid
scroll chaotic attractors are generated in exactly the same
way as the 1-D case discussed in the last subsection, except
the directions of the system trajectories are more vertical
here. Similarly, one can design the 2-D n × m-grid scroll
attractors in x–z or y–z direction.

3.3. Generating 3-D n×m×l-grid scroll chaotic attractors

In the following, a hysteresis series controller is added to
system (4) for generating 3-D n × m × l-grid scroll chaotic
attractors. Assume that

�(X ) =




h(x; p1; q1)

h(y; p2; q2)

h(z; p3; q3)


 ; (14)
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Fig. 4. A 3-D 5× 8× 3-grid scroll chaotic attractors: (a) x–y plane; and
(b) y–z plane.

where u= h(x; p1; q1), v= h(y; p2; q2), and w= h(z; p3; q3)
are all deQned by (3). Clearly, system (7) with controller
(14) has (p1 + q1 + 1) × (p2 + q2 + 1) × (p3 + q3 + 1)
equilibrium points, which are given by

Oxyz = {(i; j; k)| − p16 i6 q1; −p26 j6 q2;

− p36 k6 q3}: (15)

Therefore, for some suitable parameters a; b; c, system (7)
with controller (14) can generate a (p1 + q1 + 1)× (p2 +
q2 + 1)× (p3 + q3 + 1)-scroll chaotic attractor, called 3-D
n × m × l-grid scroll chaotic attractor. Fig. 4 shows a 5 ×
8× 3-grid scroll chaotic attractor, where a= 0:8, b= 0:72,
c = 0:66, p1 = q1 = 2, p2 = 3; q2 = 4, p3 = q3 = 1. It is
clear that there are 5 scrolls in the x-direction, 8 scrolls in
the y-direction, and 3 scrolls in the z-direction, as shown in
Fig. 4.
It is noticed that system (7) with controller (14) is a

six-dimensional system of (x; y; z; u; v; w) and can be re-
garded as a conQguration of (p1 + q1 + 1) × (p2 + q2 +
1)× (p3 + q3 + 1) 3-D linear systems on (p1 + q1 + 1)×
(p2 + q2 + 1)× (p3 + q3 + 1) subspaces connected one an-
other via the switchings by the hysteresis series h(x; p1; q1),

h(y; p2; q2), and h(z; p3; q3). According to (10), when �=z,
r1 =p3, and r2 = q3, denote Sk(z) =Uk for −p36 k6 q3.
Then the subspaces are

V(i; j; k) = { TX |x ∈ Si; y ∈ Tj; z ∈ Uk; u= i;

v= j; w = k}; (16)

where −p16 i6 q1, −p26 j6 q2, −p36 k6 q3, and
TX = (x; y; z; u; v; w).
There exists one and only one equilibrium point in

each subspace V(i; j; k)(−p16 i6 q1; −p26 j6 q2;
−p36 k6 q3). Moreover, the system trajectories will not
stay in any subspace forever since system (7) with con-
troller (14) is unstable in every subspace V(i; j; k). These 3-D
n × m × l-grid scroll chaotic attractors are generated in
exactly the same way as 1-D and 2-D cases studied before.
Note that parameters pi; qi(16 i6 3) determine the

numbers of the scrolls in the x; y; z-directions, and the
hysteresis series h(x; p1; q1), h(y; p2; q2), and h(z; p3; q3)
determine the positions of the scrolls. Moreover, one can
arbitrarily design the number and also the position of the
scrolls of the hysteresis controlled chaotic system (7). One
can also rotate the multi-scroll hysteresis chaotic attractors
to any desired orientation in the state space. Note that every
subspace has one and only one equilibrium point, and every
equilibrium point corresponds to one scroll of the chaotic
attractor of the hysteresis controlled system (7). The tra-
jectories of system (7) are repeatedly stretched and folded
in the state space for inQnitely many times via hysteresis
switchings, leading to the appearance of bifurcations and
chaos. Clearly, the dynamical behaviors of each piece of
the system are rather simple and it has an exact analytic
solution in every subspace. However, the dynamical behav-
iors of the entire system become rather complex because of
the hysteresis switchings between subspaces.

Remark 1. In fact, �(X ) in system (7) is a piecewise con-
stant function and �̇ = 0 in every piecewise region. More-
over, the measure of the set for all switching points is zero.
Assume that Y =X −A−1B�, then system (7) becomes sys-
tem (4). That is, in every subregion, system (7) has the same
dynamical behaviors. In essence, the system (7) assembles
the dynamical behaviors of system (4) with diBerent initial
values in diBerent subregion. It is easy to understand that
system (7) has one scroll and one equilibrium point in every
subregion.

4. Hysteresis switching dynamics and Poincar#e return
map

In this section, the switching dynamics of the hysteresis
controlled chaotic system (7) with controllers (8), (11), and
(14) are further investigated. Especially, a two-dimensional
Poincar:e return map is rigorously derived for verifying the
chaotic behaviors of system (7) with controller (8). Assume
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Fig. 5. x–y–u space projection for 1-D 3-scroll hysteresis chaotic attractor.

that (6) holds, so as to guarantee that system (4) has a nega-
tive eigenvalue and a pair of conjugate complex eigenvalues
with positive real parts.

4.1. Hysteresis switching dynamics of system (7) with
controller (8)

Suppose that a; b; c ¿ 0 and p1 =q1 =1. Then system (7)
with controller (8) has a 3-scroll chaotic attractor as shown
in Fig. 5. Clearly, it has three equilibria, located in three
corresponding subspaces: (1; 0; 0; 1)∈ V1; (0; 0; 0; 0)∈ V0;
(−1; 0; 0; −1)∈ V−1, where V1; V0; V−1 are deQned in Sec-
tion 3.1. Note that system (7) with controller (8) has a nat-
ural symmetry under the coordinates transform (x; y; z) →
(−x; −y; −z), which persists for all values of the system
parameters.
The variation of the volume V (t) of a small element,

'V (t) = 'x'y'z, in the state space is determined by the di-
vergence of the >ow:∇V=@ẋ=@x+@ẏ=@y+@ż=@z=−c ¡ 0.
Therefore, system (7) with controller (8) is dissipative in
each subspace.
On each subspace Vi (−16 i6 1), which are deQned in

Section 3.1, the dynamical equation is described by

( Ṫx; Ṫy; Ṫz)T = A( Tx; Ty; Tz)T; (17)

where

( Tx; Ty; Tz)T = (x − 1; y; z)T for TX ∈ V1;

( Tx; Ty; Tz)T = (x; y; z)T for TX ∈ V0;

( Tx; Ty; Tz)T = (x + 1; y; z)T for TX ∈ V−1;

in which TX =(x; y; z; u). Thus, the exact solution of Eq. (17)
is

Tx(t) = A1e�1t + e�t(A2 cos(�t) + A3 sin(�t));

Ty(t) = A1�1e�1t + e�t[(A2�+ A3�) cos(�t)

+ (A3� − A2�) sin(�t)];

Tz(t) = A1�21e
�1t + e�t[(A2�2 + 2A3�� − A2�2) cos(�t)

+ (A3�2 − 2A2�� − A3�2) sin(�t)]; (18)

where

A1 =
(�2 + �2) Tx(0)− 2� Ty(0) + Tz(0)

(�1 − �)2 + �2
;

A2 =
(�21 − 2��1) Tx(0) + 2� Ty(0)− Tz(0)

(�1 − �)2 + �2
;

A3 =
B1 Tx(0)− (�2 − �2 + �21) Ty(0) + (� − �1) Tz(0)

�
[
(�1 − �)2 + �2

] ;

in which B1 = �1�2 − �1�2 − �21�, and �1; �; � are given in
Section 2.2.
Obviously, system (7) with controller (8) has four hys-

teresis switching planes:

M1 ≡ {(x; y; z; u)|x = 0} ∩ V1;

M2 ≡ {(x; y; z; u)|x = 1} ∩ V0;

M3 ≡ {(x; y; z; u)|x =−1} ∩ V0;

M4 ≡ {(x; y; z; u)|x = 0} ∩ V−1

and the corresponding switching rules are as follows:
(i) TX (t+) = (0; y; z; 0)∈ V0 if TX (t) = (0; y; z; 1)∈ M1; (ii)
TX (t+) = (1; y; z; 1)∈ V1 if TX (t) = (1; y; z; 0)∈ M2; (iii)
TX (t+) = (−1; y; z; −1)∈ V−1 if TX (t) = (−1; y; z; 0)∈ M3;
(iv) TX (t+) = (0; y; z; 0)∈ V0 if TX (t) = (0; y; z; −1)∈ M4,
where TX = (x; y; z; u).
Now, deQne four specially grazing surfaces (See Fig. 6):

(i) −−−−−−→A1B1C1D1 is a trajectory in V1 that starts from
A1(0; 0; a1; 1)∈ M1 at t = 0, intersects B1(1; b1; Tb1,
1)∈ { TX |x=1; y ¡ 0} ∈ V1 at t=t1 and C1(1; c1; Tc1; 1)∈
{ TX |x = 1; y ¿ 0} ∈ V1 at t = t2, and Qnally reaches
D1(0; d1; Td1; 1)∈ M1 at t = t3. Since the starting point
A1 lies in the line ẋ = y = 0, the trajectory −−−−−−→A1B1C1D1

grazes M1 at A1. Denote S1 = {−−−−−−→A1B1C1D1|a1 ∈R}.
Obviously, surface S1 grazes the switching plane M1

at z-axis.
(ii) −−−−→A2B2C2 is a trajectory in V0 that starts from

A2(−1; 0; a2; 0)∈ M3 at t=0, intersects B2(0; b2; Tb2; 0)
∈ { TX |x = 0; y ¡ 0} ∈ V0 at t = t4 and reaches
C2(1; c2; Tc2; 0)∈ M2 at t = t5. The trajectory

−−−−→A2B2C2
grazes M3 at A2 since the starting point A2 lies in
the line ẋ = y = 0. Denote S2 = {−−−−→A2B2C2|a2 ∈R}.
Clearly, surface S2 grazes the switching plane M3 at
line M3 ∩ {y = 0}.

(iii)
−−−−→
A′
2B

′
2C

′
2 is a trajectory in V0 that starts from

A′
2(1; 0; a

′
2; 0)∈ M2 at t = 0, intersects B′

2(0; b
′
2; Tb

′
2,

0)∈ { TX |x = 0; y ¿ 0} ∈ V0 at t = t6 and reaches
C′
2(−1; c′

2; Tc
′
2; 0)∈ M3 at t = t7. The trajectory

−−−−→
A′
2B

′
2C

′
2

grazes M2 at A′
2 since the starting point A′

2 lies in the
line ẋ=y=0. Denote S ′

2={−−−−→
A′
2B

′
2C

′
2|a′

2 ∈R}. Obviously,
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Fig. 6. Trajectories switching of the hysteresis controlled system (7) with controller (8).

Fig. 7. Hysteresis phase space.

surface S ′
2 grazes the switching plane M2 at line M2 ∩

{y = 0}.
(iv) −−−−−−→A3B3C3D3 is a trajectory in V−1 that starts from

A3(0; 0; a3; −1)∈ M4 at t = 0, intersects B3(−1; b3;
Tb3; −1)∈ { TX |x = −1; y ¿ 0} ∈ V−1 at t = t8 and
C3(−1; c3; Tc3; −1)∈ { TX |x=−1; y ¡ 0} ∈ V−1 at t= t9,
and Qnally reaches D3(0; d3; Td3; −1)∈ M3 at t = t10.
Note that the starting point A3 lies in the line ẋ=y=0,
then the trajectory −−−−−−→A3B3C3D3 grazes M3 at A3. De-
note S3 = {−−−−−−→A3B3C3D3|a3 ∈R}. Obviously, surface S3
grazes the switching plane M3 at z-axis.

Based on the above four grazing surfaces and the four
switching planes, deQne a special region of trajectories by

/ = /1 ∪ /2 ∪ /3;

where /1 is a region in V1 surrounded by S1 and M1, /2 is
a region in V0 surrounded by S2; S ′

2; M2 and M3, and /3 is a
region in V−1 surrounded by S3 and M4.
Note that all parameters bi; Tbi; ci; Tci (16 i6 3), di; Tdi (i=

1; 3), and b′
2; Tb

′
2; c

′
2; Tc

′
2 can be regarded as functions of a; b; c

for the given initial points A1; A2; A′
2; A3, and can be precisely

calculated by using the exact solution (18) and the arriving
time ti (16 i6 10). Moreover, B1 and B3, C1 and C3, D1

and D3, B2 and B′
2, C2 and C′

2 are symmetrical. Denote

P1 = {(b1; Tb1)|a1 ∈R}; N1 = {(c1; Tc1)|a1 ∈R};

P2 = {(b2; Tb2)|a2 ∈R}; N2 = {(b′
2; Tb

′
2)|a′

2 ∈R};

P3 = {(b3; Tb3)|a3 ∈R}; N3 = {(c3; Tc3)|a3 ∈R}
and T1 is a region in V1 ∩{x=1} surrounded by P1 and N1,
T2 is a region in V0 ∩ {x= 0} surrounded by P2 and N2, T3
is a region in V−1 ∩ {x =−1} surrounded by P3 and N4.
It is noticed that regions T1 and T3 are symmetrical. Ac-

cording to the switching rules and the exact analytic solution
(18), one has the following conclusion: / is an invariant
set if the parameters a; b; c of system (7) with controller (8)
satisfy

(0; d1(a; b; c; a1); Td1(a; b; c; a1); 0)∈ T2

and

(1; c2(a; b; c; a2); Tc2(a; b; c; a2); 1)∈ T1;

where a1 ∈R and a2 ∈R. In fact, all trajectories started from
any point in / will remain in / as shown in Fig. 6. That is,
/ is an invariant set. Although the switching rules are very
simple, the generated trajectories are rather complex.
In the following, a two-dimensional Poincar:e return map

is rigorously derived for verifying the chaotic behaviors of
the 3-scroll attractor shown in Fig. 7.
Consider a trajectory started from a point (0; y0; z0; 0)∈ V0

at t = 0. According to the solution (18), if there are not
switchings in the boundaries M2 and M3, it must reach M2

and M3 at the positive times ta and tb separately. Here, ta
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and tb are the Qrst arriving time. Let (1; y1; z1; 0)∈ M2 be the
hit point. Then one can get the arriving time ta, y1 and z1
by using the exact solution (18). Similarly, for the hit point
(1; y′

1; z
′
1; 0)∈ M3, one can get the arriving time tb, y′

1 and
z′
1. In the following, Qrst deQne a region by

H0 = {(0; y; z; 0)∈ V0 | ta ¡ tb}: (19)

Also, consider a trajectory started from a point (1; y0; z0; 1)∈
V1 at t = 0. Due to (18), it must reach M1 at some positive
time tc. Let (0; Ty 1; Tz1; 1)∈ M1 be the hit point. Then one
can get the arriving time tc, Ty 1 and Tz1, by using the exact
solution (18). Thus, deQne the following region:

H1 = {(1; y; z; 1)∈ V1 | (0; Ty 1; Tz1; 0)∈ H0}: (20)

Now, consider the vector Qeld in V1. Let Er be the eigenspace
corresponding to the real eigenvalue �1 and let Ec be the
eigenspace corresponding to the complex eigenvalues �±�i.
They are described by Er = {(x; y; z)|�21(x − 1) = �1y =
z; x ¿ 0}; Ec={(x; y; z)|(�2+�2)(x−1)−2�y+z=0; x ¿ 0}.
Denote 41 =V1 ∩ {x=1}; 42 =V0 ∩ {x=0}; 43 =V−1 ∩

{x=−1}. Consider a trajectory started from an initial point
(1; y0; z0; 1)∈ H1 at t = 0. According to (18), it must reach
the switching plane M1 at some positive time t1, as shown
in Fig. 7. In fact, since �1 ¡ 0, the trajectory will tend to
eigenspace Ec and spirally diverge at the eigenspace Er

with a positive exponential rate e�t . Let (0; y1; z1; 1) be the
hit point. From the switching rule and (20), the trajectory
jumps onto H0 ⊂ 42 holding y1; z1 constant. That is, the
hit point is (0; y1; z1; 0)∈ H0. Then, according to (19) and
(20), the trajectory must reach the switching plane M2 at
some positive time t2, as displayed in Fig. 7. Let (1; y2; z2; 0)
be the hit point. From the switching rule, this trajectory
jumps onto 41 holding y2; z2 constant. Thus, the hit point is
(0; y2; z2; 0)∈ 41.
On the other hand, consider a trajectory started from a

point (1; y0; z0; 1)∈ 41 − H1 at t = 0. According to (18), it
must reach the switching plane M1 at some positive time t1.
Let (0; y1; z1; 1) be the hit point. According to the switching
rule and (20), this trajectory jumps onto 42 − H0 holding
y1; z1 constant. That is, the hit point is (0; y1; z1; 0)∈ 42 −
H0. Due to (19), the trajectory must reach the switching
plane M3 at some positive time t3, as shown in Fig. 7. Let
(−1; y3; z3; 0) be the hit point. According to the switching
rule, this trajectory jumps onto 43 holding y3; z3 constant.
Thus, the hit point is (−1; y3; z3; −1)∈ 43. Notice the sym-
metry of the vector Qeld in both V1 and V−1 Then, a tra-
jectory started from (−1; y3; z3; −1) in V−1 is symmetric to
that started from (1; −y3; −z3; 1) on 41 in V1. Now, one can
deQne a two-dimensional Poincar:e return map by

f : 41 → 41;

(y0; z0) →
{
(y2; z2) for (y0; z0)∈ H0;

(−y3; −z3) for (y0; z0)∈ TH 0;
(21)

where TH 0 = 41 − H0.
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Fig. 8. Poincar:e mapping at section y = 0 of the 3-scroll hysteresis
system (7).

Clearly, one can get the rigorously mathematical formu-
lation for this map by using the exact solution (18), as fol-
lows: (i) when Tx0 =0; Ty 0 =y0; Tz0 = z0; t= t1, we get Tx(t1)=
−1; Ty(t1)=y1; Tz(t1)=z1; (ii) when Tx0=0; Ty 0=y1; Tz0=z1; t=
t2− t1, we have Tx(t2− t1)=1; Ty(t2− t1)=y2; Tz(t2− t1)= z2;
(iii) when Tx0 = 0; Ty 0 = y1; Tz0 = z1; t = t3 − t1, we get
Tx(t3 − t1) =−1; Ty(t3 − t1) = y3; Tz(t3 − t1) = z3.
In actual calculations, one can use numerical methods,

such as the Newton–Raphson method, to solve the equa-
tions. Moreover, the Jacobian matrix of this map f is de-
scribed by

Df =







@y2
@y0

@y2
@z0

@z2
@y0

@z2
@z0


 for (y0; z0)∈ H0

−




@y3
@y0

@y3
@z0

@z3
@y0

@z3
@z0


 for (y0; z0)∈ TH 0:

(22)

Remark 2. Now, one can calculate the Lyapunov exponents
�1; �2(�1¿ �2) of the Poincar:e map f (Chen and L'u, 2003)
by using the methods described in L'u et al. (2002a,b). In
fact, one can get the exact mathematical formulations for
�1; �2 from (22). However, the formulations are rather com-
plex. In real calculations, one can use numerical methods
discussed in L'u et al. (2002a,b) to calculate �1; �2. When
0¡ �1 ¡ + ∞, system (7) with controller (8) is chaotic.
Fig. 5 shows a 3-scroll hysteresis chaotic attractor, and its
maximum Lyapunov exponent is �1 = 0:0284¿ 0. Fig. 8
shows its Poincar:e mapping at section y = 0.
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Table 1
The detailed values for 6; 7, and A

i j 6 7 A 8

1 1 0 y y¿ 0 M1
1 1 x 0 x¿ 0 N1
0 1 1 y y¿ 0 M2
0 1 −1 y y¿ 0 N2
0 1 x 0 −16 x6 1 P2

−1 1 0 y y¿ 0 M3
−1 1 x 0 x6 0 N3
1 0 0 y −16 y6 1 M4
1 0 x 1 x¿ 0 N4
1 0 x −1 x¿ 0 P4
0 0 1 y −16 y6 1 M5

0 0 −1 y −16 y6 1 N5
0 0 x 1 −16 x6 1 P5
0 0 x −1 −16 x6 1 Q5

−1 0 0 y −16 y6 1 M6
−1 0 x 1 x6 0 N6
−1 0 x −1 x6 0 P6
1 −1 0 y y6 0 M7

1 −1 x 0 x¿ 0 N7
0 −1 1 y y6 0 M8
0 −1 −1 y y6 0 N8
0 −1 x 0 −16 x6 1 P8

−1 −1 0 y y6 0 M9
−1 −1 x 0 x6 0 M9

4.2. Hysteresis switching dynamics of system (7) with
controller (11)

This subsection brie>y discusses the hysteresis switching
dynamics of system (7) with controller (11). Suppose that
p1 = q1 = p2 = q2 = 1. Then system (7) with controller
(11) has a 3×3-grid scroll chaotic attractor, which has nine
equilibria, located in nine corresponding subspaces:

(i; j; 0; i; j)∈ V(i; j) for − 16 i; j6 1

where V(i; j)(−16 i; j6 1) are deQned by (13). Note that
system (7) with controller (11) has a natural symmetry under
the coordinates transform (x; y; z) → (−x; −y; −z), which
persists for all values of the system parameters.
Similarly, one can get the exact solution (18) of the hys-

teresis controlled system (7) with controller (11), where

( Tx; Ty; Tz)T = (x − i; y − j; z)T for TX ∈ V(i; j);

in which TX = (x; y; z; u; v) and −16 i; j6 1. DeQne the
switching planes of the nine subspaces, V(i; j)(−16 i; j6 1),
as follows:

V(i; j) : 8 ≡ {(6; 7; z; i; j)|A};

where 6; 7, and A are listed in Table 1.

Thus, the switching rules are obtained as

V(1;1) : TX (t+)∈ V(0;1) ∩ {x = 0} if TX (t)∈ M1;

TX (t+)∈ V(−1;1) ∩ {y = 0} if TX (t)∈ N1;

V(0;1) : TX (t+)∈ V(1;1) ∩ {x = 1} if TX (t)∈ M2;

TX (t+)∈ V(−1;1) ∩ {x =−1} if TX (t)∈ N2;

TX (t+)∈ V(0;0) ∩ {y = 0} if TX (t)∈ P2;

V(−1;1) : TX (t+)∈ V(0;1) ∩ {x = 0} if TX (t)∈ M3;

TX (t+)∈ V(−1;0) ∩ {y = 0} if TX (t)∈ N3;

V(1;0) : TX (t+)∈ V(0;0) ∩ {x = 0} if TX (t)∈ M4;

TX (t+)∈ V(1;1) ∩ {y = 1} if TX (t)∈ N4;

TX (t+)∈ V(0;−1) ∩ {y =−1} if TX (t)∈ P4;

V(0;0) : TX (t+)∈ V(1;0) ∩ {x = 1} if TX (t)∈ M5;

TX (t+)∈ V(−1;0) ∩ {x =−1} if TX (t)∈ N5;

TX (t+)∈ V(0;1) ∩ {y = 1} if TX (t)∈ P5;

TX (t+)∈ V(0;−1) ∩ {y =−1} if TX (t)∈ Q5;

V(−1;0) : TX (t+)∈ V(0;0) ∩ {x = 0} if TX (t)∈ M6;

TX (t+)∈ V(−1;1) ∩ {y = 1} if TX (t)∈ N6;

TX (t+)∈ V(−1;−1) ∩ {y =−1} if TX (t)∈ P6;

V(1;−1) : TX (t+)∈ V(0;−1) ∩ {x = 0} if TX (t)∈ M7;

TX (t+)∈ V(1;0) ∩ {y = 0} if TX (t)∈ N7;

V(0;−1) : TX (t+)∈ V(1;−1) ∩ {x = 1} if TX (t)∈ M8;

TX (t+)∈ V(−1;−1) ∩ {x =−1} if TX (t)∈ N8;

TX (t+)∈ V(0;0) ∩ {y = 0} if TX (t)∈ P8;

V(−1;−1) : TX (t+)∈ V(0;−1) ∩ {x = 0} if TX (t)∈ M9;

TX (t+)∈ V(−1;0) ∩ {y = 0} if TX (t)∈ N9;

where TX = (x; y; z; u; v), holding x; y; z constant during the
switching.
Similarly, one can derive a condition for chaos genera-

tion with an n × m-grid scroll attractor by constructing a
two-dimensional Poincar:e return map.

4.3. Hysteresis switching dynamics of system (7) with
controller (14)

In this subsection, the hysteresis switching dynamics of
system (7) with controller (14) are brie>y discussed. As-
sume that p1 =q1 =p2 =q2 =p3 =q3 =1. Then system (7)
with controller (14) has a 3 × 3 × 3-grid scroll chaotic at-
tractor, which has 27 equilibria, located in 27 corresponding
subspaces:

(i; j; k; i; j; k)∈ V(i; j; k) for − 16 i; j; k6 1;
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where V(i; j; k)(−16 i; j; k6 1) are deQned in Section 3.3.
Obviously, system (7) with controller (14) has a natu-
ral symmetry under the coordinates transform (x; y; z) →
(−x; −y; −z), which persists for all values of the system
parameters.
It is easily to get the exact solution (18) of the hysteresis

system (7) with controller (14), where

(X; Y; Z)T = (x − i; y − j; z − k)T for TX ∈ V(i; j; k);

in which TX = (x; y; z; u; v; w) and −16 i; j; k6 1.
Similarly, one can deQne the switching planes and switch-

ing rules for the hysteresis system (7) with controller (14).
Also, a two-dimensional Poincar:e return map can be derived
to prove the chaotic behaviors for system (7) with controller
(14) with an n × m × l-grid scroll attractor. However, the
process is similar but rather complex, and hence its omitted
here.

5. Conclusions

In this paper, we have introduced a systematic method
for generating multi-scroll chaotic attractors, including 1-D
n-scroll, 2-D n×m-grid scroll, and 3-D n×m× l-grid scroll
attractors, from a three-dimensional linear autonomous sys-
tem with hysteresis series switchings. The hysteresis switch-
ing dynamics and chaos generation mechanism have also
been investigated by analyzing the system trajectories. In
particular, a two-dimensional Poincar:e return map is rig-
orously derived for verifying the chaotic behaviors of the
generated multi-scroll attractors. It is foreseeable that the
hysteresis-series multi-scroll systems studied here will have
wide applications in real-world engineering, where they can
be used as novel chaotic generators.
Note that one can obtain a desired number of scrolls and

their spatial positions and orientations using the developed
methodology for some intended engineering applications.
Future research will be conducted along the line of design-
ing physical electronic circuit to verify experimentally the
multi-scroll chaotic attractors (Cafagna & Grassi, 2003).
On the other hand, understanding the hysteresis switching
dynamics and the relative bifurcation analysis also deserve
further investigation in the near future.
Finally, it should be noted that our theoretical analysis

method developed here is generic and can be extended to
the studies of k-D (k¿ 3) multi-scroll chaotic systems
(n¿ 3). For example, lower-dimensional Poincar:e return
maps for higher-dimensional multi-scroll chaotic systems
(n¿ 3) may be similarly constructed and their Lyapunov
exponents can also be calculated. For visualization of
multi-scroll attractors (n¿ 3), we may also observe vari-
ous projections on 2-D planes and 3-D subspaces for k-D
(k¿ 3) multi-scroll attractors.
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