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Abstract

In this Letter, an approach of adaptive synchronization and parameters identification of uncertain Réssler hyperchaotic system
is proposed. The suggested tool proves to be globally and asymptotically stable by means of Lyapunov method. With this new
and effective method, parameters identification and synchronization of Réssler hyperchaotic with all the system parameters
unknown, can be achieved simultaneously. Theoretical proof and numerical simulation demonstrate the effectiveness and
feasibility of the proposed technique.
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1. Introduction another identical system, which is considered as the
slave (or response) system, the aim is to force the re-
sponse of the slave system to synchronize the master
system [3]. Great efforts have been devoted to achiev-
ing this goal in the last few years and a large variety of
approaches has been proposed, such as sampled-data

Since its introduction by Pecora and Carrol in
1990 [1], chaos synchronization has received increas-
ing attention due to its theoretical challenge and its
great potential applications in secure communication, AL , )
chemical reaction, biological systems and so on [2]. feedback synchronization method [4], impulsive con-

Basically, chaos synchronization problem can be for- troI. method_[5], adaptive design method [6], and in-
mulated as follows. Given a chaotic system, which V&riant manifold method [7], among many others (see

is considered as the master (or driving) system, and [8-11] and references therein).
However, to our best knowledge, the aforemen-

tioned methods and many other existing synchroniza-
* Corresponding author. tion methods main_ly concern thg synchronization of
E-mail addresscshwhu@163.com (S. Chen). chaotic systems with low-dimensional attractor, char-
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acterized by one positive Lyapunov exponent. This of a1, such that the controlled slave system
feature limits the complexity of the chaotic dynam- .

(oo, 1t fa bolioved that the ehaotic systems with higher- =/ (re) +U ©)
dimensional attractor have much wider application. In could be synchronous with the master system (1), and
fact, the adoption of higher-dimensional chaotic sys- the paramete&; approachesta, i.e.,

tems has been proposed for secure communication and lim (x, —xg) =0

the presence of more than one positive Lyapunov ex- i—+oo ’

ponent clearly improves security of the communica- Ilim (¢1 —«) =0.

tion scheme by generating more complex dynamics. ’_>+°_° . )
Moreover, most of the developed methods are valid ~ >nce the description of the general case is rather
only for the chaotic systems whose parameters are pre-MeSSY and uneasy, at least in notations, to facilitate
cisely known. But in practical situation, some system’s 1€ description and discussion, we use Rossler hyper-
parameters cannot be exactly known in priori, the ef- Chaotic system as an example.

fect of these uncertainties will destroy the synchro-
nization and even break it. Therefore, synchronization
of hyperchaotic systems in the presence of unknown
parameters is essential.

In this Letter, a novel parameters identification
and synchronization method is proposed for Rdssler
hyperchaotic system with all the system parameters
unknown based upon adaptive control. By this method,
one can achieve hyperchaotic synchronization and
identify the unknown parameters simultaneously.

3. Identification and synchronization of uncertain
Rossler hyperchaotic system

Rossler hyperchaotic system was provided by Réss-
ler in describing dynamics of some hypothetical chem-
ical reaction and is a first example of hyperchaotic
system with two positive Lyapunov exponents. The
nonlinear differential equations that describe Rdssler
hyperchaotic system are

X=-y—z,
2. Problem formulation ?=X+ay+w, @
z=b+xz,

Hyperchaotic systems are defined as having more ' ¥ = —¢z+dw.

than one positive Lyapunov exponent, that is, they are Which has a hyperchaotic attractor when= 0.25,
unstable in more than one direction. We consider the =3, ¢ = 0.5, d = 0.05 [12]. For convenience, we

master hyperchaotic system in the form of denoted the master Rdssler hyperchaotic system as

. Xm = R(Xpn), 5

= f e, ) m Xm) ®)
which stands for

wherex, € R" is the state vector of the systemge
R™ is the parameter vectof. € CL(R" x R™, R") is
nonlinear function. The slave system is given by

Xm = —Ym — Zm,
Ym = Xm + aYm + Wi,
Zm =b+ Xmm,
$r = f (o7, 1), (2 Wm=—cin Fdum. |
The slave Rdssler hyperchaotic system has the same
which has the same structure as the master system bustructure as the master system but the system parame-
the parameter vector; € R™ is completely unknown,  ters are unknown, we denote it as
or uncertain. In practical situation, the output signals . A
of the master system (1) can be received by the slave™s = R(Xs), ©)
system (2), but the parameter vector of the master which stands for
system (1) may not be known a priori, even waits for ( x; = —ys — z5,
identifying. Therefore, the goal of control is to design Vs = Xs +ays + wy,
and implement an appropriate controller for the te= b+ xyz;,

slave system and a parameter adaptive estimation law Wy = —8zs + dw.
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In this section, a systematic design process of syn- Theorem 1. For Réssler hyperchaotic systdi®) with
chronization and identification of uncertain Réssler system parameters satisfying the conditied?c +

hyperchaotic system is provided. dea+dcPa—c—2c?—c3+0,if o =5sXy) = k1xp, +
koym + k3zm + kawm — xpzm and glo — s(Xs)) =
3.1. Nonadaptive design based upon nonlinear afs(Xm) — s(X)], then the dynamical system
observer
Xs =R(Xs)+g(0_s(xs)) (10)

In the case that the state signals and system para-is a global observer of Réssler hyperchaotic system
meters are available, there are many synchronization (5). Wherea = (0,0, —1, 0)" and k= (kq, k2, k3, ka)
method. We use the method based upon nonlinear ob-is the feedback gain vector properly selected.
server to synchronize Rassler hyperchaotic system. In-
formally, an observer is a dynamical system designed Proof. With the selection of output = s(x,,) and the
to be driven by the output of another dynamical sys- mapg, the error system of (10) and (5) becomes linear
tem. More precisely, for a given dynamical system and time-invariant, and can be expressed as

f0 = f(xa) ) &= Ae— ake, (11)

where e= (eq, e2, €3, €4) = (X5 — X, Ys — Ym, Zs —

with outputo = s(x,) € R*, the dynamical system
p ( d) y Y I Wy — wm)‘r and

%= f )+ g(o—s(xr)) (8) 0 -1 -1 0
is said to be a nonlinear observer of system (7}, if A= é 66 % %
converges tory ast — oo, whereg: R¥ — R" is a 0 0 —c d

suitable chosen function. Moreover, system (8) is said

to be a global observer of system (7)if converges ~ System (11) could be written in the form

to x4 ast — oo for any initial conditionsy, (0), x4 (0)

[13,14]. Obviously, system (8) is a (global) observer

of system (7) if the error system whereu = —ke plays the role of a state feedback. On
the other hand, the matrix

é=Ae+au, (12)

e=f(x) = fxa) +g(s(xa) = s(x)))

[a, Aa, Aza, A?’a]
= f(xa+e) — f(xa) + g(s(xa) — s(xa +€))

0 1 0 —-1—c¢
=h(e,1) 9 | 0 0 1+c¢ a(l+c)+cd
. A . -1 0 O 0
has a (global) asymptotically stable equilibrium point 0 ¢ cd cd?

e =0, wheree = x, — x4. It is known that control

theory offers us no general method to choose a outputis full rank because dgt, Aa, A%a, ASa] = —d?c +

0 =s(xq) € R¥ and a functiorg : R¥ — R" suchthat  dca + dc?a — ¢ — 2¢> — ¢3 # 0, so the single-
the nonlinear and nonautonomous system (9) has ainput dynamic system (12) is controllable, i.e., all the
(global) asymptotically stable equilibrium point= 0. eigenvalues are controllable. Thus, we can select an
In addition, it is worth noting that, the output signal appropriate feedback gain vector k such that system
o = s(x4) is an artificial output of the system which (11) is globally asymptotically stable at zero, that is
can be properly designed to feed the nonlinear map dynamical system (10) is a global observer of Rossler
g:RF — R". Since the adoption of a scalar signal hyperchaotic system (5). We prove the theorem as
is a suitable feature for practical applications, it is desired. O

better to assume that = s(x;) € R. Owing to the

simple structure of the Rdssler hyperchaotic system,  For instance, if the system parameters- 0.25,

we can design the observer with a scalar outpst b =3, c =05, d =0.05 with the selection of
s(xq) € R. feedback gain vector ¥ (—3.3712 —0.9561, 4.300,
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—5.8126, the eigenvalues of system (11) are dynamical system
—1.0647+0.0657i,—0.9353+0.0636i. So, from The-
orem 1, we choost = g(o — s(X,) as above, the con-
trolled Réssler hyperchaotic system

é1=—e1—e2— ez,

é2=e1—e2+ea+ (4 —a)ym,

é3=e1—ez+Cea+b—b,

b4 =—ep—lez—eq— (¢ —)zm + (d — d)wy,.
(15)

Xs=R(X;) +U

is synchronous with Rdssler hyperchaotic system (5). Consider a Lyapunov function as

P 1.5 = 5 =
3.2. Adaptive synchronization and identification Vi(ea,b,c,d)=V (e + _(az +0%+ 3+ d?),

2 —

The controller designed in Section 3.1 requires - whereV (e) = 2(61 + 62 + e3 ey anda=d-a,
the knowledge of the system parameters. However, ” _.b -bc=¢i-q d = d — d. Taking the time
in many practical situations, it is difficult to exactly derivative ofVi(e,a, b, ¢, d) along the trajectories of
determine the values of the system parameters inthe error dynamical system (15) leads to
advance. The effects of these uncertainties will destroy V1
the synchronization and even break it. Therefore, dt
adaptive synchronization of the ch_aotic system in th(_a F E(—zmeq+ 40) + d(wpea + 4('3)
presence of unknown parameter is essential. To this

= —2V(©) + a(yme2 + 44) + b(e3 + 4b)

end, we have the following theorem. =2V (e). (16)
Slnce Vl(e a,b,¢,d) is a positive definite function
Theorem 2. With the controlletU = (u1, u2, uz, us) = and 1 is a negative semi-definite function, it follows
—o0 + s(Xs), whereo = s(Xm) = (—xm, —(@ ~+ Lyym, that the equilibrium points; =0 (i = 1,2,3,4),a =
Xm — Zm + CWm — X Zms — (Cj + Dwy), and the a, b=0>b, ¢ =c,d=d of the system (13) and (15)
parameters adaptive Iaws of b, ¢, d as below are uniformly stable, i.eg; () € Lo (i =1,2,3,4),

G €Loo,b€Loo, ¢ € Loo,d € Loo. From (16) we can

4= —ymen, easily show that the square af(r) (i =1,2,3,4) is
5— e integrable with respect to time, i.ez;(t) € Lo (i =
.o (13) 1,2,3,4). In addition, system (15) implies;(¢) €
C=2zmes, Lo (i =1,2,3,4) for any initial conditions, which
d=—wyea in turn implies e;(t) — 0 (i = 1,2,3,4) as t —

400 [15]. Furthermore, from the error system, one
can easily see that;(¢) is bounded(i = 1,2, 3, 4),
thus by basic calculus method one can arrive at
the result lim_ 1+ ¢; () =0 (i = 1,2, 3,4), which
together with the above result implies the conclusion
(14) of Theorem 2. The proof is completex

then the controlled uncertain Réssler hyperchaotic
system

Xy = —Ys — s T U1,

Vs = Xg +ays + wy +uz,
Zg = 8 + X525 +u3,

Wy = —¢z5 +dwy + ug It should be noted that unlike most existing adap-
tive synchronization methods, our adaptive synchro-
nization method cannot only achieve synchronization
but also identify the system parameters as well.

is synchronous with the master syst@yand satisfies

lim (4 —a)= ,ﬂToo(’s —b) = tﬂrpoo(é —0)

t——+00
= lim (d—d)=0.
H+oo( ) 4. Numerical smulation
Proof. According to the drive system (5) and the In order to verify the effectiveness of the proposed

controlled response system (14), we get the error method, let the master signals are from Rdssler hy-
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Fig. 1. Graphs of synchronization errors varying with timg(s) = xs(t) — xpn(2), e2(t) = ys(t) — ym(2), e3(t) = z5(t) — zm (1),
eq(t) = ws (1) — wy (1).
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Fig. 2. Graphs of parameters identification results.d&), (b): b, (c): ¢(x), (d): ).
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perchaotic system (5) with system parameters
0.25, b = 3, ¢ = 0.5, d = 0.05 and initial con-
dition (—20,0, 0, 15). Suppose initial condition of
the controlled Rdssler hyperchaotic system (14) is
(5.0, 7.0,9.0, 11.0) and the unknown parameters have
zero initial conditions. Numerical simulation shows

that parameters identification and adaptive synchro-

nization are achieved successfully. Figs. 1 and 2 dis-
play the results.

5. Conclusion
In this Letter, we introduce an adaptive synchro-

nization and parameters identification method for
Rossler hyperchaotic system with all the system pa-

rameters unknown. With this method one can achieve

synchronization and parameters identification simulta-
neously. Lyapunov direct method is used to prove the
stability of the method. Numerical experiment shows
the effectiveness of the proposed method.
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