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Abstract

In this Letter, an approach of adaptive synchronization and parameters identification of uncertain Rössler hyperchao
is proposed. The suggested tool proves to be globally and asymptotically stable by means of Lyapunov method. With
and effective method, parameters identification and synchronization of Rössler hyperchaotic with all the system pa
unknown, can be achieved simultaneously. Theoretical proof and numerical simulation demonstrate the effective
feasibility of the proposed technique.
 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Since its introduction by Pecora and Carrol
1990 [1], chaos synchronization has received incre
ing attention due to its theoretical challenge and
great potential applications in secure communicat
chemical reaction, biological systems and so on
Basically, chaos synchronization problem can be
mulated as follows. Given a chaotic system, wh
is considered as the master (or driving) system,
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another identical system, which is considered as
slave (or response) system, the aim is to force the
sponse of the slave system to synchronize the ma
system [3]. Great efforts have been devoted to ach
ing this goal in the last few years and a large variety
approaches has been proposed, such as sampled
feedback synchronization method [4], impulsive co
trol method [5], adaptive design method [6], and
variant manifold method [7], among many others (
[8–11] and references therein).

However, to our best knowledge, the aforem
tioned methods and many other existing synchron
tion methods mainly concern the synchronization
chaotic systems with low-dimensional attractor, ch
.
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acterized by one positive Lyapunov exponent. T
feature limits the complexity of the chaotic dynam
ics. It is believed that the chaotic systems with high
dimensional attractor have much wider application
fact, the adoption of higher-dimensional chaotic s
tems has been proposed for secure communication
the presence of more than one positive Lyapunov
ponent clearly improves security of the communi
tion scheme by generating more complex dynam
Moreover, most of the developed methods are v
only for the chaotic systems whose parameters are
cisely known. But in practical situation, some system
parameters cannot be exactly known in priori, the
fect of these uncertainties will destroy the synch
nization and even break it. Therefore, synchroniza
of hyperchaotic systems in the presence of unkno
parameters is essential.

In this Letter, a novel parameters identificati
and synchronization method is proposed for Rös
hyperchaotic system with all the system parame
unknown based upon adaptive control. By this meth
one can achieve hyperchaotic synchronization
identify the unknown parameters simultaneously.

2. Problem formulation

Hyperchaotic systems are defined as having m
than one positive Lyapunov exponent, that is, they
unstable in more than one direction. We consider
master hyperchaotic system in the form of

(1)ẋd = f (xd,α),

wherexd ∈ Rn is the state vector of the system,α ∈
Rm is the parameter vector.f ∈ C1(Rn × Rm,Rn) is
nonlinear function. The slave system is given by

(2)ẋr = f (xr,α1),

which has the same structure as the master system
the parameter vectorα1 ∈Rm is completely unknown
or uncertain. In practical situation, the output sign
of the master system (1) can be received by the s
system (2), but the parameter vector of the ma
system (1) may not be known a priori, even waits
identifying. Therefore, the goal of control is to desi
and implement an appropriate controllerU for the
slave system and a parameter adaptive estimation
t

of α1, such that the controlled slave system

(3)ẋr = f (xr,α1)+U

could be synchronous with the master system (1),
the parameterα1 approaches toα, i.e.,

lim
t→+∞(xr − xd)= 0,

lim
t→+∞(α1 − α)= 0.

Since the description of the general case is ra
messy and uneasy, at least in notations, to facili
the description and discussion, we use Rössler hy
chaotic system as an example.

3. Identification and synchronization of uncertain
Rössler hyperchaotic system

Rössler hyperchaotic system was provided by Rö
ler in describing dynamics of some hypothetical che
ical reaction and is a first example of hyperchao
system with two positive Lyapunov exponents. T
nonlinear differential equations that describe Rös
hyperchaotic system are

(4)




ẋ = −y − z,

ẏ = x + ay +w,

ż= b+ xz,

ẇ = −cz+ dw,

which has a hyperchaotic attractor whena = 0.25,
b = 3, c = 0.5, d = 0.05 [12]. For convenience, w
denoted the master Rössler hyperchaotic system a

(5)ẋm =R(xm),

which stands for


ẋm = −ym − zm,

ẏm = xm + aym +wm,

żm = b+ xmzm,

ẇm = −czm + dwm.

The slave Rössler hyperchaotic system has the s
structure as the master system but the system par
ters are unknown, we denote it as

(6)ẋs = R̂(xs),

which stands for


ẋs = −ys − zs,

ẏs = xs + âys +ws,

żs = b̂+ xszs,

ˆ
ẇs = −ĉzs + dws.
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In this section, a systematic design process of s
chronization and identification of uncertain Röss
hyperchaotic system is provided.

3.1. Nonadaptive design based upon nonlinear
observer

In the case that the state signals and system p
meters are available, there are many synchroniza
method. We use the method based upon nonlinea
server to synchronize Rössler hyperchaotic system
formally, an observer is a dynamical system desig
to be driven by the output of another dynamical s
tem. More precisely, for a given dynamical system

(7)ẋd = f (xd)

with outputo= s(xd) ∈Rk , the dynamical system

(8)ẋr = f (xr)+ g
(
o− s(xr )

)

is said to be a nonlinear observer of system (7), ifxr
converges toxd as t → ∞, whereg :Rk → Rn is a
suitable chosen function. Moreover, system (8) is s
to be a global observer of system (7) ifxr converges
to xd ast → ∞ for any initial conditionsxr(0), xd(0)
[13,14]. Obviously, system (8) is a (global) observ
of system (7) if the error system

ė= f (xr)− f (xd)+ g
(
s(xd)− s(xr)

)

= f (xd + e)− f (xd)+ g
(
s(xd)− s(xd + e)

)

(9)= h(e, t)

has a (global) asymptotically stable equilibrium po
e = 0, wheree = xr − xd . It is known that control
theory offers us no general method to choose a ou
o = s(xd) ∈ Rk and a functiong :Rk → Rn such that
the nonlinear and nonautonomous system (9) ha
(global) asymptotically stable equilibrium pointe= 0.
In addition, it is worth noting that, the output sign
o = s(xd) is an artificial output of the system whic
can be properly designed to feed the nonlinear m
g :Rk → Rn. Since the adoption of a scalar sign
is a suitable feature for practical applications, it
better to assume thato = s(xd) ∈ R. Owing to the
simple structure of the Rössler hyperchaotic syst
we can design the observer with a scalar outputo =
s(xd) ∈R.
-

Theorem 1. For Rössler hyperchaotic system(5) with
system parameters satisfying the condition−d2c +
dca+dc2a− c−2c2− c3 �= 0, if o= s(xm)= k1xm+
k2ym + k3zm + k4wm − xmzm and g(o − s(xs)) =
α[s(xm)− s(xs)], then the dynamical system

(10)ẋs =R(xs )+ g
(
o− s(xs)

)

is a global observer of Rössler hyperchaotic sys
(5). Whereα = (0,0,−1,0)� and k= (k1, k2, k3, k4)

is the feedback gain vector properly selected.

Proof. With the selection of outputo= s(xm) and the
mapg, the error system of (10) and (5) becomes lin
and time-invariant, and can be expressed as

(11)ė=Ae− αke,

where e= (e1, e2, e3, e4) = (xs − xm,ys − ym, zs −
zm,ws −wm)

� and

A=



0 −1 −1 0
1 a 0 1
0 0 0 0
0 0 −c d


 .

System (11) could be written in the form

(12)ė=Ae+ αu,

whereu= −ke plays the role of a state feedback.
the other hand, the matrix
[
α,Aα,A2α,A3α

]

=



0 1 0 −1− c

0 0 1+ c a(1+ c)+ cd

−1 0 0 0
0 c cd cd2




is full rank because det[α,Aα,A2α,A3α] = −d2c +
dca + dc2a − c − 2c2 − c3 �= 0, so the single-
input dynamic system (12) is controllable, i.e., all t
eigenvalues are controllable. Thus, we can selec
appropriate feedback gain vector k such that sys
(11) is globally asymptotically stable at zero, that
dynamical system (10) is a global observer of Rös
hyperchaotic system (5). We prove the theorem
desired. ✷

For instance, if the system parametersa = 0.25,
b = 3, c = 0.5, d = 0.05, with the selection o
feedback gain vector k= (−3.3712,−0.9561,4.300,
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−5.8126), the eigenvalues of system (11) a
−1.0647±0.0657i,−0.9353±0.0636i.So, from The-
orem 1, we chooseU = g(o− s(xs) as above, the con
trolled Rössler hyperchaotic system

ẋs =R(xs)+U

is synchronous with Rössler hyperchaotic system (

3.2. Adaptive synchronization and identification

The controller designed in Section 3.1 requi
the knowledge of the system parameters. Howe
in many practical situations, it is difficult to exact
determine the values of the system parameter
advance. The effects of these uncertainties will des
the synchronization and even break it. Therefo
adaptive synchronization of the chaotic system in
presence of unknown parameter is essential. To
end, we have the following theorem.

Theorem 2. With the controllerU = (u1, u2, u3, u4)=
−o + s(xs), whereo = s(xm) = (−xm,−(â + 1)ym,
xm − zm + ĉwm − xmzm,−ym − (d̂ + 1)wm), and the
parameters adaptive laws ofâ, b̂, ĉ, d̂ as below

(13)




˙̂a = −yme2,

˙̂
b= −e3,
˙̂c= zme4,

˙̂
d = −wme4

then the controlled uncertain Rössler hyperchao
system

(14)




ẋs = −ys − zs + u1,

ẏs = xs + âys +ws + u2,

żs = b̂+ xszs + u3,

ẇs = −ĉzs + d̂ws + u4

is synchronous with the master system(5) and satisfies

lim
t→+∞(â − a)= lim

t→+∞(b̂− b)= lim
t→+∞(ĉ− c)

= lim
t→+∞(d̂ − d)= 0.

Proof. According to the drive system (5) and th
controlled response system (14), we get the e
dynamical system

(15)




ė1 = −e1 − e2 − e3,

ė2 = e1 − e2 + e4 + (â − a)ym,

ė3 = e1 − e3 + ĉe4 + b̂− b,

ė4 = −e2 − ĉe3 − e4 − (ĉ− c)zm + (d̂ − d)wm.

Consider a Lyapunov function as

V1(e, ã, b̃, c̃, d̃)= V (e)+ 1

2

(
ã2 + b̃2 + c̃2 + d̃2),

whereV (e) = 1
2(e

2
1 + e2

2 + e2
3 + e2

4) and ã = â − a,

b̃ = b̂ − b, c̃ = ĉ − c, d̃ = d̂ − d . Taking the time
derivative ofV1(e, ã, b̃, c̃, d̃) along the trajectories o
the error dynamical system (15) leads to

dV1

dt
= −2V (e)+ ã(yme2 + 4˙̂a)+ b̃(e3 + 4˙̂

b)

+ c̃(−zme4 + 4˙̂c)+ d̃(wme4 + 4 ˙̂
d)

(16)= −2V (e).

SinceV1(e, ã, b̃, c̃, d̃) is a positive definite function
and dV1

dt
is a negative semi-definite function, it follow

that the equilibrium pointsei = 0 (i = 1,2,3,4), â =
a, b̂ = b, ĉ = c, d̂ = d of the system (13) and (15
are uniformly stable, i.e.,ei(t) ∈ L∞ (i = 1,2,3,4),
â ∈L∞, b̂ ∈ L∞, ĉ ∈ L∞, d̂ ∈L∞. From (16) we can
easily show that the square ofei(t) (i = 1,2,3,4) is
integrable with respect to time, i.e.,ei(t) ∈ L2 (i =
1,2,3,4). In addition, system (15) implieṡei(t) ∈
L∞ (i = 1,2,3,4) for any initial conditions, which
in turn implies ei(t) → 0 (i = 1,2,3,4) as t →
+∞ [15]. Furthermore, from the error system, o
can easily see thaẗei(t) is bounded(i = 1,2,3,4),
thus by basic calculus method one can arrive
the result limt→+∞ ei(t) = 0 (i = 1,2,3,4), which
together with the above result implies the conclus
of Theorem 2. The proof is complete.✷

It should be noted that unlike most existing ada
tive synchronization methods, our adaptive synch
nization method cannot only achieve synchroniza
but also identify the system parameters as well.

4. Numerical simulation

In order to verify the effectiveness of the propos
method, let the master signals are from Rössler
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Fig. 1. Graphs of synchronization errors varying with time.e1(t) = xs (t) − xm(t), e2(t) = ys(t) − ym(t), e3(t) = zs(t) − zm(t),
e4(t)=ws(t)−wm(t).

Fig. 2. Graphs of parameters identification results. (a):â(t), (b): b̂(t), (c): ĉ(t), (d): d̂(t).
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perchaotic system (5) with system parametersa =
0.25, b = 3, c = 0.5, d = 0.05 and initial con-
dition (−20,0,0,15). Suppose initial condition o
the controlled Rössler hyperchaotic system (14
(5.0,7.0,9.0,11.0) and the unknown parameters ha
zero initial conditions. Numerical simulation show
that parameters identification and adaptive synch
nization are achieved successfully. Figs. 1 and 2
play the results.

5. Conclusion

In this Letter, we introduce an adaptive synch
nization and parameters identification method
Rössler hyperchaotic system with all the system
rameters unknown. With this method one can achi
synchronization and parameters identification simu
neously. Lyapunov direct method is used to prove
stability of the method. Numerical experiment sho
the effectiveness of the proposed method.
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