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Abstract

L€uu attractor is a new chaotic attractor, which connects the Lorenz attractor and Chen attractor and represents the

transition from one to the other. An effective observer is produced to identify the unknown parameters of L€uu system.

Moreover, a linear feedback control strategy is proposed for controlling uncertain L€uu system. Numerical simulations

show the effectiveness and feasibility of the proposed controllers.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The research on controlling chaos has seen a dramatic increase over the last decade [1,2]. Chaos control, in a broader

sense, can be divided into two categories: one is to suppress the chaotic dynamical behavior and the other is to generate

or enhance chaos in nonlinear systems [1,2] (known as chaotification or anti-control of chaos).

Recently, different techniques and methods [1–9] have been proposed to achieve chaos control. For instance, OGY

method [3], linear state space feedback [4], backstepping design method [5], differential geometric method [6], inverse

optimal control [7], sampled-data feedback control [8] and adaptive control [9], among many others [1–3].

However, for uncertain dynamical systems, many of the aforementioned methods will fail, where uncertain means

that some parameters of system are unknown. An interesting problem in chaos control is how to achieve linear control

of uncertain chaotic systems. This problem involves the identification of the unknown parameters and the techniques of

chaos control. This letter applies the linear feedback techniques to controlling chaos in L€uu system [10–12]. The effective

observers are provided to identify the unknown parameters of L€uu system. Then the simple feedback functions are

designed for controlling L€uu system. Also, the proposed method can enable the controlled L€uu system to approach any

desired points or periodic orbits. Computer simulations are given for illustrating the effectiveness of the approach.

2. System description

In 1963, Lorenz found the first canonical chaotic attractor [13], which has just been mathematically confirmed to

exist [14]. In 1999, Chen found another similar but topologically not equivalent chaotic attractor [15], as the dual of the

Lorenz system, in a sense defined by Van�ee�ccek and �CCelikovsk�yy [16]: The Lorenz system satisfies the condition a12a21 > 0

while Chen system satisfies a12a21 < 0, where a12, a21 are the corresponding elements in the constant matrix A ¼ ðaijÞ3�3

for the linear part of the system. Very recently, L€uu and Chen found a new chaotic system [10–12], bearing the name of

the L€uu system (as named for convenience by others [17,18]), which satisfies the condition a12a21 ¼ 0, thereby bridging

the gap between the Lorenz and Chen attractors [11,12]. The new chaotic system is described by
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_xx ¼ aðy � xÞ;
_yy ¼ �xzþ cy;

_zz ¼ xy � bz;

8>><
>>: ð1Þ

which has a chaotic attractor as shown in Fig. 1 when a ¼ 36, b ¼ 3, c ¼ 20.

It is very interesting to develop control techniques which can drive a strange attractor of uncertain system not only

to an equilibrium point but also a periodic orbit. For convenience, we assume that the parameters b and c of system (1)

are unknown. Moreover, we add two control inputs to the first and second equations, respectively. Thus the controlled

system becomes:

_xx ¼ aðy � xÞ þ u1;

_yy ¼ �xzþ cy þ u2;

_zz ¼ xy � bz:

8>><
>>: ð2Þ

3. Identification of the unknown parameters

In this section, the observers are provided to identify the unknown parameters b and c of the L€uu system.

Definition. For a system R, reconstruct a new system Rg, and use the observable variable of original system R, such as

output vector y and input vector u, as its input signal, make its output signal x̂xðtÞ equivalent with the status vector xðtÞ of
R under a certain index. Then the system Rg is called as observer.

For the uncertain L€uu system, since parameter c is unknown, then we do not know the relevant dynamical infor-

mation about the parameter c. However, we can attain the output vector ðx; y; zÞ. In the following, we devise an observer

that can identify the unknown parameter c. Note that c is a constant, thus

_cc ¼ 0: ð3Þ

Since the unknown parameter c can act as a status variable, the system (1) can be augmented by Eq. (3). From

system (1), we get cy ¼ xzþ _yy. Then we can design the following observer

_̂cĉcc ¼ �F ðyÞyĉcþ F ðyÞðxzþ _yyÞ; ð4Þ

where F ðyÞ is a gain function. Let

e ¼ c� ĉc; ð5Þ

Fig. 1. L€uu chaotic attractor.
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then according to Eqs. (3) and (4), we get

_eeðtÞ ¼ _cc� _̂cĉcc ¼ �F ðyÞyeðtÞ: ð6Þ

Thus we can select a gain function F ðyÞ so that the system

_eeðtÞ þ F ðyÞyeðtÞ ¼ 0;

is exponentially asymptotically stable for all y. That is, for t ! 1, ĉcðtÞ converges to cðtÞ with exponential rate. Ob-

viously, the gain function F ðyÞ ¼ ky satisfies above condition. Then we have

_eeðtÞ þ ky2eðtÞ ¼ 0; ð7Þ

where k > 0 determines the convergence rate. In fact, _yy is hard to observe, so the observer (4) is of no use. We introduce

an auxiliary variable

d1 ¼ ĉc� PðyÞ; ð8Þ

where P ðyÞ is a design function and satisfies F ðyÞ ¼ dP ðyÞ=dy.
From (8), we get

_dd1 ¼ _̂cĉcc� dP ðyÞ
dy

_yy ¼ �F ðyÞyd1 þ F ðyÞðxz� yPðyÞÞ ð9Þ

and

ĉc ¼ d1 þ PðyÞ: ð10Þ

Obviously, if the design function PðyÞ can drive the system

_eeðtÞ þ dPðyÞ
dy

yeðtÞ ¼ 0;

exponentially asymptotically stable, then for t ! 1, ĉcðtÞ will converge to cðtÞ with exponential rate. Therefore, the

observers (9) and (10) can identify the unknown parameter c of system (1), where F ðyÞ is a gain function and PðyÞ a

design function satisfying dP ðyÞ=dy ¼ F ðyÞ.
Note that the observers (9) and (10) only rely on the second equation of system (1). That is, when the structures of

the first and third equations of system (1) or the parameters a and b are varied, the results of the identification are not

changed. Hence, the observers have strong robustness. If P ðyÞ ¼ ky2=2, the observers become

_dd1 ¼ �ky2d1 þ kxyz� k2y4

2
;

ĉc ¼ d1 þ ky2

2
:

(
ð11Þ

Similarly, in order to identify parameter b, we devise the following observers

_dd2 ¼ �kd2 þ k2 ln zþ kxy
z ;

b̂b ¼ d2 � k ln z:

(
ð12Þ

4. Linear feedback control

In this section, we present our main results concerning a new and simple control technique, which can drive the

trajectories of the controlled uncertain L€uu system to approach any target points or periodic orbits.

Firstly, we apply the observers (11) and (12) to identify the unknown parameters b and c of system (1). Therefore, we

get b ¼ b̂b and c ¼ ĉc.
For any x0 near the chaotic attractor, according to the ergodic property of chaotic orbits, L€uu system can reach the

point x ¼ x0, but will not stay at x ¼ x0 without further control. In order to stabilize L€uu system at x ¼ x0, the control

inputs must satisfy the stable condition:

dx
dt

¼ dy
dt

¼ dz
dt

¼ 0:
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Let the control inputs u1 and u2 be both linear, in the following form

u1 ¼ �ay � ajx0jðx� x0 � signðx0ÞÞ;
u2 ¼ x� ðĉcþ 1Þy;

�
ð13Þ

thus the controlled system (2) becomes

_xx ¼ �ax� ajx0jðx� x0 � signðx0ÞÞ;
_yy ¼ x� xz� y;

_zz ¼ xy � b̂bz:

8><
>: ð14Þ

Obviously, the system (14) has a unique equilibrium point S0ðx0; b̂bx0=ðb̂bþ x20Þ; x20=ðb̂bþ x20ÞÞ.
It can be easily verified that the Jacobian matrix AðS0Þ of system (14) is

AðS0Þ ¼

�a� ajx0j 0 0
b̂b

b̂bþx2
0

�1 �x0
b̂bx0
b̂bþx2

0

x0 �b̂b

0
BB@

1
CCA; ð15Þ

whose characteristic equation is

ðk þ aþ ajx0jÞ½k2 þ ðb̂bþ 1Þk þ b̂bþ x20� ¼ 0:

Since the three characteristic roots have negative real part, the unique equilibrium point S0 is stable.

Combining (11) and (12), we attain the control law of the controlled system (2) with unknown parameters b and c

u1 ¼ �ay � ajx0jðx� x0 � signðx0ÞÞ;
u2 ¼ x� ðĉcþ 1Þy;
_dd1 ¼ �ky2d1 þ kxyz� k2y4

2
;

ĉc ¼ d1 þ ky2

2
;

_dd2 ¼ �kd2 þ k2 ln zþ kxy
z ;

b̂b ¼ d2 � k ln z;

8>>>>>>>>>>><
>>>>>>>>>>>:

ð16Þ

where k > 0 is a control constant.

Therefore, under the feedback control inputs (16), L€uu system with unknown parameters b and c will approach the

target point S0.

Similarly, in order to guide the controlled system (2) to reach an arbitrary point x ¼ x1; y ¼ y1, let the linear con-

troller be

u1 ¼ �ay � ajx1jðx� x1 � signðx1ÞÞ;
u2 ¼ x� ðĉcþ 1Þy � jdjðy � y1 � signðdÞÞ;

(
ð17Þ

where d ¼ �x1 þ y1 þ ðx21y1=b̂bÞ.
So that the controlled system (2) becomes

_xx ¼ �ax� ajx1jðx� x1 � signðx1ÞÞ;
_yy ¼ x� xz� y � jdjðy � y1 � signðdÞÞ;
_zz ¼ xy � b̂bz:

8><
>: ð18Þ

Obviously, the system (18) has unique equilibrium point S1ðx1; y1; x1y1=b̂bÞ. And the corresponding characteristic

equation of system (18) is

ðk þ aþ ajx1jÞ½k2 þ ð1þ b̂bþ jdjÞk þ b̂bþ x21 þ b̂bjdj� ¼ 0;

then the unique steady state S1 is stable.

Considering (11) and (12), we get the control technique of the controlled system (2) with unknown parameters b
and c
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u1 ¼ �ay � ajx1jðx� x1 � signðx1ÞÞ;
u2 ¼ x� ðĉcþ 1Þy � jdjðy � y1 � signðdÞÞ;
_dd1 ¼ �ky2d1 þ kxyz� k2y4

2
;

ĉc ¼ d1 þ ky2

2
;

_dd2 ¼ �kd2 þ k2 ln zþ kxy
z ;

b̂b ¼ d2 � k ln z;

8>>>>>>>>>><
>>>>>>>>>>:

ð19Þ

where k > 0 is a control constant.

Hence, under the action of feedback control input (19), L€uu system with unknown parameters b and c can quickly

approach to target point S1.

Next, in order to guide the trajectories of the controlled uncertain L€uu system to approach any target periodic orbits,

we assume that x1 and y1 are periodic functions. Let

x1 ¼ r cosxt; y1 ¼ r sinxt ð20Þ

and

u1 ¼ �ay � arj cosxtjðx� r cosxt � signðcosxtÞÞ;
u2 ¼ x� ðĉcþ 1Þy � jdjðy � r sinxt � signðdÞÞ;
_dd1 ¼ �ky2d1 þ kxyz� k2y4

2
;

ĉc ¼ d1 þ ky2

2
;

_dd2 ¼ �kd2 þ k2 ln zþ kxy
z ;

b̂b ¼ d2 � k ln z;

8>>>>>>>>>><
>>>>>>>>>>:

ð21Þ

where d ¼ ðr3 sin 2xt cosxt=2b̂bÞ þ r sinxt � r cosxt, and k > 0 is a control constant.

Under the feedback control inputs (21), we can easily prove that the uncertain L€uu system will approach to the target

periodic orbit

x1 ¼ r cosxt; y1 ¼ r sinxt; z ¼ r2 sin 2xt

2b̂b
: ð22Þ

This kind of periodic orbit is called ‘‘periodic harmonic oscillation’’ which usually is not embedded in a chaotic

attractor. It is just a nice regular periodic motion, harmonic motion, which has no relation with chaos in general.

In practice, the feedback controller (21) can easily be realized. We can devise a outer oscillator, which produces

periodic sine signal. Using the periodic signal of this oscillator as control input signals, we can guide the L€uu system with

unknown parameters b and c to stabilize at the periodic orbit (22).

5. Simulations

In this section, numerical simulations are given to verify the effectiveness of the observers (11), (12) and the control

applicability of the proposed control laws (16), (19) and (21).

In all simulations, we assume a ¼ 36, k ¼ 0:8, initial conditions xð0Þ ¼ 1:0, yð0Þ ¼ �0:5, zð0Þ ¼ 1:5, and the time step

size h ¼ 0:001 s. The fourth order Runge–Kutta method is used to solve differential equations, such as (14) and (18).

Fig. 2 shows the effectiveness of the observers (11) and (12). We investigate the effectiveness of observers under the

action of without external force and external force f ¼ 5 when t ¼ 45 s, respectively.

Fig. 3 shows the better control applicability of the proposed control technique (16) for different x0. It indicates that

the controlled system (2) can reach target point ðx0; b̂bx0=ðb̂bþ x20Þ; x20=ðb̂bþ x20ÞÞ within 1.7 s for two different x0.
Fig. 4 displays the better control applicability of the provided control method (19) for different x1, y1. It indicates

that the controlled system (2) can reach target point ðx1; y1; x1y1=b̂bÞ within 2.2 s for two different x1, y1.
Fig. 5 shows the better control applicability of the presented control law (21) for different r, x. It indicates that:

• For different r, x, the controlled system (2) can quickly approach periodic orbits within 2p=x s. The period is

T ¼ 2p=x, which is not distinctly dependent on orbits;

• With the increasing of parameter r, the controlled system (2) will more quickly approach to target periodic orbits. It

may be the reason that the feedback control signal becomes more stronger with the increasing of parameter r;
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• For 0:15 < r < 1, the controlled system (2) can stabilize at periodic orbits. For r ! 0, the controlled system (2) is

unstable at periodic orbit. It may be the reason that the feedback control signal becomes relatively weaker;

• For r > 1 and 0:03 < x < 120, the projected orbits on the x–y plane will evolve from round to ellipse.

Numerical simulations confirm our theoretical analysis. However, a little difference between the theoretical analysis

and numerical simulation, we think, may be caused by the relatively stronger feedback control signal.

Fig. 2. The identification results of L€uu system: (a) the identification of b under without external force; (b) the identification of c under

external force f ¼ 5 when t ¼ 45 s.

Fig. 3. Approach target points: (a) x0 ¼ 20; S0ð20; 0:1489; 0:9926Þ; (b) x0 ¼ �5, S0ð�5;�0:5357; 0:8929Þ.

Fig. 4. Approach target points: (a) x1 ¼ 15, y1 ¼ 20, S0ð15; 20; 100Þ; (b) x1 ¼ �5, y1 ¼ 5, S0ð�5; 5;�8:3333Þ.
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6. Conclusion

An effective control technique has been produced to guide the trajectories of uncertain L€uu system to approach any

target points or periodic orbits. Compared with existing other chaos control laws, this controller can identify unknown

parameters and approach any desired targets or periodic orbits in a short time. Furthermore, the targets of controlling

chaos can be deduced beforehand. Especially, this technique combines the identification of unknown parameters with

linear feedback control method to control uncertain chaotic system.

It should be pointed out that although this paper focuses mainly on the control of uncertain L€uu system, we believe

that the better control applicability of the proposed control law can justify the practical application of the proposed

method to some other complex uncertain dynamical systems.
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