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This paper introduces a new practical method for distinguishing chaotic, periodic and quasi-
periodic orbits based on a new criterion, and apply it to investigate the local bifurcations of the
Chen system. Conditions for supercritical and subcritical bifurcations are obtained, with their
parameter domains specified. The analytic results are also verified by numerical simulation
studies.
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1. Introduction

Chaos has been extensively studied by scientists,
physicists and mathematicians for more than three
decades. Recently, this study has evolved from the
traditional trend of understanding and analyzing
chaos to the new intention of controlling and utiliz-
ing it, especially within the engineering community
[Chen & Dong, 1998; Wang & Chen, 2000; Lü et al.,
2002c].

Lorenz found the first canonical chaotic attrac-
tor in 1963 [Lorenz, 1963; Stewart, 2000], and Chen
found another similar but topologically nonequiva-
lent chaotic attractor in 1999 [Chen & Ueta, 1999;
Ueta & Chen, 2000]. It has recently been proven

that the Chen system is dual to the Lorenz sys-
tem, in a sense defined by Vanĕc̆ek and C̆elikovský
[1996]: The Lorenz system satisfies the condi-
tion a12a21 > 0 while the Chen system satisfies
a12a21 < 0, where aij are elements of the constant
system matrix of their linear parts, A = [aij ]3×3.
Very recently, Lü and Chen found a new chaotic
system [Lü & Chen, 2002], which satisfies the con-
dition a12a21 = 0 and represents the transition be-
tween the Lorenz and the Chen attractors [Lü et al.,
2002a].

Over the last two years, there are some de-
tailed investigations and studies of the Chen sys-
tem [Agiza & Yassen, 2001; C̆elikovský & Chen,
2002; Chang et al., 2000; Lü & Zhang, 2001;
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Lü et al., 2002b, 2002d; Sanchez et al., 2000; Ueta
& Chen, 2000a, 2000b; Wang, 1999; Yang & Yang,
2000; Yu & Xia, 2001; Zhong & Tang, 2002]. It
has been found that the Chen attractor has a com-
pound structure by merging together two simple
attractors after performing a mirror operation [Lü
et al., 2002d]. This paper further studies the local
bifurcation of the Chen system. Conditions of su-
percritical and subcritical bifurcations are derived
and their parameter domains are specified. Finally,
numerical simulations are carried out, which verify
the theoretical results.

2. Dynamical Analysis of the Chen
System Using a New Method

In this section, we introduce a new practical
method for distinguishing chaotic, periodic and
quasi-periodic orbits based on the so-called comple-
mentary-cluster energy-barrier criterion (CCEBC)
[Xue, 1999], and then apply it to investigate the
local bifurcative behaviors of the Chen system.

The Chen system is described by
ẋ = a(y − x) ,
ẏ = (c− a)x− xz + cy ,

ż = xy − bz ,
(1)

which has a chaotic attractor as shown in Fig. 1
when a = 35, b = 3, c = 28.

Consider the first and second equations of the
Chen system:{

ẋ = a(y − x) ,
ẏ = (c− a)x− xz + cy ,

(2)

where z is considered as a known function of the
time variable t.
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Fig. 1. The Chen chaotic attractor (a = 35, b = 3, c = 28).
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Fig. 2. The phase portrait of system (3). (a) z < 2c − a;
(b) 2c − a < z < 2c − a + [(a − c)2/4a]; (c) z > 2c − a +
[(a− c)2/4a].
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When t = t0, system (2) is a two-dimensional linear
system with constant coefficients. So its dynamical
behavior is very simple and, in fact, is global.

Obviously, for z 6= 2c−a, the origin (0, 0) is the
only equilibrium of system (2). Linearizing this sys-
tem about its equilibrium (0, 0) gives the following
characteristic equation:

f(λ) = λ2 + (a− c)λ+ a(z − 2c+ a) = 0 . (3)

It can be observed that

(1) For a > 0, when z < 2c − a, the two eigenval-
ues satisfy λ1 > 0 > λ2, so the only equilibrium
(0, 0) is a saddle point in the two-dimensional
plane. The solution curve in the x–y plane is
shown in Fig. 2(a), where the direction of ar-
row is the direction of the orbit as t increases.
When t goes to infinity, only two orbits go to
the origin, and the other orbits go to infinity
along two different directions.

(2) When 2c−a < z < 2c−a+[(a−c)2/4a], Eq. (3)
has two different negative real roots. The only

equilibrium (0, 0) is a node. The solution curve
in the x–y plane is shown in Fig. 2(b), where
the direction of arrow is the direction of the or-
bit as t increases. When t goes to infinity, all
but two orbits go to infinity along two different
directions.

(3) When z > 2c−a+[(a−c)2/4a], Eq. (3) has two
complex conjugate eigenvalues with a negative
real part. The only equilibrium (0, 0) is a focus.
The solution curve in the x–y plane is shown in
Fig. 2(c), where the direction of arrow is the di-
rection of the orbit as t increases. When t goes
to infinity, all orbits spiral into the origin.

Now, let us take a closer look at the dynam-
ical behaviors of the Chen system (1). In all the
simulations here, for any given initial conditions
x(0) = x0, y(0) = y0, z(0) = z0, the time step
size h = 0.001, parameter a = 35, b = 3, c = 28,
and the time series x(t), y(t), z(t) are generated by
the fourth-order Runge–Kutta algorithm. Figure 3
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Fig. 3. The chaotic time series of z(t) (a = 35, b = 3, c = 28).
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shows the correlation between the time variable t
and the function z(t).

It can be seen that when t → ∞, the orbit
z(t) goes through the straight lines z = 2c− a and
z = 2c − a + [(a − c)2/4a] alternatively, and re-
peatedly for many times. The z-axis is partitioned
into three disjoint domains: (−∞, 2c− a), (2c− a,
2c − a+ [(a − c)2/4a]) and (2c − a+ [(a − c)2/4a],
+∞), by the two straight lines z = 2c − a and
z = 2c− a+ [(a− c)2/4a].

System (2) has different dynamical behaviors in
the above three different domains. When t → ∞,
system (1) changes the dynamical behavior and z(t)
goes through these domains repeatedly, leading to
complex dynamics such as the appearance of bifur-
cations and chaos.

It is notable that system (2) is a time-
dependent system when z(t) is varying in time.
From Fig. 3, we can see that system (1) (or sys-
tem (2)) is chaotic, where the function z(t) goes

through the straight lines z = 2c − a and z =
2c − a + [(a − c)2/4a], alternatively. Furthermore,
the time-delay when z(t) goes through the straight
line z = 2c − a or the straight line z = 2c − a+
[(a−c)2/4a] are not the same and are not distinctly
related to one another, but it is different from a
periodic orbit. However, the time-delay when z(t)
goes through the straight line z = 2c − a itself (or
z = 2c−a+[(a− c)2/4a] itself) is always the same.
These can be seen from Fig. 4. For quasi-period,
the time-delay when z(t) goes through the straight
line z = 2c − a itself (or z = 2c − a+ [(a − c)2/4a]
itself) is not the same but distinctly related to one
another, that is, there is a multiple correlation to
one another.

In summary, we have presented a new practi-
cal method for distinguishing chaotic, periodic and
quasi-periodic orbits in this section. In this method,
we first select a subsystem of the original sys-
tem, then analyze the dynamical behaviors of this
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Fig. 4. The periodic time series of z(t) (a = 35, b = 3, c = 30).
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subsystem in a lower-dimensional space, and finally
analyze the dynamical behaviors of the whole sys-
tem based on this subsystem.

3. Linear Stability Analysis

Regarding the basic dynamical behaviors of the
Chen system (1), studied in [Ueta & Chen, 2000],
we have the following observations.

Lemma 1

(i) If a > 2c, then system (1) has only one real
steady state, S0(0, 0, 0);

(ii) If a < 2c, then system (1) has three real steady
states: S−(−x0, −y0, z0), S0(0, 0, 0), S+(x0,
y0, z0), where x0 = y0 =

√
b(2c− a) and z0 =

2c− a.

Lemma 2

(i) If a > 2c, then the steady state S0(0, 0, 0) of
system (1) is asymptotic stable;

(ii) If a < 2c, then the steady state S0(0, 0, 0) of
system (1) is a saddle point;

(iii) If a < 2c and (a + b − c)c − 2a(2c − a) > 0,
then the system steady states S− and S+ are
all stable.

In fact, linearizing system (1) about the equi-
libria S− or S+ yields the following characteristic
equation:

f(λ) = λ3+(a+b−c)λ2+bcλ+2ab(2c−a) = 0 . (4)

Obviously, the two equilibria S± have the same sta-
bility. Let

A = a+ b− c ,
B = bc ,

C = 2ab(2c− a) .
(5)

Then the Routh–Hurwitz conditions lead to the
conclusion that the real parts of the roots λ are
negative if and only if

a+ b− c > 0 , 2ab(2c − a) > 0

and (a+ b− c)c− 2a(2c − a) > 0.
Note that the coefficients of the cubic poly-

nomial (4) are all positive. Therefore, f(λ) > 0
for all λ > 0. Consequently, there is instability
(Re(λ) > 0) only if there are two complex conju-
gate zeros of f . Let these two zeros be λ1 = iω and

λ2 = −iω for some real ω. Since the sum of the
three zeros of the cubic f is

λ1 + λ2 + λ3 = −(a+ b− c) ,

we have λ3 = −(a+ b− c), which is on the margin
of stability, where λ1,2 = ±iω. On this margin,

0 = f(−(a+ b− c)) = b[c2 + (3a− b)c− 2a2] ,

that is,

c1,2 =
(b− 3a)±

√
17a2 − 6ab+ b2

2
.

Figure 5 shows the maximum Lyapunov expo-
nent of system (1), where parameters a, b are fixed.
When a = 2c, system (1) has a simple zero eigen-
value while the other two eigenvalues have a nonzero
real part. This leads to a pitchfork bifurcation,
which happens on the a = 0 line of the c–a plane,
as shown in Fig. 6.
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Fig. 5. Maximum Lyapunov exponent of system (1).

Fig. 6. Sketch of the pitchfork bifurcation diagram.
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Hopf bifurcation may appear only at the steady
states S− or S+. Due to the symmetry of S−
and S+, it suffices to analyze the stability of S+.
According to Lemma 2, S+ loses stability when
(a+ b− c)c − 2a(2c− a) = 0, that is,

b =
c2 + 3ac− 2a2

c
= b0 . (6)

Obviously, if (a/2) < c < (
√

17 − 3)a/2, then
b0 < 0, and Hopf bifurcation does not appear. Hopf
bifurcation may appear only under the condition of
c > [(

√
17− 3)a/2].

When b = b0, the stability of the steady state
S+ is analyzed by linearizing the system (1) at S+.
Under the linear transform

ξ = x− x0 ,

η = y − y0 ,

ζ = z − z0 ,

(7)

system (1) becomes

dξ

dt
= a(η − ξ) ,

dη

dt
= −cξ + cη − x0ζ − ξζ ,

dζ

dt
= x0ξ + x0η − bζ + ξη .

(8)

Its Jacobian matrix A(S+) is

A+ ≡ A(S+) =

−a a 0

−c c −x0

x0 x0 −b

 , (9)

and its corresponding characteristic equation is

λ3 + (a+ b− c)λ2 + bcλ+ 2ab(2c − a) = 0 . (10)

Lemma 3. If a < 2c and b = b0, then the ma-
trix A+ has three eigenvalues: one negative real and
one pair of purely imaginary conjugate, satisfying
Reλ′(b0) < 0.

In fact, letting b = b0, Eq. (10) gives(
λ+

2a(2c − a)
c

)
(λ2 + b0c) = 0 . (11)

Obviously, Eq. (11) not only has one negative real
root, λ1 = 2a(a − 2c)/c, but also one pair of

purely imaginary conjugate roots, λ2,3 = ±
√
b0ci =

±
√
c2 + 3ac− 2a2i = ±di.
According to Eq. (10), we have

λ′(b) = − λ2 + cλ+ 2a(2c − a)
3λ2 + 2(a+ b− c)λ+ bc

. (12)

Hence,

α′(0) = Reλ′(b0) =
−c2d2

2[c2d2 + 4a2(2c− a)2]
< 0 ,

(13)
and

ω′(0) = Imλ′(b0) =
c2(c3 − 2a3 + 4a2c− ac2)
2d[c2d2 + 4a2(2c− a)2]

.

(14)

Therefore, when b = b0 and c > (
√

17 − 3)a/2,
system (1) has Hopf bifurcation at S+ and S−.

4. Supercritical and Subcritical
Bifurcations

Assume that

(C) : a > 0, b > 0, c > 0 .

For the Chen system (1), let the characteristic
vectors of λ1 and λ2 be α1 and β = α2 + α3i,
respectively, where α1, α2, α3 are all real vectors.

Through algebraic calculations, we obtain

α1 =


1

2a− 3c

c

−2x0

c

 , α2 =


1
1

b0c

ax0

 ,

α3 =



0
√
b0c

a
√
b0c(c− a)
ax0

 .

(15)

Next, perform the following transform on system
(8):

 ξη
ζ

=



0 1 1
√
b0c

a
1

2a− 3c

c
√
b0c(c− a)
ax0

b0c

ax0
−2x0

c

=

u1

u2

u3

 ,

(16)
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so as to obtain

du1

dt
= −du2 + P (u1, u2, u3)

du2

dt
= du1 +Q(u1, u2, u3)

du3

dt
= λ1u3 +R(u1, u2, u3) ,

(17)

where

P (u1, u2, u3)

= −a
d
f(u1, u2, u3) +

λ1

d
Q(u1, u2, u3)

Q(u1, u2, u3)

=
1

k

[
g(u1, u2, u3) +

c− a
x0

f(u1, u2, u3)

]
R(u1, u2, u3) = −Q(u1, u2, u3) ,

(18)

in which

f(u1, u2, u3)

= (u2 + u3)

(
(c− a)d
ax0

u1 +
d2

ax0
u2 −

2x0

c
u3

)
, (19)

g(u1, u2, u3)

= (u2 + u3)

(
d

a
u1 + u2 +

2a− 3c

c
u3

)
, (20)

k =
2ax2

0 + b0c
2 + 2a(c− a)(a− 2c)

acx0
. (21)

Apply the method of Auchmuty and Nicolis
[Hassard et al., 1981; Zhang, 1991], from system
(17) we can calculate the following quantities at
b = b0 and O(0, 0, 0):

g11 =
1

4

[
∂2P

∂u2
1

+
∂2P

∂u2
2

+ i

(
∂2Q

∂u2
1

+
∂2Q

∂u2
2

)]

=
λ1

2kd
+
d((c − a)λ1 − akx0)

2kax2
0

+ i
d2(c− a) + ax2

0

2kax2
0

, (22)

g02 =
1

4

[
∂2P

∂u2
1

− ∂2P

∂u2
2

− 2
∂2Q

∂u1∂u2
+ i

(
∂2Q

∂u2
1

− ∂2Q

∂u2
2

+ 2
∂2P

∂u1∂u2

)]

=
−λ1

2kd
− d((c − a)λ1 − akx0 + (c− a)2 + x02)

2kax2
0

+ i

(
λ1

2ka
+

(c− a)2λ1 − akx0(c− a)− d2(c− a)− ax2
0

2kax2
0

)
, (23)

g20 =
1

4

[
∂2P

∂u2
1

− ∂2P

∂u2
2

+ 2
∂2Q

∂u1∂u2
+ i

(
∂2Q

∂u2
1

− ∂2Q

∂u2
2

− 2
∂2P

∂u1∂u2

)]

=
−λ1

2kd
− d((c − a)λ1 − akx0 + (c− a)2 + x02)

2kax2
0

+ i

(
λ1

2ka
+

(c− a)2λ1 − akx0(c− a)− d2(c− a)− ax2
0

2kax2
0

)
, (24)

G21 =
1

8

[
∂3P

∂u3
1

+
∂3P

∂u1∂2u2
+

∂3Q

∂u2
1∂u2

+
∂3Q

∂u3
2

+ i

(
∂3Q

∂u3
1

+
∂3Q

∂u1∂2u2
− ∂3P

∂u2
1∂u2

− ∂3P

∂u3
2

)]

= 0 . (25)
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Since n = 3 > 2, we obtain via calculations the following quantities:

h11 =
1

4

[
∂2R

∂u2
1

+
∂2R

∂u2
2

]
= −d

2(c− a) + ax2
0

2kax2
0

, (26)

h20 =
1

4

[
∂2R

∂u2
1

− ∂2R

∂u2
2

− 2i
∂2R

∂u1∂u2

]

=
d2(c− a) + ax2

0

2kax2
0

+ di
(c − a)2 + x2

0

2kax2
0

. (27)

Then we obtain the following equations:

{
λ1w11 = −h11 ,

(λ1 − 2di)w20 = −h20 .
(28)

The solution of the above system of equations is


w11 =

d2(c− a) + ax2
0

2kax2
0λ1

,

w20 = −λ1(c− a)d2 − 2d2(c− a)2 + x2
0(aλ1 − 2d2) + i(λ1d(c− a)2 + 2d3(c− a) + x2

0(dλ1 + 2ad))

(λ2
1 + 4d2)2kax2

0

.

(29)
Now, let

G110 =
1

2

[
∂2P

∂u1∂u3
+

∂2Q

∂u2∂u3
+ i

(
∂2Q

∂u1∂u3
− ∂2P

∂u2∂u3

)]

=
λ1

2ka
+

(c− a)(cd2 − 4ax2
0 + cλ1(c− a)− ackx0)

2kacx2
0

+ i
cd2

[
(c− a)2 + x2

0 + akx0 − (c− a)λ1
]
− 4a(a− c)x2

0λ1 − 2ka2x3
0

2kacdx2
0

, (30)

G101 =
1

2

[
∂2P

∂u1∂u3
− ∂2Q

∂u2∂u3
+ i

(
∂2Q

∂u1∂u3
+

∂2P

∂u2∂u3

)]

=
λ1

2ka
+

(c− a)(−cd2 + 4ax2
0 + cλ1(c− a)− ackx0)

2kacx2
0

+ i
cd2[(c− a)2 + x2

0 − akx0 + (c− a)λ1] + 4a(a− c)x2
0λ1 + 2ka2x3

0

2kacdx2
0

. (31)
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Then we have

g21 = G21 + (2G110w11 +G101w20)

=
d2(c− a) + ax2

0

2k2a2x2
0

+
cd2 − 4ax2

0 + c(c− a)λ1 − akcx0

2ck2a2x4
0λ1

[d2(c− a)2 + a(c− a)x2
0]

− λ1(c− a)d2 − 2d2(c− a)2 + x2
0(aλ1 − 2d2)

(λ2
1 + 4d2)2kax2

0

[
λ1

2ka
+ (c− a)c(c − a)λ1 − akcx0 − cd2 + 4ax2

0

2kacx2
0

]

+
λ1d(c− a)2 + 2d3(c− a) + x2

0(dλ1 + 2ad)

(λ2
1 + 4d2)2kax2

0

× cd
2[(c− a)2 + x2

0 − akx0 + (c− a)λ1] + 4a(a− c)x2
0λ1 + 2ka2x3

0

2kacdx2
0

+ i

(
cd2[(c− a)2 + x2

0 + akx0 − (c− a)λ1]− 4a(a− c)x2
0λ1 − 2ka2x3

0

2k2a2cdx4
0λ1

[d2(c− a) + ax2
0]

− λ1(c− a)d2 − 2d2(c− a)2 + x2
0(aλ1 − 2d2)

(λ2
1 + 4d2)2kax2

0

× cd
2[(c− a)2 + x2

0 − akx0 + (c− a)λ1] + 4a(a− c)x2
0λ1 + 2ka2x3

0

2kacdx2
0

− λ1d(c− a)2 + 2d3(c− a) + x2
0(dλ1 + 2ad)

(λ2
1 + 4d2)2kax2

0

×
[
λ1

2ka
+ (c− a)c(c − a)λ1 − akcx0 − cd2 + 4ax2

0

2kacx2
0

])
. (32)

Also, let

C1(0) =
1

2d

[
g20g11 − 2|g11|2 −

1

3
|g02|2

]
+
g21

2
. (33)

Then we have

µ2 = −ReC1(0)

α′(0)
,

τ2 = − ImC1(0) + µ2ω
′(0)

d
,

β2 = 2ReC1(0) .

(34)

By some tedious manipulations, we obtain

A1 = −ac(4a− 5c)(6a4 − 22a3c+ 16a2c2 + 7ac3 + c4)

4(14a2c2 − 16a3c+ 4a4 + 3ac3 + c4)2
, (35)

A2 = −c
2(−c2 − ac+ a2)(3a3 − 4a2c− 3ac2 − c3)
2(14a2c2 − 16a3c+ 4a4 + 3ac3 + c4)2

, (36)

A3 =
c3(−c2 − 3ac+ 2a2)(−c2 − ac+ a2)

2(14a2c2 − 16a3c+ 4a4 + 3ac3 + c4)2
(37)



2266 J. Lü et al.

A4 =
3c3(a− c)(−c2 − ac+ a2)(−c2 − 3ac+ 2a2)

2(a− 2c)(14a2c2 − 16a3c+ 4a4 + 3ac3 + c4)2
, (38)

A5 =
(−c2 − ac+ a2)(−a3c− 5a2c2 + 5ac3 + 3c4 + a4)

4c4(a− 2c)(−c2 − 3ac+ 2a2)(a4 − 4a3c+ 2a2c2 + c4 + 3ac3)(14a2c2 − 16a3c+ 4a4 + 3ac3 + c4)2
,

(39)

A6 =
c(−c6 − 14c4a2 − c3a3 + 28c2a4 − 20a5c+ 4a6)(−13a2c3 + 24a3c2 − 12a4c− 6ac4 + c5 + 2a5)

4(a− 2c)(a4 − 4a3c+ 2a2c2 + c4 + 3ac3)(14a2c2 − 16a3c+ 4a4 + 3ac3 + c4)2
,

(40)

µ2 =
c2d2 + 4a2(2c − a)2

c2d2

5∑
i=1

Ai =
14a2c2 − 16a3c+ 4a4 + 3ac3 + c4

c(c2 + 3ac− 2a2)

5∑
i=1

Ai , (41)

β2 =
5∑
i=1

Ai , (42)

B1 = − c(6a4 − 22a3c+ 16a2c2 + 7ac3 + c4)2

4(a− 2c)
√
c2 + 3ac− 2a2(14a2c2 − 16a3c+ 4a4 + 3ac3 + c4)2

, (43)

B2 =
c3(−c2 − 3ac+ 2a2)(−c2 − ac+ a2)2

4(a − 2c)
√
c2 + 3ac− 2a2(14a2c2 − 16a3c+ 4a4 + 3ac3 + c4)2

(44)

B3 = − c(3a4 − 12a3c+ 11a2c2 + 2ac3 − c4)2

6(a− 2c)
√
c2 + 3ac− 2a2(14a2c2 − 16a3c+ 4a4 + 3ac3 + c4)2

, (45)

B4 =
a2c2(4a − 5c)2(−c3 + 2a3 − 4a2c+ ac2)2(c2 + 3ac− 2a2)

7
2 (6a4 − 22a3c+ 16a2c2 + 7ac3 + c4)2

384(14a2c2 − 16a3c+ 4a4 + 3ac3 + c4)4
,

(46)

B5 = −c(3a
3 − 4a2c− 3ac2 − c3)(6a4 − 22a3c+ 16a2c2 + 7ac3 + c4)

4
√
c2 + 3ac− 2a2(14a2c2 − 16a3c+ 4a4 + 3ac3 + c4)2

, (47)

B6 = − ac2(4a− 5c)(−c2 − 3ac+ 2a2)(−c2 − ac+ a2)

8
√
c2 + 3ac− 2a2(14a2c2 − 16a3c+ 4a4 + 3ac3 + c4)2

, (48)

B7 = −ac(4a − 5c)(−c3 + 2a3 − 4a2c+ ac2)(6a4 − 22a3c+ 16a2c2 + 7ac3 + c4)

8(c2 + 3ac− 2a2)
3
2 (14a2c2 − 16a3c+ 4a4 + 3ac3 + c4)2

, (49)

B8 = −c
2(−c2 − ac+ a2)(−c3 + 2a3 − 4a2c+ ac2)(3a3 − 4a2c− 3ac2 − c3)

4(c2 + 3ac− 2a2)
3
2 (14a2c2 − 16a3c+ 4a4 + 3ac3 + c4)2

, (50)

B9 = −c(−c
2 − ac+ a2)(−c2 − 3ac+ 2a2)(4a5 − 12a4c+ 4a3c2 + 9a2c3 − 2ac4 − c5)

4a(a− 2c)
√
c2 + 3ac− 2a2(14a2c2 − 16a3c+ 4a4 + 3ac3 + c4)2

, (51)

B10 =
c(−c2 − 3ac+ 2a2)(−a3c3 − 14a2c4 − c6 + 28a4c2 − 20ca5 + 4a6)(−a3c− 5a2c2 + 5ac3 + 3c4 + a4)

8(a4 − 4a3c+ 2a2c2 + c4 + 3ac3)(a− 2c)
√
c2 + 3ac− 2a2(14a2c2 − 16a3c+ 4a4 + 3ac3 + c4)2

,

(52)

B11 = − c4
√
c2 + 3ac− 2a2(a− c)2(−c2 − ac+ a2)(c3 − 4a2c+ 2a3)

8(a4 − 4a3c+ 2a2c2 + c4 + 3ac3)(a− 2c)(14a2c2 − 16a3c+ 4a4 + 3ac3 + c4)2
, (53)

B12 = − c3(−c2 − ac+ a2)(−c3 + ac2 − 4a2c+ 2a3)

4
√
c2 + 3ac− 2a2(14a2c2 − 16a3c+ 4a4 + 3ac3 + c4)2

, (54)
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B13 = − 3(a− c)c3(−c2 − ac+ a2)(−c3 + ac2 − 4a2c+ 2a3)

4(a− 2c)
√
c2 + 3ac− 2a2(14a2c2 − 16a3c+ 4a4 + 3ac3 + c4)2

, (55)

B14 = − c4(−c2 − ac+ a2)(a4 − a3c− 5a2c2 + 3c4 + 5ac3)(−c3 + ac2 − 4a2c+ 2a3)

8(a− 2c)(a4 − 4a3c+ 2a2c2 + c4 + 3ac3)
√
c2 + 3ac− 2a2(14a2c2 − 16a3c+ 4a4 + 3ac3 + c4)2

,

(56)

B15 = − c(−c3 + ac2 − 4a2c+ 2a3)(−12a4c+ 24a3c2 − 13a2c3 − 6ac4 + c5 + 2a5)

8(a− 2c)(−c2 + 2a2 − 3ac)
√
c2 + 3ac− 2a2(14a2c2 − 16a3c+ 4a4 + 3ac3 + c4)2

× −c
3a3 − 14c4a2 − c6 + 28c2a4 − 20a5c+ 4a6

a4 − 4a3c+ 2a2c2 + c4 + 3ac3
,

(57)

τ2 =
1√

c2 + 3ac− 2a2

15∑
i=1

Bi . (58)

Theorem 1. If c > (
√

17− 3)a/2, then there is a
Hopf bifurcation at b = b0. Moreover,

(1) if µ2(a, c) > 0, then the direction of bifurcation
is b > b0 and the bifurcation is subcritical;

(2) if µ2(a, c) < 0, then the direction of bifurcation
is b < b0 and bifurcation is supercritical.

Proof. According to Lemma 3, the stability of
S+ is changed from one side to other of b0.
Hence, there is a Hopf bifurcation at b = b0.

When µ2 > 0, since α′(0) < 0, the direction of
bifurcation is b > b0. At the same time, the signs of
µ2 and β2 are the same according to (41), that is,
β2 > 0. And the bifurcating periodic solutions are
unstable. Figure 7(a) shows the subcritical bifurca-
tion. On the contrary, when µ2 < 0, a bifurcation
takes place when b < b0. And the bifurcating pe-
riodic solutions are asymptotically orbitally stable.
Figure 7(b) displays the supercritical bifurcation.
The proof is thus completed. �

An approximation to the periodic solutions has
the following expression:

X =



√
(2c− a)(c2 + 3ac− 2a2)

c√
(2c− a)(c2 + 3ac− 2a2)

c

2c− a



+



0 1 1
√
c2 + 3ac− 2a2

a
1

2a− 3c

c

c(c− a)
a
√
c(2c − a)

c
√
c2 + 3ac− 2a2

a
√
c(2c− a)

−2

c

√
(2c − a)(c2 + 3ac− 2a2)

c


u1

u2

u3

 , (59)

where

u1 = Re z , u2 = Im z ,

u3 = w11|z|2 + Re(w20z
2) +O(|z|3) ,

z = εe2itπ/T +
iε2

6d
[g02e

−4itπ/T

− 3g20e
4itπ/T + 6g11] +O(ε3) ,

in which

ε2 =
b− b0
µ2

+O((b− b0)2) .

Its period and characteristic exponent are

T =
2π

d
(1 + τ2ε

2 +O(ε4)) ,

β = β2ε
2 +O(ε4) .

(60)
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(a) (b)

Fig. 7. Bifurcation graphs. (a) Subcritical bifurcation; (b) supercritical bifurcation.

Fig. 8. Parameter domains of subcritical and supercritical bifurcations.

5. Numerical Simulations

We have carried out a large number of numerical
experiments to verify the theoretical analysis and
analytic conditions. The results are quite accurate
and consistent.

For simplicity, we only consider the parameter
domain {(a, c)|0 < a ≤ 50, c > 0} here. Accord-
ing to (41), we can draw a graph of the parameter
domain of supercritical and subcritical bifurcations.
In Fig. 8, for any point in domains A and B, µ2 < 0,
that is, there exists supercritical bifurcation in both
domains A and B. In this figure, for any point in
domains C and D, µ2 > 0, so there exists subcritical
bifurcation in both domains C and D. In the figure,

the stability of periodic solutions are denoted by S
(stable) and U (unstable), respectively. Main parts
of detailed experimental results are summarized in
Table 1.

It can be seen that when c/a→∞, µ2 → 0.
For a = 35, c = 28, the periodic solutions are

β2 = −0.004, µ2 = −0.0128, τ2 = 7.3822 × 10−4

and

g11 = −0.7221 + 2.4139 × 10−6i ,

g02 = 0.5782 − 0.1969i ,

g20 = 0.866 , w11 = −0.0019 ,

w20 = −3.7453 × 105 − 1.2813 × 10−6i
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Table 1. The numerical experimental results.

µ2 Domain c a

−0.0222 B 5 5

0.0177 D 10 5

4.9993 × 10−6 D 105 5

0.0258 C 20 35

−0.0128 A 28 35

7.6612 × 10−5 D 42 35

4.9952 × 10−6 D 105 35

therefore,

T = 0.176 + 0.0102(45.5 − b) +O((45.5 − b)2)

and it shows that the period will increase with
b → 45.5. Finally, the periodic solutions are ob-
tained asxy
z

 =

30.9112

30.9112

21



+

 0 1 1

1.0198 1 −0.5

−0.2309 1.1776 −2.2079


u1

u2

u3

 ,

where
u1 = Re z, u2 = Im z ,

u3 = −0.0019|z|2 + Re((−3.7453 × 105

− 1.2813 × 10−6i)z2)

z = 8.8388
√

45.5 − b e2i(t+φ)π/T + 0.3672(45.5 − b)

× [(0.5782 − 0.1969i)e−4i(t+φ)π/T

− 2.598e4i(t+φ)π/T − 4.3326 + 0.0145i] ,

in which φ is a phase angle.

6. Conclusions and Discussion

This paper has thoroughly investigated the local bi-
furcations of the Chen system. There are abun-
dant and complex dynamical behaviors still un-
known about this new and interesting system, which
will contribute to a better understanding of a whole
family of similar and closely related chaotic systems.

The intrinsic dynamics of the Chen system deserves
further investigation in the near future.
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