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Abstract

This Letter further investigates the synchronization of a unified chaotic system via different methods. Several sufficient
theorems for the synchronization of the unified chaotic system are deduced. A scheme of secure communication based on the
synchronization of the unified chaotic system is presented. Numerical simulation shows its feasibility.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In 1990, Pecora and Carroll [1,2] produced the idea
for chaos synchronization and verified by the electric
current later. Over the last decade, chaos synchroniza-
tion has received increasing attention due to its poten-
tial application in many areas such as secure commu-
nication, information processing, biological systems,
and chemical reactions [3–6].

Recently, a large variety of approaches have been
proposed for chaos synchronization such as the feed-
back method [7], backstepping design technique [8],
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adaptive control approach [9], and invariant manifold
means [4], among many others [4,5].

This Letter further studies the chaos synchroniza-
tion of a unified chaotic system [10] via different
methods. Several sufficient conditions for chaos syn-
chronization of the unified chaotic system are gained
from theory. A scheme of secure communication
based on chaos synchronization of the unified chaotic
system is produced. Numerical simulations show that
it has wide application in secure communication.

2. Synchronization between two identical unified
chaotic systems

In 1963, Lorenz found the first canonical chaotic
attractor [11]. In 1999, Chen found another chaotic
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attractor [12], which is the dual to the Lorenz system.
Here, the duality is in the sense defined by Vanĕc̆ek
andC̆elikovský [13]: for the linear part of the system,
A = [aij ]3×3, the Lorenz system satisfies the condition
a12a21 > 0 while Chen system satisfiesa12a21 < 0.
In 2001, Lü found a new chaotic system [14], which
satisfies the conditiona12a21 = 0. Very recently, Lü
et al. produced a unified chaotic system [10,15] which
contains the Lorenz and Chen systems as two extremes
and the Lü system as a special case. The unified
chaotic system is described by

(1)




ẋ = (25α + 10)(y − x),

ẏ = (28− 35α)x − xz+ (29α − 1)y,
ż = xy − α+8

3 z,

where α ∈ [0,1]. Obviously, the system (1) is the
original Lorenz system [11] forα = 0 while system
(1) belongs to the original Chen system [12] forα = 1.
Whenα = 4/5, the system (1) is the critical system
[14]. In fact, system (1) bridges the gap between the
Lorenz system and Chen system. Especially, system
(1) is always chaotic for the whole intervalα ∈ [0,1].
Furthermore, system (1) plays a key role in the study
of the generalized Lorenz family [10].

Let the system (1) be the drive system andx be the
drive variable, then the response system can be written
as follows:

(2)




u̇ = (25α + 10)(v − u),

v̇ = (28− 35α)x − xw + (29α − 1)v,
ẇ = xv − α+8

3 w.

Theorem 1. When 0 � α < 1/29, then the response
system (2) can synchronize the drive system (1).

Proof. Let the state tracking error bee = (e1, e2, e3)
T

= (u− x, v − y,w − z)T, then the error dynamics is

(3)




ė1 = (25α + 10)(e2 − e1),

ė2 = −xe3 + (29α − 1)e2,

ė3 = xe2 − 8+α
3 e3.

Now the synchronization of two identical unified
chaotic systems is equivalent to the asymptotic stabil-
ity of the zero solution for the error system (3).

Construct a Lyapunov function of the form

(4)E(e1, e2, e3) = 1

2

(
1

c
e2

1 + e2
2 + e2

3

)
,

where c is a nonzero constant. Then its derivative
along the solution of (3) is

dE

dt
= 1

c
e1ė1 + e2ė2 + e3ė3

= 1

c
e1(25α + 10)(e2 − e1)

+ e2
[−xe3 + (29α − 1)e2

]
(5)+ e3

(
xe2 − 8+ α

3
e3

)
.

Letting c = 25α+10
4(1−29α) , if α < 1/29, then we have

(6)
dE

dt
= −(1− 29α)(2e1 − e2)

2 − 8+ α

3
e2

3 � 0.

If e1 = 1
2e2 ande3 = 0, thene1 = e2 = e3 = 0 from

Eq. (3). That is,dE
dt

= 0 implies e1 = e2 = e3 = 0.
Furthermore, error dynamical system (3) is global
stability according to Lyapunov second theorem.

Therefore,e → 0 ast → ∞. Thus the systems (2)
and (1) can realize synchronization when 0� α <

1/29. ✷
It is noticed that the parameter interval for the syn-

chronization is wide and contains the Lorenz system
as a special case. However, the numerical simulation
shows that the response system (2) can synchronize
the drive system (1) for 0� α � 1/11. That is, the
condition of synchronization for Theorem 1 is suf-
ficient, but not necessary. In fact, the largest condi-
tional Lyapunov exponent (CLE) of the error system
(3) for α = 1/11 is −0.15. Fig. 1 shows the track-
ing errors forα = 1/11 andα = 1/10, respectively,

where e(t) =
√
e2

1 + e2
2 + e2

3. Obviously, the system
(2) can synchronize system (1) forα = 1/11, but not
for α = 1/10.

If the parameterα in systems (1) and (2) are not
equivalent, then the two systems cannot realize syn-
chronization. That is, the response system cannot syn-
chronize the drive system when the system parameter
of the receiver (response) does not match that of the
transmitter (drive). Lettingα = 0 in system (1) and
α = 0.01 in system (2), Fig. 2 shows the errors graph.
Obviously, the two systems are not synchronization.
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(a) (b)

Fig. 1. The tracking errore(t). (a)α = 1/11, (b)α = 1/10.

Fig. 2. The tracking errore(t) (α1 = 0, α2 = 0.01).

3. Using Rössler system to drive the unified
chaotic system

Assume that the drive system iṡx = f (x), and
the responsėy = g(x, y), where x ∈ Rn, y ∈ Rm,
f :Rn → Rn, g :Rn × Rm → Rm. If the outputy(t)
of the response system is determined only by the drive
signalx(t), that isy(t) = ϕ(x), then the two systems
are called generalized synchronization. An effective
method for judging the generalize synchronization is
to construct an assistant systeṁz = g(x, z) which
is identical to the response system, and driving it
with the same signalx(t). Then the sufficient and

necessary condition for generalized synchronization
betweeny(t) andx(t) is z(t) = y(t).

Consider the following Rössler system

(7)

{
ẋ1 = −x2 − x3,

ẋ2 = x1 + 0.15x2,

ẋ3 = 0.2+ x3(x1 − 10),
and use its outputx1(t) as the drive signal to drive two
identical unified chaotic systems

(8)




ẏ1 = (25α + 10)(y2 − y1),

ẏ2 = (28− 35α)x1 − x1y3 + (29α − 1)y2,

ẏ3 = x1y2 − α+8
3 y3,

and

(9)




ż1 = (25α + 10)(z2 − z1),

ż2 = (28− 35α)x1 − x1z3 + (29α − 1)z2,

ż3 = x1z2 − α+8
3 z3.

Theorem 2. When 0 � α < 1/29, then we have
y1(t) − z1(t) → 0, y2(t) − z2(t) → 0, y3(t) −
z3(t) → 0, as t → ∞.

Proof. Let the tracking error bee = (e1, e2, e3) =
(y1 − z1, y2 − z2, y3 − z3), then the error dynamics
is

(10)




ė1 = (25α + 10)(e2 − e1),

ė2 = −x1e3 + (29α − 1)e2,

ė3 = x1e2 − α+8
3 e3.

Construct a Lyapunov function of the form

(11)E(e1, e2, e3) = 1

2

(
2(1− 29α)

25α + 10
e2

1 + e2
2 + e2

3

)
,
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then its derivative along the solution of (10) is

dE

dt
= −2(1− 29α)

(
e1 − 1

2
e2

)2

− 1− 29α

2
e2

2

(12)− 8+ α

3
e2

3.

Obviously, dE
dt

= 0 impliese1 = e2 = e3 = 0. More-
over, error dynamical system (10) is global stability
according to Lyapunov second theorem.

When 0� α < 1/29, dE
dt

� 0. Therefore,e → 0 as
t → ∞. That is, the systems (9) and (8) can realize
synchronization when 0� α < 1/29. ✷

It is noticed that the systems (7), (8) and (9) are
drive, response and assistant systems, respectively.
Consider the systems (7) and (8) as a whole system,
then it is a 6D system. When the systems (7) and
(8) are generalized synchronization, then there is a
functionϕ satisfyingy(t) = ϕ(x). This means that the
original 6D system can shrink to a 3D submanifold.

The condition for generalized synchronization in
Theorem 2 is sufficient, and not necessary. In fact,
numerical simulations show that the conclusion in
Theorem 2 is still right forα ∈ [0,1/11]. Furthermore,
the largest CLE of the error system (10) forα = 1/11
is −0.28. Fig. 3 shows the evolution of tracking error
for α = 1/11 using Rössler system and Chen system
to drive the unified chaotic system, respectively, where

e(t) =
√
e2

1 + e2
2 + e2

3.

4. Synchronization of the unified chaotic system
via occasional driving

It is not easy to realize chaos synchronization via
continuous control in practical application, since its
control cost is very high. Recently, the occasional
control technique [16,17] has been investigated. In the
following, we further study the chaos synchronization
via occasional driving.

Also, we use the outputx(t) of the system (1) as
the drive variable, and the response system is

(13)




u̇1 = (25α + 10)(v1 − u1),

v̇1 = (28− 35α)r(t)− r(t)w1 + (29α − 1)v1,

ẇ1 = r(t)v1 − α+8
3 w1,

where

r(t) =
{
x(t), t ∈ [nT − ε,nT + ε],
u1(t), otherwise.

Here,T is the interim period and 2ε the sampling
interval(2ε < T ).

The theoretical basis of the discontinuous control
(occasional drive) for chaos synchronization is that
the response system is only driven during the interval
[nT − ε,nT + ε] for every periodT , while runs
independently in the rest time. Therefore, the drive
need not act on the response continuously, which
greatly reduces the control cost. Fig. 4 shows the
tracking error, whereT = 0.2, ε = 0.05, α = 1/11,

e(t) =
√
e2

1 + e2
2 + e3

3.

(a) (b)

Fig. 3. The tracking errore(t). (a) Drive system is Rössler system, (b) drive system is the Chen system.
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Fig. 4. The tracking errore(t) via occasional drive(α = 1/11,
T = 0.2, ε = 0.05).

Compare the results via continuous control, we find
that it takes much time to realize chaos synchroniza-
tion via occasional drive. That is, the decreasing con-
trol cost need sacrifice the synchronization time. How-
ever, it is usually worthwhile and necessary in some
physical, chemical and biological applications.

5. The application in secure communication

Assume thatm(t) is the message signal, adding it to
the right of the first equation for the transmitter (drive

system), then we have

(14)




ẋ = (25α + 10)(y − x)+m(t),

ẏ = (28− 35α)x − xz + (29α − 1)y,
ż = xy − α+8

3 z.

Select the outputx(t) of the system (14) as the trans-
mitted signal, then construct the receiver as follows:

(15)




u̇ = (25α + 10)(v − u)+ p(t),

v̇ = (28− 35α)x − xw + (29α − 1)v,
ẇ = xv − α+8

3 w,

ṗ = k(x − u),

wherek is a parameter.
Let the tracking error bee = (e1, e2, e3, e4) =

(x − u,y − v, z −w,m−p), then the error dynamics
is

(16)




ė1 = (25α + 10)(e2 − e1)+ e4,

ė2 = −xe3 + (29α − 1)e2,

ė3 = xe2 − α+8
3 e3,

ė4 = dm
dt

− ke1,

wherek > 0. Since the eigenfrequency of the message
signalm(t) is much less than the oscillating frequency
of the chaotic system in practice, thendm(t)

dt
−ke1(t) ≈

−ke1(t). Construct a Lyapunov function as follows:

(17)E = 1

2

(
ke2

1 + e2
2 + e2

3 + e2
4

)
.

If 0 < α � 3/116, then its derivative along the solution
of (16) is

(a) (b)

Fig. 5. The tracking errorm(t) −p(t) (α = 3/116).
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dE

dt
= ke1ė1 + e2ė2 + e3ė3 + e4ė4

= −
(√

1− 29α e2 − k(25α + 10)

2
√

1− 29α
e1

)2

(18)− k(25α + 10)(2
√

1− 29α − 1)

2
√

1− 29α
e2

1 � 0.

Obviously, dE
dt

= 0 implies e1 = e2 = e3 = e4 = 0.
Therefore,E → 0 as t → ∞. That is,e4 = m(t) −
p(t) → 0 as t → ∞. Thus the variablep(t) can
recover the message signalm(t).

Takingm(t) = 0.1 cos(0.1πt), α = 3/116,k = 50,
Fig. 5(a) shows the errorm(t) − p(t). Takingm(t) =
0.1 round(t), α = 3/116,k = 15, Fig. 5(b) shows the
errorm(t) − p(t).

It is noticed that the chaos synchronization sensi-
tively depends on the parameter intervalα ∈ [0,3/116]
in above scheme for secure communication. Further-
more, parameterα is continuously adjustable in inter-
val [0,3/116], thus it can be used as the cipher key
space.

6. Conclusions

The chaos synchronization for the unified chaotic
system is further investigated via different techniques
in this Letter. Several sufficient conditions for chaos
synchronization are gained. Furthermore, a scheme for
secure communication is presented in theory, and its
feasibility is verified by numerical simulations.
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