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Abstract

A new adaptive control method is proposed for adaptive synchronization of two uncertain chaotic systems, using a

specific uncertain unified chaotic model as an example for illustration. � 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Since the study of chaos synchronization by Pecora and Carroll in 1990, this topic has received increasing attention

[1–3]. Chaos synchronization can be applied to many areas such as secure communication, chemical reactions, bio-

logical systems, and information processing [1].

Chaos synchronization can be classified into two types – mutual synchronization and master–slave synchronization

– according to their coupling configuration. Over the last decade, a large variety of approaches have been proposed for

chaos synchronization such as the master–slave method [4], backstepping design method [5,6], impulsive control

method [7], and invariant manifold method [3], among many others [1,8].

In this paper, a new approach combining both parameters identification and chaos synchronization is proposed,

which works for a large class of uncertain chaotic systems. This method provides a detailed design process for chaos

synchronization, even for uncertain systems. An uncertain unified chaotic system is used as an example for easier and

detailed description of the method, on which simulation will also be performed.

2. Adaptive synchronization of the uncertain unified chaotic system

Given two identical chaotic systems, one is used as the master system and another the slave system, the task of the

master–slave synchronization is to force the response of the slave system to synchronize with the master system, where

the slave system received driving signals from the master system [3]. This paper studies this problem, but for uncertain

chaotic systems.

2.1. The problem formulation

More precisely, we consider the drive chaotic system in the form of

_xx ¼ f ðxÞ þ F ðxÞh; ð1Þ
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where x 2 Rn is the state vector of the system, h 2 Rm is the parameter vector of the system, f 2 C1ðRn;RnÞ and
F 2 C1ðRn;Rn�mÞ are nonlinear functions. On the other hand, the response system is given by

_uu ¼ f ðuÞ þ F ðuÞa; ð2Þ

which has the same structure as the drive system but the parameter vector a 2 Rm is completely unknown, or uncertain.

In practice, the output signals of the drive system (1) can be received by the response system (2), but the parameter

vector of the drive system (2) may not be known to the receiver. Therefore, the goal of control is to design and im-

plement an appropriate controller U for the slave system, such that the controlled response system

_uu ¼ f ðuÞ þ F ðuÞa þ U ; ð3Þ

can synchronize with the drive system (1).

The methodology to be described below works for a large class of chaotic systems, including the Duffing oscillator,

Van der Pol oscillator, R€oossler system, and several variants of Chua’s circuits. Since a description of the general case is
rather messy and uneasy, at least notationally, to facilitate the description and discussion, we use a specific chaotic

system as an example. This system is still not too special, in the sense that it unifies both the Lorenz [2] and the Chen

systems [9,10], where the latter is the dual system of the former in a sense defined in [11]: The Lorenz system satisfies the

condition a12a21 > 0 while the Chen system satisfies a12a21 < 0, where A ¼ ½aij�3�3 are the matrix of the linear part of the
chaotic systems. Recently, L€uu et al. [12–14] found a unified chaotic system that not only includes the case of a12a21 ¼ 0

[12] but also the Lorenz and Chen systems as two extreme cases. This unified system will be used in this paper for the

study of synchronization, as further discussed in the following.

2.2. Synchronization of uncertain unified system

Consider the unified chaotic systems described by [14]

_xx ¼ ð25h þ 10Þðy 	 xÞ;
_yy ¼ ð28	 35hÞx	 xzþ ð29h 	 1Þy;

_zz ¼ xy 	 8þ h
3

z;

ð4Þ

where h 2 ½0; 1�. Obviously, when h ¼ 0 it is the Lorenz system, while when h ¼ 1 it is the Chen system. What

is interesting is that, as h changes continuously from 0 to 1, the resulting system remains continuously to be

chaotic.

In this study, we first rewrite it in the form of system (1), where

f ðxÞ ¼
10ðy 	 xÞ
28x	 xz	 y

xy 	 8
3
z

0
@

1
A:

F ðxÞ ¼
25ðy 	 xÞ
	35xþ 29y

	 z
3

0
@

1
Ah:

Then, we design an adaptive controller for the response system in the form of (4) where, however, all the system pa-

rameters are assumed to be unknown or uncertain therefore need to be identified.

Assume that the response states are ðu; v;wÞT, and let the state tracking error be e ¼ ðu	 x; v	 y;w	 zÞT. Then, if
the system parameter h is known, the error dynamics is

_ee1 ¼ ð25h þ 10Þðe2 	 e1Þ þ u1;

_ee2 ¼ ð28	 35hÞe1 þ ð29h 	 1Þe2 	 we1 	 ue3 þ e1e3 þ u2;

_ee3 ¼ 	hþ8
3
e3 þ ue2 þ ve1 	 e1e2 þ u3;

ð5Þ

where U ¼ ðu1; u2; u3Þ is the controller to be designed for the response system.
Construct a Lyapunov function of the form

V ðeÞ ¼ 1

2
ðe21 þ e22 þ e23Þ:
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Then its derivative along the solution of (5) is

dV
dt

¼ e1ðð25h þ 10Þðe2 þ e1Þ þ u1Þ þ e2ðð28	 35hÞe1 þ ð29h 	 1Þe2 	 we1 	 ue3 þ u2Þ

þ e3
�
	 8þh

3
e3 þ ue2 þ ve1 þ u3

�
:

Select

u1 ¼ 	ye3 þ ze2 þ 25he1; u2 ¼ 	29he2 þ ð10h 	 38Þe1; u3 ¼
h
3
e3:

Then

dV
dt

¼ 	10e21 	 e22 	
8

3
e236 	 2V ðeÞ:

Therefore, V ðeÞ6 V ð0Þe	2t, implying synchronization of the derive–response systems.
When the parameter h of the system (2) is unknown, and in this case it will be denoted by a, we do not have the

above synchronization result. In this case, we have to design an adaptive controller instead.

Here, we propose to design the following adaptive controller for the intended synchronization:

_uu ¼ ð25aðtÞ þ 10Þðv	 uÞ þ u1;
_vv ¼ ð28	 35aðtÞÞu	 uwþ ð29aðtÞ 	 1Þvþ u2;

_ww ¼ uv	 8þ aðtÞ
3

wþ u3

ð6Þ

in which

_aaðtÞ ¼ 	F TðxÞðgradV ðeÞÞT ¼ 25ðx	 yÞe1 þ ð35x	 29yÞe2 þ
ze3
3

; ð7Þ

where

u1 ¼ 	ye3 þ ze2 þ 25aðtÞe1; u2 ¼ 	29aðtÞe2 þ ð10aðtÞ 	 38Þe1; u3 ¼
aðtÞ
3

e3:

This adaptive controller works. Indeed, according to the drive system (1) and the controlled response system (3), we

have the following error dynamical system:

_ee ¼ f ðuÞ 	 f ðxÞ þ F ðuÞa 	 F ðxÞh þ U : ð8Þ

For this system, we can use the Lyapunov function

V1ðe; aÞ ¼ V ðeÞ þ 1
2
ða 	 hÞTða 	 hÞ:

Its derivative along the solution of system (3) satisfies

dV1
dt

¼ ðgradV ðeÞ; f ðuÞ 	 f ðxÞ þ F ðuÞa 	 F ðxÞh þ UÞ þ _aaTða 	 hÞ

¼ ðgradV ðeÞ; f ðuÞ 	 f ðxÞ þ F ðuÞa 	 F ðxÞa þ UÞ þ ðgradV ðeÞ; F ðxÞða 	 hÞÞ þ _aaTða 	 hÞ
6 	 2V ðeÞ ¼ W ðeÞ:

Since V1ðe; aÞ is a positive definite functional and dV1=dt is a negative semi-definite functional, it follows that the
equilibrium points e ¼ 0 and a ¼ 0 of the systems (7) and (8) are uniformly asymptotically stable. Hence, eðtÞ and aðtÞ
are bounded on the interval ð0;þ1Þ.
Furthermore, let

lim
t!1

eðtÞ ¼ �ee; lim
t!1

aðtÞ ¼ �aa:

If �ee 6¼ 0, then there exist two positive constants, d; e, such that keðtÞ 	 �eek < d, which implies that W ðeÞ > e. By the
definition of upper limit, there exists a sequence ftng � Rþ such that ðeðtnÞ; aðtnÞÞ ! ð�ee; �aaÞ as n ! 1. Let n� be the
integer such that keðtnÞ 	 �eek < 1

2
d for any n > n�. Then, by the continuity of V1ðe; aÞ, for sufficiently large n, we have

V1ðeðtnÞ; aðtnÞÞ 	 V1ð�ee; �aaÞ <
ed
4r

; ð9Þ
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where ed=4r is a constant, which is chosen such that on ðtn; tn þ d
3rÞ we have both keðtÞ 	 �eek < d and W ðeÞ > e.

Therefore,

V1ðeðtnÞ; aðtnÞÞ 	 V1ð�ee; �aaÞP
Z tnþ d

3r

tn

W ðeÞdt > ed
3r

: ð10Þ

This is a contradiction, which implies that limt!1eðtÞ ¼ 0. Similarly, we have limt!1eðtÞ ¼ 0. Thus, limt!1 eðtÞ ¼ 0.

Therefore, the controlled response system (6) is synchronizing with the drive system (4), and satisfies that

limt!þ1 kaðtÞ 	 hk ¼ 0.
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Fig. 1. Graph of synchronization errors versus time t. Solid line: e1ðtÞ ¼ uðtÞ 	 xðtÞ; dotted line: e2ðtÞ ¼ vðtÞ 	 yðtÞ; dashdotted line:
e3ðtÞ ¼ wðtÞ 	 zðtÞ.
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Fig. 2. Graph of the parameter identification result.
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2.3. Numerical simulation

In this simulation, the parameter h ¼ 0:8, for which the drive system (4) is chaotic [14]. The initial conditions of the

drive system and the controlled system are set to be ð8:0; 9:0; 10:0ÞT and ð3:0; 4:0; 5:0ÞT, respectively, and the unknown
parameter aðtÞ has zero initial condition.
The results of parameters identification and adaptive synchronization are shown in Figs. 1 and 2, respectively.

Obviously, the numerical simulations verify the theoretical analysis.

3. Conclusion

An effective method for adaptive synchronization of uncertain chaotic systems has been provided in this paper. This

approach can be used for a large class of chaotic systems, including the Duffing oscillator, Van der Pol oscillator,

R€oossler system, and several variants of Chua’s circuits, to name just a few.
Using a unified chaotic system as an example, both theoretical proof and numerical simulations of the proposed

method have been carried out, which demonstrates the effectiveness and feasibility of the proposed adaptive syn-

chronization method. It should be noted that the parameter’s identification method proposed in this paper is an online

estimation process, therefore it should have a wide spectrum of practical applications to uncertain and complex systems

synchronization.
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