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Abstract

In this Letter backstepping design is proposed for controlling Chen’s chaotic attractor based on parameters identification.
The observer is applied to the identification of the unknown parameters of Chen’s chaotic system. And on this basis, an efficient
backstepping design is developed for controlling Chen’s chaotic system. Finally, numerical simulation are provided to show the
effectiveness and feasibility of the developed controller design method. 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

Dynamic chaos is a very interesting nonlinear effect
which has been intensively studied during the last two
decades. The effect is very common, it has been de-
tected in a large number of dynamic systems of various
physical nature. However, this effect is usually unde-
sirable in practice, and it restricts the operating range
of many electronic and mechanic devices. Recently,
controlling this kind of complex dynamical systems
has attracted a great deal of attention within the engi-
neering society.

Chaos control, in a broader sense, can be divided
into two categories [1]: one is to suppress the chaotic
dynamical behavior and the other is to generate or en-
hance chaos in nonlinear systems (known as chaotin-
cation or anti-control of chaos [2,3]). Nowadays, dif-
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ferent techniques and methods [1–17] have been pro-
posed to achieve chaos control. For instance, OGY
method [4], differential geometric method [5], linear
state space feedback [6], inverse optimal control [7]
and output feedback control [8], among many oth-
ers [1].

However, for some systems which have unknown
parameters, the aforementioned many methods fail.
An important problem in this field is how to achieve
nonlinear control of complex dynamical systems with
unknown parameters. This problem concerns the iden-
tification of the unknown parameters and the approach
of controlling chaos. In this Letter, the observer is
applied to the identification of the unknown parame-
ters of Chen’s system. Then, an efficient backstepping
design is developed for controlling Chen’s chaotic
system. Then suggested tool enables stabilization of
chaotic motion to a steady state as well as tracking of
any desired trajectory to be achieved in a systematic
way. And computer simulation is also given for the
purpose of illustration and verification.
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Fig. 1. Chen’s chaotic attractor.

2. Chen’s chaotic attractor

Recently, in the endeavor of anti-controlling chaos,
Chen [2] developed a new chaotic system, the Chen’s
chaotic system, so called by other researchers, which
was derived from the classical Lorenz system [3]. The
nonlinear differential equations that describe Chen’s
attractor are

(1)




ẋ = a(y − x),

ẏ = (c − a)x − xz + cy,

ż = xy − bz,

which has a chaotic attractor as shown in Fig. 1 when
a = 35,b = 3, c = 28.

From a control engineering point of view, the
chaotic Chen’s attractor is relatively difficult to control
as compared to the Loren’s system and Chua’s system
due to the prominent three-dimensional and complex
topological features of its attractor, especially its rapid
change in velocity in thez-direction [8].

We are interested in developing control techniques
able to drive a strange attractor with unknown pa-
rameters not only to a periodic orbit but also to a
steady state. Since steady-state solutions represent the
most practical operation mode in many chaotic sys-
tems such as electronic circuits [14]. It is assumed that
only the parameterb is unknown. And we add a con-
trol input to the third state, so that the controlled sys-
tem becomes

(2)




ẋ = a(y − x),

ẏ = (c − a)x − xz + cy,

ż = xy − bz + u.

3. The identification of the unknown parameters

In this section, we will provide a observer that can
identify the unknown parameterb of Chen’s chaotic
system.

Since the dynamic information about parameterb is
hard to be known andb is a constant of system (1). We
can assume that

(3)ḃ = 0.

For unknown parameterb, it can act as state vari-
able. Then system (1) can be augmented by above
Eq. (3). And we imagine that all scalar variablex, y, z

can be measured as a system output. In the following,
we will design a observer which can identify the un-
known parameterb.

According to system (1), we have

bz = xy − ż,

and the observer is

(4)˙̂
b = −G(z)zb̂ + G(z)(xy − ż),

whereG(z) is a gain function. Letting

e = b − b̂,

then

ė(t) = ḃ − ˙̂
b = −G(z)ze(t).

We can choose gain functionG(z) that makes the
system

ė(t) + G(z)ze(t) = 0

exponential asymptotical stability for allz. That is,
when t → ∞, b̂(t) converges tob(t) with exponent
rate. Obviously, the gain functionG(z) can be chosen
ask/z. Then we get

ė(t) + ke(t) = 0,

wherek > 0, and it determines the convergence rate.
But ż is hard to be observed, and observer (4) is
not applicable value. Hence, we introduce a auxiliary
variable

(5)δ = b̂ + Q(z),

where Q(z) is a design function and satisfies the
following condition:

G(z) = dQ(z)

dz
.



150 J. Lü, S. Zhang / Physics Letters A 286 (2001) 148–152

According to (5), we can get

δ̇ = ˙̂
b + dQ(z)

dz
z

= −G(z)z
(
δ − Q(z)

) + G(z)xy

(6)= −G(z)zδ + G(z)
(
zQ(z) + xy

)
and

(7)b̂ = δ − Q(z).

So, if the design functionQ(z) make

ė(t) + dQ(z)

dz
ze(t) = 0

exponential asymptotical stability, then, whent → ∞,
b̂(t) converges tob(t) with exponent rate. And ob-
server (6) and (7) is the identification observer of the
unknown parameterb of system (1), where theG(z) is
a gain function andQ(z) a design function, satisfying
dQ(z)/dz = G(z).

Note that observer (6) and (7) only rely on the third
equation of system (1). That is, when the structure of
the first and second equations of system (1) or the pa-
rametersa andb are altered, the results of identifica-
tion are not influenced. So, the observer has strong ro-
bustness. LettingQ(z) = k ln z, then the observer be-
comes

(8)

{
δ̇ = −kδ − k2 ln z + kxy

z
,

b̂ = δ − k ln z.

4. Controlling Chen’s system using backstepping
design

Backstepping design is a systematic Lyapunov-
based control technique, which can be applied to strict-
feedback systems, pure-feedback systems and block-
strict-feedback systems [14]. At first, we assume that
the parameterb of controlled system (2) has been
identified, andb = b̂. Then the objective is to find a
control lawu for stabilizing the state of system (2) at
the origin. Starting from the first equation, a stabilizing
function α1(x) has to be designed for the virtual
control y in order to make the derivative ofV1(x) =
x2/2, that is,

V̇1 = −ax2 + axy,

negative definite wheny = α1(x). By choosingα1(x)

= 0 and defining the error variablēy as

(9)ȳ = y − α1(x),

the following(x, ȳ)-subsystem is obtained:{
ẋ = −ax + aȳ,

˙̄y = (c − a)x − xz + cȳ,

for which a candidate Lyapunov function isV2(x, ȳ) =
V1(x) + (1/2)ȳ2. Since its time derivative

V̇2 = −ax2 + ȳ(cx − xz + cȳ)

becomes negative definite by choosing the virtual
controlZ as

z = α2(x, ȳ) = c + (c + 1)
ȳ

x
,

the deviation ofz from the stabilizing functionα2,

(10)z̄ = z −
[
c + (c + 1)

ȳ

x

]
,

gives the following system in the(x, ȳ, z̄) coordinates:


ẋ = −ax + aȳ,

˙̄y = (c − a)x − x(z + α2) + cȳ,

˙̄z = xȳ − b̂(z + α2) − c+1
x2 [(c − a)x2 − x2(z + α2)

+ (c + a)xȳ − ā2] + u.

By iterating the previous steps, the derivative of
V3(x, ȳ, z̄) = V2 + (1/2)z̄2, that is,

V̇3 = −ax2 − ȳ2 + z̄

[
−b̂z̄ + u − (c + 1)(c − a) − b̂c

+ (c + 1)z − (c + 1)
(
a + c + b̂

)y

x

+ a(c + 1)
y2

x2

]
,

becomes negative definite by choosing the input

u = b̂c + (c + 1)(c − a) + (c + 1)
(
a + c + bb̂

)y

x

(11)− a(c + 1)
y2

x2 − (c + 1)z,

which proves that the origin has been stabilized in
the (x, ȳ, z̄) coordinates. According to (9) and (10),
the origin in the(x, y, z) coordinates has the same
properties.
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According to (8), we can get the control law of the
controlled system (2) with unknown parameterb:

(12)




u = b̂c + (c + 1)(c − a) + (c + 1)(a + c + bb̂)
y
x

− a(c + 1)
y2

x2 − (c + 1)z,

δ̇ = −kδ − k2 ln z + kxy
z

,

b̂ = δ − k ln z,

wherek > 0, and it is a control constant.

5. Tracking any desired trajectory

This section is to find a control lawu so that a
scalar outputy(t) tracks any desired trajectoryr(t),
including stable or unstable limit cycles as well as
chaotic trajectories.

Let y(t) = y be the output and̄y be the deviation
of y from the target, i.e.,̄y = y − r(t). Given V2 =
(1/2)ȳ2, its time derivative

V̇2 = ȳ
[
(c − a)x − xz + cȳ + cr(t) − ṙ(t)

]
becomes negative by choosing the virtual controlz as

z = α2 = cr − ṙ + (c + 1)ȳ

x
+ (c − a).

Again, givenV3 = V2 + (1/2)z̄2, wherez̄ = z − α2 is
the deviation of the virtual control from the stabilizing
function, the time derivative

V̇3 = −ȳ2

+ z̄

[
−b̂z̄ + u − (c − a)

(
c + b̂ + 1

) + rx + (c + 1)z

+ (a + b̂)r + (a + b̂ + 1)ṙ + r̈ − (c + 1)(a + b̂ + c)y

x

+ a
(c + 1)y2 − (r + ṙy)

x2

]
is negative by choosing the input

u = (c − a)
(
c + b̂ + 1

) − rx − (c + 1)z

− (a + b̂)r + (a + b̂ + 1)ṙ + r̈ − (c + 1)(a + b̂ + c)y

x

(13)− a
(c + 1)y2 − (r + ṙy)

x2 ,

which assures thaty(t) = y tracks the reference signal
r(t). Similar results can be obtained by choosingx or
z as output.

According to (8), the control law of the controlled
system (2) with unknown parameterb are

(14)




u = (c − a)(c + b̂ + 1) − rx − (c + 1)z

− (a+b̂)r+(a+b̂+1)ṙ+r̈−(c+1)(a+b̂+c)y
x

− a
(c+1)y2−(r+ṙy)

x2 ,

δ̇ = −kδ − k2 ln z + k
xy
z

,

b̂ = δ̇ − k ln z.

Notice that, although the control law (14) could ap-
pear complex, they enable systems (2) to be controlled
using a single input. Different approaches can be in-
vestigated if we assume that the system can be con-
trolled by two scalar inputs.

6. Simulation results

In order to verify the effectiveness of observer (8)
and the control applicability of the proposed control
laws (12) and (14), we assumeb = 2.655 and initial
conditionsx(0) = 2.0, y(0) = −1.5, z(0) = 0.5. The
fourth-order Runge–Kutta method is used to solve
the systems of different equations, such as (12) and
(14), with time step size equal 0.001 in all numerical
simulations.

Letting k = 0.8, Fig. 2 shows the effectiveness
of observer (8). We investigate the effectiveness of
observer under the condition of without outer force
and outer forcef = 3.

With the control law (12) applied, the chaotic
orbit of the system is quickly driven to its originally
unstable zero equilibrium point as expected. Fig. 3
shows the time waveform of the controlu switched
on att = 50, and the stabilization of the state variables
x, y, z.

With the control law (14) applied, the scalar out-
puty(t) tracks the desired trajectoryr(t) = sint as ex-

Fig. 2. The identification results of Chen’s system. (a) Without
outside force. (b) Under the work of outside forcef = 3.
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Fig. 3. Controlling Chen’s system using backstepping design.
(a) Time waveform of the control inputu switched on att = 50;
(b) stabilization of the state variablex,y, z.

Fig. 4. Trackingr(t) = sint using backstepping design. (a) Time
waveform of the control inputu switched on att = 50; (b) time
waveform of the outputy of Chen’s system.

pected. Fig. 4 shows the time waveform of the control
switched on att = 50, and the time waveform of the
output y of the Chen’s system.

7. Conclusion

In this Letter a Lyapunov-based approach, called
backstepping design, has been proposed for control-
ling Chen’s chaotic system with unknown parameter.

This new and effect control law can drive a strange
attractor not only to a periodic orbit but also to a
steady state. And it is a systematic procedure for con-
trolling chaotic or hyperchaotic dynamics. Especially,
this method combine the identification of unknown pa-
rameters with backstepping design to control chaotic
system with unknown parameters.

It should be noted that although this Letter is fo-
cused on the control of Chen’s chaotic attractor with
unknown parameter, we believe that the higher non-
linearity and complexity of the chaotic Chen’s attrac-
tor justifies the practical application of the proposed
method to some other complex dynamical systems
with unknown parameters as well.
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