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CONVERGENCE ANALYSIS
FOR ADAPTIVE CONTROL SYSTEMS
WITH UNKNOWN ORDERS, DELAY AND COEFFICIENTS**

This paper considers identification and adaptive control for linear discrete-time stochastic
systems with unknown orders, time-delay and coefficients under uncorrelated noise. Under the
assumption that a lower bound for the time-delay and upper bounds for system orders are known,
1) the consistent estimates for the time-delay, system orders and coefficients are recursively given; 2)
the optimal adaptive controls are designed for both tracking and the quadratic loss function and 3)
the rates of convergence both of the coefficient estimates to their true values and of the loss
functions to their minimums are derived.

1. INTRODUCTION

Let the a priori information about the plant be merely that it is linear stochastic
and bounds for its time-delay and orders are available. The question is how to design
a control to minimize a tracking error or a quadratic loss function and simultaneous-
ly to get consistent estimates for time-delay, orders and coefficients of the system.

In time series analysis there is an extensive literature devoted to estimating orders
‘and coefficients of a stationary ARMA process from a non-recursive point of view,
see Box and JeNKINS [1], AKAIKE [2], [3], RisSANEN [4] and HANNAN and QUINN
[5]. Recently, however, RiSSANEN [6] established results concerning the recursive
order estimation. But in the above works, some sort of stationarity and ergodicity of
the stochastic processes involved are usually assumed. Therefore, the previously
mentioned results cannot directly be applied to the ARMAX process when the
exogenous input is a feedback control so that the process is neither ergodic nor
stationary.
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To estimate the orders of a stochastic feedback control system the first step was
made by CHeN and Guo [7], [8] who introduced a new information criterion CIC
for both uncorrelated noise [7] and correlated noise cases [8]. Further effort in this
direction was made by HEMERLY and Davis [9]. In their work, for systems with
uncorrelated noise, by combining the PLS (Predictive Least Squares) criterion for
order estimation with an adaptive control strategy minimizing a quadratic cost and
applied to multidimensional ARX systems, it is shown that the combination enables
us to estimate, recursively and in a strong consistent way, both the order and the
coefficients of the controlled system, while achieving asymptotically optimal cost.
However, all these papers not only need some strong assumptions because of the
technical problem, but also need a great deal of computation since they require a set
of parallel algorithms (one for each of the possible orders of the system) for
estimating system coefficients and system states appearing in construction of an
optimal quadratic adaptive control.

This paper is devoted to reducing the computing quantity and the assumptions
required in [7]-[9]. Parameters we want to estimate are not only system orders but
also the system time-delay which is not estimated in previous works. The knowledge
about time-delay is unnecessary in some cases where adaptive tracking [10] or
adaptive control with quadratic cost [11] are dealt with without paying attention to
parameter estimation, but it is crucial for some control problems, for example, the
minimum variance control is sensitive to time-delay [12]. The recursion is also given
for criteria as in [9], but the number of system coefficients we need to estimate here is
much less than that estimated in [7]-[9], since we have modified the criterion CIC
used in [8] and use only one algorithm for estimating system coefficients and system
states appearing in the LQ adaptive control problem. In addition, conditions used in
this paper have essentially been weakened in comparison with those in [7]-[9]. As
main results of the paper, for stochastic systems of possible non-minimum-phase
with unknown orders, time-delay and coefficients, optimal adaptive controls are
derived for tracking and quadratic index, respectively; rates of convergence both of
the performance index to its minimum and of the parameter estimates to their true
values are also established.

For clarity of the description, this paper deals with single-input and single-output
systems only. The corresponding results for multidimensional systems can be
obtained similarly. The arrangement of this paper is as follows. Section 2 presents
methods and criteria for estimating system orders, time-delay and coefficients.
Section 3 discusses sufficient conditions guaranteeing consistency of the estimates.
Section 4 designs an optimal adaptive tracking control which makes the estimated
parameters strongly consistent, while Section 5 gives an optimal quadratic adaptive
control which guarantees the strong consistency of the estimated parameters and the
asymptotical minimality of the loss function. The convergence rates both of the
coefficient estimates to their true values and of the loss functions to their minimums
are also derived in Sections 4 and 5. Finally, we conclude this paper in Section 6.
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2. ESTIMATION METHODS FOR.TIME-DELAY,
ORDERS AND COEFFICIENTS

In this section we present methods estimating the unknown time-delay, orders
and coefficients of a stochastic system with uncorrelated noise.

Let the single-input and single-output systems be described by a linear stochastic
difference equation

A@)y,=B@u,+w,n>0; y,=u,=w,=0,n<0, (2.1)

where y,, u, and w, are the output, input and noise, respectively; 4(z) and B(z) are
polynomials in shift-back operator z:

A@Z) =14a;z+ ... +a,,z2"°, p,=0, (2.2)
B(2) = by z®+ ... +b,7% gy = dy = 1. (2.3)

The coefficients a;, (i =1, ..., py), b; ( =d,, ..., qo), the time-delay d, and the
orders (p,, 4,) are unknown but it is assumed that a lower bound. for d, and upper
bounds for p,, g, are available, i.e., integers p*, g* and g* > d* > 1 are given such
that

(P 20)€M, = {(p, @): 0< p <p*, d* <q<g*}, (24)
doeM, = {d: d* < d < gq*}. (2.5)
We now write down methods for estimating d,, (py, o) and a; (i=1, ..., py),
b; (j=dy, ..., q)

Corresponding to the largest possible orders and the smallest possible time-delay
we take the stochastic regressor

‘;0: = [yu oo Yn—p*+1Up—g*+1 - um—r,"‘ﬁ—l:lt (26)
and denote unknown coefficients by '
0% = [—a, ... —ay by ... bT, 27)

where a; =0 for i > p, and b, =0 for Jj<d, or j> qo by definition.
Given any initial value 0F, the estimate

0:‘ = [—'aln R _ap‘nbd*n S bqtn]r (2.8)
for 0* is given by the least-squares method:
n—1 n—1
0F =(Y ofor +1)7" Y ofyiy 2.9)
i=0 i=0

or recursively given by:

1 =07 +bEPEOE (Vs — 0203, (2.10)
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P}y = Pr—brProter Py, (2.11)
P¥=1, bF=(1+¢¥Pred)". (2.12)

For any (p, g9je M, and de M, we set

0.p,d,g9)=[—a,4,--- o D bq,,]’, (2.13)
Gu@:ds @) =y - Vaepriln—gst - Un—ger]’ (2.14)
and
n—1
o,(p,d, q) = z Wi +Hapyit ... +aan’i—p+1“bdnui—d+1" _bqnui—q+1)2

i=0
=1

= Z (yi+l_'9;(p9 d: Q') (pi(ps d, Q))z (215)
i=0

Obviously, 8, (p*, d*, g*) = 6F and o, (p*, d*, ¢*) = o}.
Introduce the criteria

CIC, (p), = 0,(p, d*, q*)+ s, (2.16)

CIC2 (Q)n = 0'" (p*5 d*s q)+qsn (2'17)
and

CIC; (d), = a,(p*, d, ¢*)—ds,, (2.18)

where s, =(logn)>.
Then we can estimate p,, q, and d,, respectively, as follows:

p, = argmin CIC, (p),, (2.19)
ospsp’
q, = argmin CIC, (g), (2.20)
d*<g<q* Y
and
d, = arg min CIC; (d),. (2.21)
da*<d<qg*

Noticing that o,(p, d, q) can be calculated recursively as follows:
Gus1 (s 4, @) = 0, (D, d, D+ (Vi1 — 0 (2, d, 9 0, (P, d, @)
+(0,11(p, d. 9—0,(p. d, @) (N1, (P, 4, 0) 0,1, (P, d: @)
+N,:1(p, d, 9)0,(p, d, 9—2F,., (p, d, q)),
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where
N,:+1(p,d, 9)=N,(p. d, 9+0,(p, d, 9) 9} (p, d, q),
No(p, d, ) =0,
Fori(p,d, @) =F,(p, d, )+ ,(. d, 9)y,s1, Fo(p, d, q) = 0,
we can compute CIC, (p),, CIC,(g), and CIC,(d), also irlx a recursive way:

CIC, (P)y+1 = CIC, (p), + P (844 1 =50+ G (p, d¥, g¥),, (2.22)

CIC; (@)n+1 = CIC; (@) + 4 (Sp4 1 —5,) + G (p*, d*, g), (2.23)
and

CIC; (@), +1 = CIC; (d),—d(5,4,—5,)+ G (p*, d, g%), (2.24)
where

G4, d, @y = (Vas1— 030, 4 @) 0, (p, d, q))?
+(0n+1(, d, 9)—0,(p, d, Q) (N1 (P, d, 910, (p, 4, q)
+N,.1 (. d, 9)0,(p, d, )= 2F,.,,(p, d, q)).  (225)
REMARK 2.1

It is worth noticing that in the above order or delay estimation procedure,
CIC, (p),, CIC,(g), and CIC,(d), correspond to estimating p,, q, and do, respec-
tlvely, and can be carried out separately. Estimating p,, d, and g, here is searched
only among p*+q*—d*+2 points at each time instant n, rather than (p* +1)g*
points as in [7]-[9]. We also note that the time- delay d, is important for some
adaptive control systems [10] and is not estimated in [7]-[9].

REMARK 2.2

The algorithm for computing CIC in [7], [8] is non-recursive, while here
computing CIC, (p),, CIC,(q), and CIC,(d), is carried out recursively.

3. CONSISTENCY THEOREMS OF THE ESTIMATES

In this section, we give conditions guaranteeing consistency of p,, d,, g, and
0, d,, 4,), and state convergence results. The proof is given in Appendix A.

We assume that

H,. {w, &,} is a martingale difference sequence with properties

sup E(w?,{|#,) < o, as., (3.1)
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1 n
lim sup- Y. wi <, as, (3.2)
n—+w i=0
1 n—1
lim inf g Y wf>0,as, (3.3)
n—oo i=0

where {#,} is a family of non-decreasing o-algebras, and

R
T

*

t = 2p* +q*. (3.4)

THEOREM 3.1

If H, holds, u, is & ,-measurable, and r¥ =1+ Y | ¢¥||* satisfies
i=0

log r¥)(log log r¥)
(ogr.,,)( o8 zogr,,) ——0, for some constant ¢ > 1 (3.5)
(logn) "
and
(log n)?
Rnl) 7 -
n—1
where A%, (n) denotes the minimum eigenvalue of ), of o}, then 0%, p,. d, and g,
i=0
given by (2.9)(2.21) are strongly consistent:
(logry)(loglog ri)*
0*—0%|2 = 0, as., :
l I 0( T s 0, a8 (3.7
(P,,a d", qn)m(p()! doa q0)9 a.s. (38)

REMARK 3.1

Condition H, means that the noise w, should be neither too strong (see (3.2)) nor
too weak (see (3.3)). Too strong noise may heavily corrupt the system data, while too
weak noise cannot sufficiently excite the system in order to get consistent parameter
estimates. In the latter case we then have to require some other a priori information.
For example, in the case where w, = 0, we have to require that A4(z) and B(z) are
coprime.

REMARK 3.2

From the proofs of Theorem 3.1 (see Appendix A), we know that s, in criteria
CIC, (p),» CIC, (g), and CIC; (d), can be replaced by any real number sequence 5%}
satisfying _

*

* *\C
(logry¥)(loglogry) 5. and 5

* n—owc * n—*
Sn Amin (n)

0. (3.9)
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In practice, conditions (3.5)+3.6) in Theorem 3.1 are difficult to verify. In the
following we remove them and use easier varifiable ones.

We know that performances of long-run average type will not be worsened if the
attenuating excitation control [12], [13] is applied. Suggested by this method, as
excitation source we take a sequence of mutually independent variables {v,} that is
independent of {w,} and satisfies '

Ev, =0 Euz:i vfsa—z, g€ 0,; (3.10)
" ) L g 2(t+1)/)°

n n

where ¢ is given by (3.4) and ¢® >0 is a constant which can be determined by
designer.
Without loss of generality we assume

F,={w, v, i <n}
and
Fn={wy v, i<n}.

Let u) be and #,-adapted desired control. The attenuating excitation method
suggests to implement

U, =ul+uv, (3.11)
to system.
We now assume that
" 1-2e(t+1)
H,. f=o(uP)2 =o(m'*?), ford= 43 (3.12)
and
Y yt=o(, for some b>0. (3.13)
i=0
THEOREM 3.2
If H, and H, hold with u, given by (3.11), then (2.9)(2.21) lead to
(log n)(loglog n)*
”9:'—9*”2 = O(WT— ) (314)
and
(P dus 4w ) 7557 (Pos dos Go), @S- (3.15)

In Theorem 3.2. (3.15) means that p,, d, and g, are consistent, while (3.14)
indicates the convergence rates of coefficient estimates to their true values.

3 — Systems Science 4/90
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REMARK 3.3

From 3.2 we know that s, used in (2.16)+2.18) can be replaced by any number
sequence {si} satisfying

(logn) (loglog n)* s
T n= o 0 and pl- @+ etd)n—o 0. (346)

REMARK 3.4

From [12]-[13] we know that the real number é in (3.12) can be any one
satisfying de [0, (1—2 (t+ 1))/(2t+3)].

REMARK 3.5

From the proof (see Appendix A) we see that one can easily generalize the results
of this paper to multidimensional systems.

REMARK 3.6

We now compare conditions used in Theorem 3.1 of this paper with those used in
Theorem 2.1 of [9].

In [9] in addition to conditions used in Theorem 3.1 of this paper it is assumed
that E(w?|#,_,) = 0%, as. and

oi(0, L, (Y 0:(p, 1, @) 0i(p, L, @) 0, (p, 1, 9) ;752 0, as.

i=0
for any (p, g€ M,. These conditions are no longer required in this paper. The

condition sup E (w%|#,_,) < 0, as. for some a > 2 required in [9] is weakened to
n

: 1 o ; . . .
o« = 2 and the existence of the limit for — ) w} is not required here. Finally, in [9]
ni=o
there are following conditions:

Amin (D> @550, as.

and
j*;"]nax (pa q) . o(j‘,rtnin (p» q) (Iog Agli!l (pv q))?)s a.s., ¥ >0

for any (p, 9)e My, where A%, (p,q) and An.(p, q) denote the minimum and
n—1

maximum eigenvalue of Y ¢;(p, 1, 9) @i (p, 1, q) respectively. Clearly, these con-
i=0

ditions imply

> , (Uogri)(oglogryy
Pl T G P - 007

0
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since ry and An., (p*, g*) are of the same order. Therefore, (3.12) is fulfilled with
s, = (r¥)"/? and the conclusion of Theorem 3.1 follows from Remark 3.2.

REMARK 3.7

Comparing Theorem 3.2 of this paper with Theorem 3.1 in [9] one may find
a situation similar to that described in Remark 3.6: weaker conditions are applied
here and s, can be taken as n®, Vae(0, 1).

REMARK 3.8

In the case where we pay no attention to control performance and concern the
parameter estimation only, we may take uJ = 0. Then H, is satisfied for stochastic
systems if A(z) # 0 for |z| < 1. It is worth noting that we allow A(z) =0 at |z| = 1,
and that we do not require the minimum phase condition.

4. ADAPTIVE TRACKING

We now design the input for a stochastic system with unknown orders and
coefficients so that the system output follows a given bounded deterministic reference
signal yy. Specifically, we shall design uj in (3.11) so that condition H, in Theorem
3.2 holds and the output {y,} minimizes

; 13
limsup— 3" (y,—y¥)>.
n—a i=0

In this section we assume that v, in (3.11) has independent components and
continuous distributions, and that delay d, is known. Let

A.z)=1+a,z+ ... +a, 2", 4.1

Pnnt
B,(2) = byz®+ ... +b, 2%, (4.2)

where p,, q,, a;,,(i=1,...,p,) and b, (j=d,, ..., q,) are given by (2.9)(2.17) and
(2.19)+2.20) with initial value 0F satisfying b, , # 0 which guarantees that
b,,#0as, n=0, ' (4.3)

when the attenuating excitation control (3.11) is applied [14].
Let F(z) = 1+fiz+ ... +f3,-2° 7! and G(2) = go+g,z+ ... +4g,,_ 127 ' be
the solutions of the Diophantine equation

1=F(2) A(z)+G(2) z*. (4.4)

don

Then the system (2.1) can be written as

Yn+do = F(2)B(2) 2™, + G (2) yo + F (2) Wy g, (4.5)
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Since F(z)w, 4,4, and F (z) (z)z " %u,+G(z)y, are uncorrelated, and the leading
coefficient of F(z) B(z)z “ is b,, which is a non-zero constant, the optimal tracking
control u, should be defined from

Y¥rao = F@)B(@)z *u, +G(2)y, (4.6)

when the system parameters are all known. This motivates us to construct adaptive
tracking control u, in the following way.
Let u, be the solution of the following equation:

bdnnu y::'f' do ™ (Gn (z) yn + (Fr:Bn) (Z 7dﬂu i bd[)nun) . . (47)

where
Fo@) = 14fiz+ oo +fapo 12

and
G,(2) = Gon+G1uz+ - +Gp 12"
are the solutions of the Diophaﬁtine equation
1=F,(2)A4,(2)+G,(z) z%, (4.8)

and (F,B,)(z) denotes the product of polynomials F,(z) and B, (z).
Finally, the adaptive tracking control u, of system (2.1) is given by (3.11) with
u? defined as follows:

& u,, if n belongs to [t o) for some k, @ 5)
““=90, if n belongs to [0, 7,+,) for some k, '
where {r,} and {c,} are two sequences of stopping times defined by
1=, = & T < O Ky
=sup {u > 7 Z @) < (=" +w,)? Vie(y, pl}, (4.10)
or—1 1+5
Topp =inf{u>a: Y @)’ < () <t . (4.11)

2"’

i=1

By induction it is easy to see that uj is % ,-measurable.
For the system (2.1) we have

THEOREM 4.1

If condition H, holds; A(z) is stable; u, is given by (3.11) and (4.7)(4.11); 0%, p,» 4,
are defined by (2.9)+(2.17) and (2.19)+2.20), then

|0z —6*%]> =0 (ﬂog ) (loglog ")c), as., (4.12)

nl —(t+1)(e+0)
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(pna qn)W(POs QO)! a.5. (413)
and
% Z (yv;—yH)? —% Y (F(z)w)*+o(n™ %), as. (4.14)
1= i=0

The proof is given in Appendix B

REMARK 4.1
If the time-delay is also unknown, then it is difficult to know whether b, , is zero

or not and hence difficult to guarantee solvability of the optimal adaptive tracking
control (see (4.7)).

REMARK 4.2
From [14] we know that for any u, measurable with respect to &, F = {w, i< n}
we have
lim sup— Z (v;—y¥)? = lim sup— Z (F (z) w)*.

n—* oo i=0 n—co

So (4.12)-(4.14) mean that the adaptive control u, defined by (3.11) and (4.7)(4.11) is
optimal.

REMARK 4.3
If conditions of Theorem 4.1 are satisfied with

I n
limsup; Y wi=0as.,

R0 i=0
then the conclusions of Theorem 4.1 become (4.12), (4.13) and

n

I
limsup— Y (y =0as

n— oo i=0
REMARK 4.4

Theorem 4.1 remains valid if in lieu of stability of A(z) we use a weaker
condition: all zeros of A (z) are outside open unit disk and G (z) is stable, where G (z)
is given by (4.4). To see that the latter condition is really weaker than stability of 4 (z)
it is enough to take d, =1 and A(z) = 1—z as an example, for which G(z) = 1.

5. ADAPTIVE LQ PROBLEM

In this section we shall consider adaptive LQ problem for the system (2.1). The
loss function is
J(u) = limsup J, (u), (5.1

n—roo
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where

n—

1 1
) =-% @y’ +Q,u}), 2,20,0,>0 (5.2)

ni=o

for system (2.1) with orders, time-delay and coefficients all unknown.
In this section we assume that

1=

H,. wf = R+0(n"9 as. for some ¢ >0 and R > 0. (5.3)

S|

0

We first write (2.1) in the state space form

Xpr1 = Axg+Bu, +Cwp 4, (5.4)
V= CF, g =05 (5.5
where
"0
=gy 1 B s aw 0 : 1
—a, 0 1 - - 0 0

A= : 7l B = by, | » €= ¥ (5.6)

gy, M D e e 0 ;ﬁ 0

with h = max (py, qq, 1).
From [13] it is known that

inf J () = RC'SC, for system (2.1), (5.7)

uell

and the optimal control is

u, = Lx,, (5.8)
where
U={u: ) u}=o0(n),u? =o0(n)as,u,eF,}, (5.9)
j=0
L= —(B'SB+Q,) 'B'SA (5.10)
and § satisfies
S =A'SA—A'SB(B'SB+Q,) ! B'SA+CQ,C" (5.11)

for which there is a unique positive definite solution S if (4, B, D) is controllable and
observable for some D fulfilling D'D = CQ,C".
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Based on the estimates p,, d, g, and 0, (p,, d, q,) given by (2.9}+2.21) we
estimate 4, B, C, § and x, by A (n), B(n), C(n), S(n) and %, respectively, as follows:

iy 1B e 0 [0 ]
—a,, 0 1 e e 0 :
Am=| 10 Bey=| )
i g bn | > (5.12)
5 i -1
L —a,, 0 0 - - 0 .
Cm)=[10......005xp., h,=max(p, q, 1), (5.13)

S =A"(m)S' (n—1)A(n)—A*(n)S"(n—1)B(n)(B*(n) S’ (n— 1)B(n)+Q2)_’ -
XB'(n)S'(n—1)Am)+Cn)Q,C*(n) (5.14)

with §(0) =0 and §'(n—1) being a square matrix of dimension h,x h,:

Sl
S'(n—) = [0 0:|, if h,_, <h,,

M:n)S(n—1)M(n), if h,_,>h
where M*(n) = [I 0], x4, ,,» and finally,
Xyp1 = AM)X,+B M), +C(n)(,4—C (n) A(n) X, — C*(n) B(n)u,),

Xo=1Yo=0, (5.15)
where X, is of dimension h, and is defined by

3 % OT; it .4 <€ B
A 5.16
e {M‘(n) %, ifh_,>h. 2-10)
We now have the estimate L, for the optimal gain L given by (5.10)
L,= —(B*(n)S(n) B(n)+Q,) 'B*(n) S (n) A (n). (5.17)

However, we cannot directly take L X, as the desired control u}, because L, %,
may grow too fast so that H, is not satisfied.
Define

Lo— {Ln, if ne [, a;) for some k, (5.18)

0, if neloy, 1,.,) for some k,

iy =l X, (5.19)
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where stopping times {7,} and {o,} are defined by

l=1,<0,<1,<0,<...,

j—1
Gk = Sllp {.u' > Tk: Z (L|£:)2 S (]7 1)1+5+(erx';k)2, VjE(Tk, .Lt]}, (520)

i=rk

a—1 1+4
3 ar H
Te+1 = mf{l“ = Oy _Z (LX) < ok
© e (L %)
-21 |2 < TR, —j‘% < 1}. (5.21)
fm

THEOREM 5.1

If H, and H, hold, A(z) is stable, (A, B, D) is controllable and observable for some
D satisfying D'D = CQ,C", 0F and p,, d, and q, are defined by (2.9)+2.21), then u,
defined by (3.11) and (5.18)+5.21) is optimal in the sense that

(pn’ dm qn),,'?&? (pO’ dﬂa q())s a.s., (522)
(logn) (loglog n)*
6% —0%|2 = o( =G+ , 4.8. (5.23)
and
J,(u) = RC'SC+o(n~"9), as. (5.24)
Proor

By an argument similar to the proof of Theorem 4.1 (see Appendix A), we have

(LOZ)? = o(n'*?). (5.25)

it

i

From this and stability of A(z) we have

>yt =o@'").
i=0

Then theorem 3.2 asserts (3.14) and (3.15) by which we know that (p, d,, q,)
= (po» dg» q,) for n starting from some N, > 0.

Hence Theorem 4 of [12] applies to the present case and (5.22), (5.23) follow
immediately.

REMARK 5.1

From (3.11) and (5.12)-(5.21) it is easy to see that here only one computing
procedure is needed for constructing the optimal linear quadratic adaptive control,
whereas [9] required (p*+1)g* computing procedures.
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REMARK 5.2

If the lower bound for time-delay and upper bounds for system orders are treated
as the true delay and true orders, respectively, in the adaptive control design the
structure of the controller is at least as complex as that of the system to be controlled
[11]. Consistently estimating time-delay and system orders not only gives better
knowledge about the system which possibly is important for the user, but also
provides simpler structure of the controller. Furthermore, if the true time-delay is
strictly greater than its lower bound, then the estimate for the leading coefficient in
B(z) will tend to zero. As consequence, the control for adaptive tracking will be
unboundedly increased and this is unacceptable in the practice.

6. CONCLUSION

The paper gives recursive parameter estimates for system (2.1) under the
assumption that a lower bound of the time-delay and upper bounds of system orders
are known. Optimal adaptive controls are designed for both tracking and LQ
problems when the system coefficients, orders and time-delay are all unknown, and
the rates of convergence both of the estimates to their true values and of the loss
functions to their minimums are derived. We have simplified the estimation
algorithms and essentially weakened the conditions used in [7]-[9]. The criteria
used in the paper can be used for estimating time-delay, system orders and
coefficients for stochastic systems with correlated noise. This will be published
elsewhere.

APPENDIX A
This section proves Theorems 3.1-3.4. We first present some properties of CIC, (p),, CIC, (q), and
CIC, (d),.

Lemma A.l
Under the conditions of Theorem 3.1 we have

S"(P—PQ+O(I)), a.s., if P = Pos
CIC, (p),—CIC > i
1 (P), 1(Po, {;V,ﬁin () (o +0(1)), as., if p<py: (A1)
sol@a—aqo+o(), as,  if ¢=qo,
CIC, (g),—CI > 2
2(9),—CIC; (o), {,1;;;,, (m)(%+o(1), as., if g <go; (A-2)
saldo—d+o(l)), as,  if d<d,,
CIC, (d),— CIC, (d,), = 45
s —EIES, {x::in () (Eo+o(), as, if d> dy, Ay

where &, > 0 is a constant.
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ProoF
We first prove (A.1). For any 0 < p < p*, set

_[1,0.0
H(p) ﬁ[o 0 1,,,]‘ (A4)

where I, and I, are identity matrices of dimension p and g* —d* + 1, respectively, while 0, is a zero matrix
of dimension px (p*—p).
If p = py, then

Var1 = 0(p, d*, q*) @, (p, d* q%)+W,sy (A.5)

and

n=l
U" (p9 d*x q*) = E (e:l (P- d*, q*) (pi(p’ d*- q*)+wi+l)2
i=0

-1

= G.':l (P1 d*v q*) 2 (0(- (pv d*a q*) (0: (pa d*a qt)é:-.u’: d*! q*)

i=0

=i

n n-1
+28~; (p, d*, q%) Z @i (p, d*, q¥)wi + z Wj2+1s (A.6)

i=0 i=0
where 0, (p, d, q) = a(p, d, q)—0,(p, d, q)-
Noticing (A.4) and (2.9), we have
n—1 n—1
Gt 265 —0f = —(L otor+1)7 (T ofwir—0%), (A7)
i=0 i=0

0., d* ¢ = H@) 0¥, 9,(p, d*, q*) = H(p) o

and

n—1 n—1 n—1
6, (. d% 0% = (L oFer +D V(Y @fwi — 00 (X ofel +1)" "> H'(p)
= i=0

i=0 i=0
n—1 n—1 n—1
HE)( Y oror)H@HP)Y ofer+1) (L oot +D712
i=0 i=0 i=0
n—1 n—1 n—1
( Z ¢?Wi+1"6*))_2(( ):, ‘P?‘?’?t"‘n—uz( Z ‘P?WH[‘B*])t
i=0 i=0 i=0
n—1 n—1 n—1
(Y oror+ D) P HEH@(Y, ofer+1)* (L orer+)~1?
i=0 i=0 i=0
n—1 n—1
Z ¢?Wi+1)+ z Wity (A.8)
i=0 i=0

Let T(p) be an orthogonal matrix such that

1,0 0],
TPH @HP T ()= [0 I 0} =F(p).
00 0
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We have

- n—1 n—1

(Z o pF* +1)""H' (p) H (p)( Z Prer)H @) H(p)( L olor+D~"7

i=0 i=0

n—1 =

tr(( ¥ orer +D~""2 H'(p)H(p)( Z (p?‘m?')H'(P)H(P](i por +1)717)
i=0 i=Q

i=0

=t (TP H () H(p) T*(p)T (p)( i @+ T (p) T (p) H* () H (p) T* (p)T (p)
i=0

(E eto!) T*(p) T (p) H' (p) H (p) T" (p))

= tr(F(p)(T(p)( Z Pror) T (p)+1)~! F(p}T(p)(i ¥ ) T () F(p) = 0(1) (A9)
i=0 i=0
and
n—1 n—1
(Y oror+1)" 2 H p)H(p)( Y ofof +D)V2)2 = o(1). (A.10)
i=0 i=0

By Lemma 2 of [8] we also have

ll(Z pror+0)712 Z @FWis1||? = o((logr¥) (loglog r¥Y). (A.11)

i=0 i=0

Combining (A.8){A.11) yields

n—1
a,(p, 4%, q*) = o((logr¥) (loglog r¥Y)+ ¥ wi .. (A.12)
i=0
From this and (3.5) we obtain the first part of (A.1).
Set
0% (p) = [@1n—0, ... @pry—ay byp—byp, ... br—bs T (A.13)
where dj, = a,, if i <p, ajp =0 if p<i<p*
When p < p,, we have
162 (P)I1> = min (a2, b3, b3) = &y > 0 (A.14)
and hence by Lemma 2 of [8]
n—1 n—1 n—=1
0P d*, q*) = G (O)( Y. o¥o) 0 (p)+205 () ¥ oFwip i+ Y why
i=0 i=0 i=0

n—=1 n—1
I ofor) B ()I*+ T whi—o

(1|(2 ot or)"2 0% (p)|(log r#) (loglogr2))1"2)

* *)c)1/2 n—1
> 10 ()% (n)(l —o((('f_“if Dogouriy) ))+ P
(X otaryeaen’’ =

i=0
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ﬂ* logl ::c 1/2 n—1
> &g A (n)(l = o((——ug . jm("fn;’g i ) ))+ 3 v

= Ain(n) (5‘0+0(1))+ Z Wit
i=0

which together with (A.12) implies the second part of (A.1), while (A.2) and (A.3) can be obtained similarly.

PROOF OF THEOREM 3.1

Noticing (A.7) we immediately conclude (3.7) by using Lemma 2 of [&].

Since (p,, d., g,) belongs to a finite set, for (3.8) we need only to show that any limit point of sequence
{(pn d» @)} is nothing but (py, do, go)- To this end, let p’ be the limit of a subsequence {p,,} of {p,}-

If p' < pg then (A1) tells us that for all sufficiently large k

0 2 CICI (pmq)m(_clcl (po)me i CICl (p')’”‘ _Clcl (po)m‘
= A‘lTTiI‘I (nk) (EEU +o (1)) k—+on .

The obtained contradiction means that p’' = p,. Again by (A.1) we know
0 = CIC, (p),, —CIC, (Po), = S (P —Po+ o(l)), forp' = po.

Thus we must have p’ = p,, otherwise the last inequality leads to a contradiction as k — co. Since p' is
any limit point of p,, we conclude that p,—po, as. as n—co.

Similarly, by (A.2) and (A.3) it is not difficult to assert g,—go, a3 and d,—d,, as. as n— o0,

PROOF OF THEOREM 3.2

Obviously, from Theorem 3.1 we need only to show that

liminfp=tHEHDETD 2% (1) £ 0, as. (A.15)

n-= o0

By the argument used in [12] for this it suffices to show that there does not exist a non-zero vector

71: [10 ap**l 130 "'ﬂqv—i]!

such that

-1 g -1 -1

Y «zB(z)= Y BZA(z) and 3 «z'=0. (A.16)
i=0 i=0 i=0
This is true indeed, because the second equation of (A.16) leads to ;=0 (i=0, ..., ;'7*7 1), then by the
first equation of (A.16) f;=0 (j=0,..., g*—1).

APPENDIX B

PROOF OF THEOREM 4.1

Theorem 3.2 implies (4.12)-(4.13) if we can verify H,, for which it suffices to show (3.12) because of
stability of A(z). This can be done by a method similar to that used in [13]:

If 7, < o0 and 6, = oo for some k then by (4.9) u? = i} for i = 7, and (3.13) follows from (4.10).

If 6, < 0 and 7,,, = oo for some k, then by (4.9) u! =0 for i = o; and (3.12) is trivial.

If 7, < w0 and o, < oo for all k, then by (4.9)-(4.11) for any k=1
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1 < 1 & o2
sup 1+8 z (u?)l = sup 1+ E (ul')
eSn<tesy i=1 <n<ar—1 1 i=t
1 ag1—1 ar-1—1 n
= sup (T @R+ .+ X @+ Y )
wEn<or—1 n i=ty 7i=zk—1 =1k
1 gi=1 1 ok-1—1 1 n 5
" 2 .
Sy )+ .. * v Z @)+ sup 1+a 2 (u)
T2 i=1 T P=tr-1 eS<ngar—1 n i=t

k—1 1 c 1
£y §+ sup — (" (,)?) < 3, as.,
i=1

meSnSaxr—1

which verifies (3.12), and hence (4.12) and (4.13) hold.
We now prove (4.14). By (4.5) and (4.7) we have

Vutdo—Yirdo = F (&) B(2) 2 u,—(F,B,) (@) 2™ "tt,+ G (2) y,— G, (&) Yu+ bay Vu+ F () Wy 14y (BLD)

- By (4.16) we have (p,, g,) = (P go) for sufficiently large n, and by stability of A(z) we find that
n
Y yi=o@m'"), as.
i=0

Then by the argument used for proving (F8) and (52) in [14] we see

ipa-

(F(2)B(2)z~% u;—(F;B)(2) 2~ *u;+ G (2) yi— Gi(2) i+ bati)* = 0(n' ™)

and obtain the estimate (4.17).
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ANALIZA ZBIEZNOSCI DLA SYSTEMOW ADAPTACYJNEGO
STEROWANIA O NIE ZNANYCH RZEDACH, OPOZNIENIACH
1 WSPOLCZYNNIKACH

Analizowane sa zadania identyfikacji i adaptacyjnego sterowania dla liniowych, dyskretnych
systemdw stochastycznych o nie znanych rzedach, opdznieniach czasowych i wspolczynnikach w obecno-
éci nieskolerowanego szumu. Przy zalozeniu, Ze znane sa: dolne ograniczenie na wartosc opoznienia
i gérne ograniczenie na rzad systemu, podano metode obliczania zbieznych estymat czasu opOznienia,
rzedu systemu i wspolczynnikow; zaprojektowano algorytm rozwiazywania zadania optymalnego
§ledzenia i zadania optymalnego sterowania adaptacyjnego dla kwadratowej funkcji strat; oszacowano
szybkosé zbieznoéci zardwno estymat wspolczynnikow do ich rzeczywistej wartosci, jak i wartosci funkcji
strat do jej minimalnej wartosci.





