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a b s t r a c t

Distributed control of the multi-agent systems involving a major agent and a large number of minor
agents is investigated in this paper. There exist Markov jump parameters in the dynamic equation and
random parameters in the index functions. The major agent has salient impact on others. Each minor
agent merely has tiny influence, while the average effect of all the minor agents is not negligible, which
plays a significant role in the evolution and performance index of each agent. Besides the state of themajor
agent, eachminor agent can only access to the information of its state and parameters. Based on themean
field (MF) theory, a set of distributed control laws is designed. By the probability limit theory, the uniform
stability of the closed-loop system and the upper bound of the corresponding index values are obtained.
Via a numerical example, the consistency of theMF estimation and the influence of the initial state values
and parameters on the index values are demonstrated.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The topic of multi-agent systems (MASs) is attracting more
and more interest and attention due to its wide application
backgrounds in economics, social science, biology and engineering
(Akkermans, Schreinemakers, & Kok, 2004; Guessoum, Rejeb, &
Durand, 2004; Reynolds, 1987; Schurr et al., 2005; Sun & Naveh,
2004; Vicsek, Czirók, Ben-Jacob, Cohen, & Shochet, 1995). In
MASs, each agent merely relies on the local information to make
decisions. Thus, a natural problem arising is how to design the
distributed control laws based on each agent’s information pattern
and performance index. In the case of large populations, due
to the high computation complexity, it is generally hard to be
implemented in practical applications. To conquer this drawback,
Huang, Caines, and Malhame (2003, 2007); Huang, Malhamé,
and Caines (2006) developed the Nash Certainty Equivalence
Methodology based on the mean field (MF) theory, with which
they gave distributed ε-Nash equilibrium strategies for the game
problem of large population MASs coupled via discounted costs. Li
and Zhang (2008a,b) considered the casewhere agents are coupled
via their stochastic long run time-average indices, and obtained
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an asymptotical Nash equilibrium. Wang and Zhang (in press)
considered the mean field games of MASs where agents were
coupled by nonlinear indices and the structure parameters were
independent Markov chains. The identical idea can also be found
in Lasry and Lions (2006, 2007), Weintraub, Benkard, and Van Roy
(2005, 2008), Yin, Mehta, Meyn, and Shanbhag (2010). Weintraub
et al. (2005, 2008) presented an MF approximation method when
studying discrete-time stochastic games, and proposed the notion
of oblivious equilibrium which can approximate Markov perfect
equilibrium. Lasry and Lions (2006, 2007) introduced an MF
game model, and provided a limit partial differential equation.
Yin et al. (2010) investigated the synchronization of coupled
nonlinear oscillators in a game-theoretic framework, and gave a
deterministic partial differential equation model for mean field
approximation in the stochastic systems.

The above-mentioned papers mainly consider the model
involving a large number of agents with the equal influence.
However, in practice the agents may have different influences. In
this kind of systems, an importantmodelwithwide backgrounds is
the system involving one or several major agents and many minor
agents, such as a market consisting of several large companies
and a large number of small companies. (Fudenberg, Levine, &
Pesendorfer, 1998; Levine & Pesendorfer, 1995) studied when
the influence of each minor agent is negligible. Huang (2010)
investigated continuous-time stochastic dynamic games of large
population systems with a major player, and gave a set of ε-Nash
equilibrium strategies for the systems under some consistency
conditions. Benkard, Jeziorksi, and Weintraub (2010) considered
oblivious equilibria with dominant firms in industry models.

http://dx.doi.org/10.1016/j.automatica.2012.06.050
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In practice, another factor to be considered is the uncertainty
of environment. For instance, the change rates of prices in the
financial market in different time slots may be very different.
A powerful tool depicting the abrupt environmental changes is
Markov jump models. To be specific, owing to drastic variation
of environment, the system may take on different ‘‘modes’’ at
different moments, and jump among these ‘‘modes’’ according to a
Markov chain. For the research results in this direction, readers are
referred to (Costa, Fragoso, & Marques, 2005; Ji & Chizeck, 1990;
Mariton, 1990; Sworder, 1969; Wonham, 1970).

In this paper, we investigate the model with a major agent
and a large number of minor agents. The major agent plays an
important role in the evolution of the system. Each minor agent
merely has tiny influence, while the average effect of all the
minor agents is not negligible. Compared with the previous works,
the model in the paper has the following features. (1) There are
Markov jump parameters in the dynamic equation and random
parameters in the index function for each agent. (2) Each minor
agent only knows its initial state. In the previous work, each
agent is required to know the statistical expectation of the initial
values of all the minor agents. Thus, the model in the paper
has broader application backgrounds. For instance, consider a
market consisting of a large company and many small companies
in an environment with abrupt changes. Different companies
may have different initial assets and anticipated earnings. The
large company, which possesses abundant capital and market
information, has great impact on the market. However, the small
companieswith tiny influence,may have difficulty in obtaining the
statistical information for all the other small companies.

For this kind of models, we design distributed control laws
based on the MF theory. Since the parameters in all agents’
indices may be different and each minor agent does not know the
statistical expectation of the initial state of all the minor agents,
each agent may have different estimates for the state average of
the minor agents. On the other hand, since each agent is affected
significantly by the major agent, the state average of all the minor
agents depends on the major agent. Thus, even when the number
of agents grows to infinity, the aggregation effect of all the minor
agents is not a deterministic quantity, but a stochastic process
depending on the major agent’s state. The dependence on the
major agent’s state and diversity of the MF estimation functions
bring us more difficulty to the analysis of the closed-loop system.
We first prove that the MF estimation function approximates the
state average of all the minor agents by exploiting the structure of
the system and the property ofMarkov chains. And then, regarding
theMFestimation function of themajor agent and its state as a high
dimensional variable, from the combined evolutionary equations
we obtain their uniform boundedness in the average sense and
the uniform stability of the closed-loop system. Finally, we give
an upper bound for the corresponding index values and show that
the index values of all the closed-loop agents under the distributed
control converge to the optimal index values under the centralized
control, as the variance of the parameters of the minor agents’
indices decreases to 0 and the number of agents grows to infinity.

The remainder of this paper is organized as follows. In Section 2,
we describe the model and basic assumptions. In Section 3, we
first give the optimal centralized control and the corresponding
index values, and then design a set of distributed control laws
based on theMF theory. In Section 4, we analyze the stability of the
closed-loop system and the optimality of the distributed control.
Firstly, we prove that the MF estimation function approximates
to the state average of all the minor agents. Then we obtain
the uniform stability of the closed-loop systems and an upper
bound for the corresponding index values under the distributed
control, and compare it with the optimal index values under
the centralized control. In Section 5, we analyze how the values
of some parameters in the index functions affect the stability
and optimality of the closed-loop system. In Section 6, through
a numerical example, we verify the consistency of the MF
estimation, and demonstrate the influence of parameter values and
initial state values on the index values. In Section 7, we give some
concluding remarks for the paper.

The following notations will be used in the paper. For a given
vector or matrix X, XT denotes the transpose of X; tr(X) denotes
the trace of the square matrix X; ∥X∥ denotes the Euclidean
vector norm or matrix norm induced by the Euclidean vector
norm of X . In denotes an n-dimensional identity matrix;⊗ denotes
the Kronecker product. For a sequence of matrices Aj, j =

1, . . . ,m, diag(Aj) denotes the block diagonal matrix with Aj in the
diagonal and zero elsewhere. For a given random variable (r.v.) ξ
on the probability space (Ω,F , P), Eξ denotes the mathematical
expectation of ξ . For a given set collection C, σ (C) denotes the
σ algebra generated by C. For a family of Rn-values r.v.s {ξλ, λ ∈

Λ}, σ (ξλ, λ ∈ Λ) denotes the σ algebra σ {[ξλ ∈ B], B ∈ Bn, λ ∈

Λ}, where Bn is an n dimensional Borel σ algebra.

2. Problem description

Consider the MAS described by the following dynamics:

x0(k + 1) = f0(θk, x0(k))+ u0(k)+ F0(θk)x(N)(k)
+D0(θk)w0(k + 1), (1)

xi(k + 1) = fi(θk, xi(k))+ ui(k)+ F(θk)x(N)(k)
+G(θk)x0(k)+ D(θk)wi(k + 1), 1 ≤ i ≤ N, (2)

where xi ∈ Rn, ui ∈ Rr and wi(k) ∈ Rd, 0 ≤ i ≤ N are
the state, the input and the stochastic disturbance of the agent i,
respectively. Agent 0 denotes the major agent, and the others are
the minor agents. x(N)(k) =

1
N

N
i=1 xi(k) is the state average of

all the minor agents. {θk} is a discrete-time ergodic Markov chain
taking value in S = {1, 2, . . . ,m} with the transition probability
matrix P = {pij, i, j = 1, . . . ,m} and the stationary distribution
π = {πj, j = 1, . . . ,m}. fi : S × Rn

→ Rn is a Borel measurable
function, F0(·),D0(·), F(·),G(·) and D(·) are real matrices with
proper dimensions.

The indices of N+1 agents are described by

JN0 (u) = lim sup
T→∞

1
T

T
k=0

E
x0(k + 1)− H0x(N)(k)− α0

2 , (3)

JNi (u) = lim sup
T→∞

1
T

T
k=0

E
xi(k + 1)− (H̄0x0(k)

+ Hx(N)(k)+ αi)
2 , (4)

where {αi, 0 ≤ i ≤ N} is a sequence of independent n dimensional
random variables (r.v.s). H0, H̄0 and H are matrices with proper
dimensions. u = (u0, u1, . . . , uN).

In the model (1)–(4), the major agent 0 possesses significant
impact on the evolution behavior and performance indices of all
the other agents. The influence of each minor agent is tiny, but the
average effect of all the minor agents is not negligible. This kind of
model is widely existent in many fields, e.g., the market consisting
of one or several large companies and a large number of small
companies in economics, and the system involving the government
and mass in social science.

Remark 2.1. The model (1)–(4) may be used to roughly describe
the market consisting of a large company and many small
companies in an environment with abrupt changes. x0 denotes
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the output level of the large company; xi, 1 ≤ i ≤ N , denotes
the output level of the ith small company; ui, 0 ≤ i ≤ N ,
denotes the input of the ith company; x(N) denotes the average
of outputs of all the small companies. During the operation of the
market, each company may anticipate that its averaged output
gained in a relatively long time period attains some value, which
depends on x0 and x(N). Indeed, the tracking-type indices (3)–(4)
are based on the works of Huang et al. (2007) and Lambson (1984),
which investigated the dynamical production output planning.
Under the assumption that the demand increases with the number
of companies, the market price is roughly regarded as a linear
function of x0 and x(N). We assume that each company tries to keep
its output level approximately in proportion to the price of market
since an increasing price calls for more supplies of the product and
vice versa. Thus, each company will adjust its output to ‘‘track’’
some value depending on x0 and x(N) by minimizing a quadratic
penalty term.

For the convenience of citations, here we list some assumptions
to be used in the paper.

(A1) {{wi(k), k ≥ 0}, 0 ≤ i ≤ N} is a family of independent d di-
mensional white noise sequences defined on the probability
space (Ω,F , P),

E[wi(k)] = 0, E[wi(k)wT
i (j)] = δkjId, 0 ≤ i ≤ N,

where

δkj =


1, if k = j;
0, otherwise.

(A2) The initial state values {xi0, 1 ≤ i ≤ N} are independent r.v.s
with an identical mathematical expectation. E∥x00∥2 < ∞;
max1≤i≤N E∥xi0 − Exi0∥2

= δ0. {xi0, 0 ≤ i ≤ N}, {wi(k), 0 ≤

i ≤ N} and {θk} are independent of each other.
(A3) Eαi = α, 1 ≤ i ≤ N,max1≤i≤N E∥αi − α∥

2
= δ, E∥α0∥

2

< ∞.

Throughout this paper, on the information available to each
agent, we will assume that the state and parameters of each agent
are known to itself. Ex10 andα are not available to theminor agents,
but available to the major agent 0. The state of the major agent is
available to all the minor agents.

Remark 2.2. The above assumptions have wide practical back-
grounds. For instance, in a market consisting of a large company
andmany small companies, the companies may have different ini-
tial assets and anticipated outputs. Since the number of compa-
nies is quite large, the initial assets of small companies can be
regarded as random samples of the same distribution function.
The large company, which possesses abundant capital, can cap-
ture the statistical information of the initial assets and anticipated
outputs of all the small companies. Meanwhile, with high trans-
parency and considerable publicity, the large company is the focus
of concern, and its operational status can be captured by the small
companies.

Remark 2.3. In (1)–(4), if θk ≡ θ, αi ≡ α, then the model
degenerates to the one of Huang (2010). Our work is not a
trivial extension of Huang (2010). On the one hand, Huang (2010)
considered the case of continuous time; we investigate the case
of discrete time, and give a set of easy-be-verified distributed
control laws (see Remark 3.2). On the other hand, the information
assumptions are different. In Huang (2010), Ex10 is assumed
to be known to each agent, but here, such information is not
required.
3. Design of control laws

First, we provide two groups of control sets:

Ug,i =


u|u(k) ∈ σ

 
0≤i≤N

σ(αi, xi(j), θj, 0 ≤ j ≤ k)


,

Ul,i =


u|u(k) ∈ σ(αi, xi(j), x0(j), θj, 0 ≤ j ≤ k)


, 0 ≤ i ≤ N.

Ug,i is called the global-measurement-based control set, and Ul,i
is called the local-measurement-based control set. For each agent i,
when the admissible control set is Ug,i, the corresponding control
is called centralized control;when the admissible control set isUl,i,
the corresponding control is called distributed control. The main
objective of the paper is to design distributed control for the large
population MAS (1)–(4).

To inspire the design of the distributed control, we first give
the centralized optimal control and the corresponding index
values.

Theorem 3.1. For the system (1)–(4), if Assumptions (A1) and (A2)
hold, then it follows that

inf
{ul∈Ug,l,0≤l≤N}

JN0 (u) =

m
j=1

πjtr(D0(j)DT
0(j)), (5)

inf
{ul∈Ug,l,0≤l≤N}

JNi (u) =

m
j=1

πjtr(DjDT
j ), 1 ≤ i ≤ N, (6)

where Dj = D(j). In particular, if we take the control laws as follows

ū0(k) = (H0 − F0(θk))x(N)(k)+ α0 − f0(θk, x0(k)), (7)

ūi(k) = (H̄0 − G(θk))x0(k)+ (H − F(θk))x(N)(k)
+αi − fi(θk, xi(k)), 1 ≤ i ≤ N, (8)

then ūi ∈ Ug,i, 0 ≤ i ≤ N, and the corresponding index values are

JN0 (ū) =

m
j=1

πjtr(D0(j)DT
0(j)), (9)

JNi (ū) =

m
j=1

πjtr(DjDT
j ), 1 ≤ i ≤ N. (10)

Proof. See Appendix. �

Remark 3.1. Noticing in the model (1)–(4), each agent has an
individual performance index, this model may be regarded as a
game problem. Different from the case of the single agent, the
meaning of the optimality of game problems is very diversified.
However, Nash equilibrium and Pareto-optimality are the two
most frequently encountered. A set of strategies (control) is called
a Nash equilibrium if no player (agent) has incentive to change its
strategy unilaterally; a set of strategies is Pareto-optimal, if there
is no other strategy that makes one better off without making
someone else worse off (Başar & Olsder, 1999; Fudenberg & Tirole,
1991). From (5)–(6), Theorem 3.1 and its proof, one can see that
the set of strategies (7)–(8) is not only a Nash equilibrium but
also Pareto-optimal, although by the Folk Theorem (Dutta, 1995),
(1)–(4) may have many Nash equilibria.

Indeed, (7)–(8) is also a subgame perfect equilibrium, which is
a refinement of the Nash equilibrium.
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Definition 3.2 (Fudenberg & Tirole, 1991). A set of strategies u =

(u0, . . . , uN) is called a subgame perfect equilibrium, if for every
history hk

= {(u0(j), . . . , uN(j)), j ≤ k − 1}, the restriction u|hk to
G(hk) is a Nash equilibrium of G(hk), where u|hk is the restriction
of u to the histories consistent with hk and G(hk) is the game from
stage k on with history hk.

Theorem 3.3. For the system (1)–(4), if (A1) and (A2) hold, then
(ū0, . . . , ūN) given by (7)–(8) is a subgame perfect equilibrium
of (1)–(4).

Proof. Noticing (ū0, . . . , ūN) is a set of feedback strategies, and (3)
and (4) are time-averaged indices over the infinite horizon, by the
proof of Theorem 3.1 (especially, (A.1) and (A.2) in Appendix), we
get that for every hk

= {(u0(j), . . . , uN(j)), j ≤ k − 1}, u|hk is a
Nash equilibrium of G(hk). �

Due to the particular structure and information limitation,
generally speaking, it is hard to get such a distributed control that
can reach the same optimal performance as that the centralized
optimal control can. Thus, it is natural to consider a suboptimal
distributed control. In this paper, we first estimate the state
average of all the minor agents, and then construct a set of
distributed control laws implementable in practical applications.
Finally, we analyze the stability and optimality of the closed-loop
system.

Now, we proceed to design the distributed control laws based
on the MF theory.2

First, we construct the auxiliary system described by

x̌0(k + 1) = f0(θk, x̌0(k))+ ǔ0(k)+ F0(θk)g(k)
+D0(θk)w0(k + 1), (11)

x̌i(k + 1) = fi(θk, x̌i(k))+ ǔi(k)+ F(θk)g(k)
+G(θk)x̌0(k)+ D(θk)wi(k + 1), 1 ≤ i ≤ N, (12)

with index functions

J̌0(u) = lim sup
T→∞

1
T

T
k=0

E
x̌0(k + 1)− H0g(k)− α0

2 , (13)

J̌i(u) = lim sup
T→∞

1
T

T
k=0

E∥x̌i(k + 1)− (H̄0x̌0(k)

+Hg(k)+ αi)∥
2, 1 ≤ i ≤ N. (14)

In (11)–(14), g(k), k ≥ 0, is a random sequence, which, called as
MF estimation function, is regarded as the estimate for the state
average of all the minor agents. In this case, the optimal tracking
control is

ǔ0(k) = [H0 − F0(θk)]g(k)+ α0 − f0(θk, x̌0(k)), (15)

ǔi(k) = [H̄0 − G(θk)]x̌0(k)+ [H − F(θk)]g(k)+ αi

− fi(θk, x̌i(k)), 1 ≤ i ≤ N. (16)

Applying (15) and (16) into the dynamic equations (11) and (12),
the closed-loop equations can be written as

x̌0(k + 1) = H0g(k)+ α0 + D0(θk)w0(k + 1), (17)

x̌i(k + 1) = H̄0x̌0(k)+ Hg(k)+ αi
+D(θk)wi(k + 1), 1 ≤ i ≤ N (18)

2 The mean field (MF) approach (theory) is a relatively standard technique,
which is primarily used in physics and chemistry (e.g., the derivation of Boltzmann
equations in the kinetic gas theory). In addition to the applications in distributed
controls mentioned in the introduction, it is widely used in the study on the limit
behavior of Markov decision processes (Gast & Gaujal, 2011; Gast, Gaujal, & Le
Boudec, 2010; Kurtz, 1978), evolutionary games (Benaim&Weibull, 2003; Tembine,
Le Boudec, El-Azouzi, & Altman, 2009) etc.
which implies

1
N

N
i=1

x̌i(k + 1) = H̄0x̌0(k)+ Hg(k)+
1
N

N
i=1

αi

+
1
N

N
i=1

D(θk)wi(k + 1). (19)

By the law of large numbers (Chow, 1997; Chung, 2001) we have

lim
N→∞

1
N

N
i=1

αi = α, a.s.,

lim
N→∞

1
N

N
i=1

D(θk)wi(k + 1) = E[D(θk)wi(k + 1)] = 0, a.s.

Thus, from the MF theory, the Nash Certainty Equivalence
Methodology (Huang et al., 2006) and (19), the MF estimation
function g(k) should satisfy the following recursive equation:

g(k + 1) = H̄0x0(k)+ Hg(k)+ α.

Since the information and parameters of initial values available
to each agent are different, they may have different estimates for
the state average of the minor agents. Agent 0’s MF estimation
function is

g∗(k + 1) = Hg∗(k)+ H̄0x0(k)+ α, g∗(0) = Ex10. (20)

Agent i’s MF estimation function is

g∗

i (k + 1) = Hg∗

i (k)+ H̄0x0(k)+ αi,

g∗

i (0) = xi0, 1 ≤ i ≤ N.
(21)

In summary, we obtain the following distributed control laws:

u∗

0(k) = (H0 − F0(θk))g∗(k)+ α0 − f0(θk, x0(k)), (22)

u∗

i (k) = (H̄0 − G(θk))x∗

0(k)+ (H − F(θk))g∗(k)
+αi − fi(θk, xi(k)), 1 ≤ i ≤ N. (23)

Remark 3.2 (Huang, 2010). Investigated continuous-time dis-
tributed games for large population systems involving a major
player. They gave a distributed strategy based on the Nash Cer-
tainty Equivalence Methodology. But, to ensure the existence of
distributed strategies, some not-easy-be-verified consistency con-
ditions are needed. Here we get rid of these conditions and give
distributed control laws through the explicit recursive equations
(20)–(23).

4. Analysis of the closed-loop system

Applying the control laws (22) and (23) to (1) and (2), one can
get the following closed-loop systems:

x0(k + 1) = H0g∗(k)+ α0 + F0(θk)(x(N)(k)− g∗(k))
+D0(θk)w0(k + 1), (24)

xi(k + 1) = g∗

i (k + 1)+ F(θk)(x(N)(k)− g∗

i (k))
+D(θk)wi(k + 1), 1 ≤ i ≤ N, (25)

where g∗(k) and g∗

i (k), i = 1, . . . ,N , are given by (20) and (21).
To ensure the stability and optimality of the closed-loop system,

we need the following assumptions:

(A4) H,M and Γ are stable, i.e., all of their eigenvalues are inside
the unit circle, where

M =


H H̄0
H0 0


, Γ = (PT

⊗ In2)diag{F(j)⊗ F(j)}.
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Remark 4.1. It is a relatively standard assumption that H and Γ
are stable (e.g. Costa et al., 2005). When H̄0 = 0 or H0 = 0, the
stability of M is equivalent to the stability of H . Roughly speaking,
that M is stable ensures that the major agent’s MF estimation
function is bounded in the average sense; that H and M are
stable ensures that the minor agents’ MF estimation functions are
uniformly bounded in the average sense; that Γ is stable ensures
that themajor agent’s MF estimation function approximates to the
state average of all the minor agents.

To analyze the closed-loop system, we need the following
lemma.

Lemma 1. Let Aj ∈ Rn×n, j = 1, . . . ,m. {W (k), k ≥ 0} is a
d-dimensional stochastic sequence, where

EW (k) = 0, EW (j)W (k) = rδjkId, r ≥ 0.

{θk} is an ergodic Markov chain taking value in S = {1, 2, . . . ,m}

with the transition probability matrix P and the stationary distribu-
tionπ . If (PT

⊗In2)diag{Ai⊗Ai} is stable, then there exists the constant
C0, such that for the following stochastic difference equation

X(k + 1) = A(θk)X(k)+ D(θk)W (k + 1),

where E∥X(0)∥2 < ∞, the solution satisfies

lim
T→∞

1
T

T
k=0

E∥X(k)∥2
≤ rC0

m
j=1

πjtr(DT
j Dj).

Proof. See Appendix. �

First, we give an approximation result.

Theorem 4.1. For the system (1)–(2) with the indices (3)–(4), if
Assumptions (A1)–(A4) hold, then under the control laws (22) and
(23), there is a constant C1 such that

lim
T→∞

1
T

T
k=0

E∥x(N)(k)− g∗(k)∥2
≤

C1

N
.

Proof. By Assumption (A1) we have

E


1
N

N
i=1

wi(k)


=

1
N

N
i=1

Ewi(k) = 0,

E


1
N

N
i=1

wi(k)
1
N

N
j=1

wT
j (k)


=

1
N2

N
i=1

N
j=1

wi(k)wT
j (k)

=
N
N2

Id =
1
N
Id.

When k ≠ l, it follows that

E


1
N

N
i=1

wi(k)
1
N

N
j=1

wT
j (l)


=

1
N2

N
i=1

N
j=1

Ewi(k)wT
j (l) = 0.

Let ηN(k) = x(N)(k)− 1
N

N
i=1 gi(k). Then, (25) can be rewritten

as

ηN(k + 1) = F(θk)ηN(k)+ D(θk)


1
N

N
i=1

wi(k + 1)


,

which together with (A4) and Lemma 1 gives

lim sup
T→∞

1
T

T
k=0

E∥ηN(k)∥2
≤

C0

N

m
j=1

tr(πjDjDT
j ). (26)
From (21) we have

1
N

N
i=1

g∗

i (k + 1) = H̄0x0(k)+ H


1
N

N
i=1

g∗

i (k)



+
1
N

N
i=1

αi,

1
N

N
i=1

g∗

i (0) =
1
N

N
i=1

xi0,

and hence, from (20),

1
N

N
i=1

g∗

i (k + 1)− g∗(k + 1)

= H


1
N

N
i=1

g∗

i (k)− g∗(k)


+

1
N

N
i=1

αi − α

= Hk+1


1
N

N
i=1

xi0 − Ex10


+

k
j=0

H j


1
N

N
i=1

αi − α


.

Since H is stable, by Horn and Johnson (1990) there exists λh ∈

(0, 1) and Ch > 0 such that for any integer k ≥ 1, ∥Hk
∥ ≤ Chλ

k
h.

Noticing

E

 1
N

N
i=1

xi0 − Ex10


2

=

N
i=1

E∥xi0 − Exi0∥2

N2
≤
δ0

N
,

E

 1
N

N
i=1

αi − α


2

≤

N max
1≤i≤N

E∥αi − α∥
2

N2
=
δ

N
,

where δ0 = max1≤i≤N E∥xi0−Exi0∥2 and δ = max1≤i≤N E∥αi−α∥
2,

we have

E

 1
N

N
i=1

g∗

i (k + 1)− g∗(k + 1)


2

≤
2
N

∥Hk+1
∥
2E∥xi0 − Exi0∥2

+ 2


k

j=0

∥H j
∥

2
δ

N

≤
2
N
C2
hλ

2k+2
h δ0 +

2δ
N


k

j=0

C2
hλ

j
h

2

≤
2
N


C2
h δ0 +

C2
h δ

(1 − λh)2


.

This together with (26) implies

lim
T→∞

1
T

T
k=0

E∥x(N)(k)− g∗(k)∥2

≤ lim
T→∞

1
T

T
k=0

E


2∥ηN(k)∥2

+ 2

 1
N

N
i=1

gi(k)− g∗(k)


2

≤
2C0

N

m
j=1

tr(πjDjDT
j )+

4
N


C2
h δ0 +

C2
h δ

(1 − λh)2


,

C1

N
. �

Remark 4.2. The above theorem shows that the major agent’s
MF estimation function approximates the state average of all the



2098 B.-C. Wang, J.-F. Zhang / Automatica 48 (2012) 2093–2106
minor agents. From the proof of the theorem, it follows that the
law of large numbers plays an important role in the approach of
mean field approximation.

We now show the uniform stability of the closed-loop system.

Theorem 4.2. For the system (1)–(2) with the indices (3)–(4), if
Assumptions (A1)–(A4) hold, then under the control laws (22) and
(23), the closed-loop system has the following property:

sup
N≥1

max
0≤i≤N

lim
T→∞

1
T

T
k=0

E∥xi(k)∥2 < ∞.

To prove this, we need two lemmas.

Lemma 2. Let x ∈ Rn and y ∈ Rn. Then the following inequality
holds:

∥x + y∥2
≤ a∥x∥2

+ b∥y∥2,

where a > 1, b > 1, 1/a + 1/b = 1.

Proof. By the Cauchy inequality,

2xTy ≤ (a − 1)∥x∥2
+ 1/(a − 1)∥y∥2.

Hence,

∥x + y∥2
= ∥x∥2

+ 2xTy + ∥y∥2
≤ a∥x∥2

+ (1 + 1/(a − 1))∥y∥2
= a∥x∥2

+ b∥y∥2. �

Lemma 3. For the system (1)–(2) with the indices (3)–(4), if
Assumptions (A1)–(A4) hold, then under the control laws (22) and
(23), there exist the constants C2 and C3 independent of N such that

lim
T→∞

1
T

T
k=0

E(∥g∗(k)∥2
+ ∥x0(k)∥2) < C2, (27)

max
1≤i≤N

lim
T→∞

1
T

T
k=0

E∥g∗

i (k)∥
2 < C3. (28)

Proof. Let

y(k) =


g∗(k)
x0(k)


,

q(k) =


α

F0(θk)(x(N)(k)− g∗(k))+ D0(θk)w0(k + 1)+ α0


.

Then, (20) and (24) can be rewritten as

y(k + 1) = My(k)+ q(k). (29)

SinceM is stable, fromHorn and Johnson (1990), Guo (1993), there
is a matrix norm induced by the vector norm ∥ · ∥0, which is also
denoted as ∥ · ∥0 for simplicity, such that ∥M∥0 < 1. Furthermore,
from (29) and Lemma 2 it follows that

E ∥y(k + 1)∥2
0 ≤ a∥M∥

2
0E∥y(k)∥2

0 + bE∥q(k)∥0

≤ a∥M∥
2
0E∥y(k)∥2

0 + b

∥α∥

2
0 + D0(θk)w0(k + 1)

+ E∥F0(θk)(x(N)(k)− g∗(k))+ α0∥
2
0


≤ a∥M∥

2
0E∥y(k)∥2

0 + b∥α∥
2
0

+ 3b

max
1≤j≤m

∥F0(j)∥2
0E∥x(N)(k)− g∗(k)∥2

0

+ max
1≤j≤m

∥D0(j)∥2
0 + E∥α0∥

2
0


,

where a > 1 and a∥M∥
2
0 < 1. Hence,

1
T

T
k=0

E∥y(k + 1)∥2
0

≤ a∥M∥
2
0
1
T

T
k=0

E∥y(k)∥2
0 + b∥α∥

2
0

+ 3b


max
1≤j≤m

∥F0(j)∥2
0
1
T

T
k=0

E∥x(N)(k)− g∗(k)∥2
0

+ E∥α0∥
2
0 + max

1≤j≤m
∥D0(j)∥2

0


. (30)

Noticing

1
T

T
k=0

E∥y(k + 1)∥2
0 =

1
T

T
k=0

E∥y(k)∥2
0

+
1
T
E∥y(T + 1)∥2

0 −
1
T
E∥y(0)∥2

0,

by (30) we have

lim sup
T→∞

1
T

T
k=0

E∥y(k)∥2
0

≤
b

1 − a∥M∥
2
0


∥α∥

2
0 + 3E∥α0∥

2
0 + 3 max

1≤j≤m
∥D0(j)∥2

0

+ 3 max
1≤j≤m

∥F0(j)∥2
0 lim sup

T→∞

1
T

T
k=1

E∥x(N)(k)− g∗(k)∥2
0


.

Notice that the norms in the finite dimensional linear space are
equivalent, and

E ∥y(k)∥2
= E∥g∗(k)∥2

+ E∥x0(k)∥2.

Then, by Theorem 4.1, (27) holds.
We now prove (28). By (20) and (21) we have

g∗

i (k + 1)− g∗(k + 1) = H[g∗

i (k)− g∗(k)] + αi − α

= Hk+1(xi0 − Exi0)+

k
j=0

H j(αi − α).

Hence,

lim sup
T→∞

1
T

T
k=0

E∥g∗

i (k + 1)− g∗(k + 1)∥2

≤ lim sup
T→∞

1
T

T
k=0


2∥Hk+1

∥
2E∥xi0 − Exi0∥2

+ 2


k

j=0

∥H j
∥

2

E∥αi − α∥
2



≤ lim sup
T→∞

2C2
h

T (1 − λ2h)
max
1≤i≤N

E∥xi0 − Exi0∥2

+ lim sup
T→∞

1
T

T
k=0

2C2
h max

1≤i≤N
E∥αi − α∥

2

(1 − λh)2

=
2C2

h δ

(1 − λh)2
. (31)
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This together with (27) gives

max
1≤i≤N

lim sup
T→∞

1
T

T
k=0

E∥g∗

i (k)∥
2

≤ lim sup
T→∞

2
T

T
k=0

E∥g∗(k)∥2

+ lim sup
T→∞

2
T

T
k=0

E∥g∗

i (k)− g∗(k)∥2

≤ 2C2 +
4C2

h δ

(1 − λh)2
, C3.

That is, (28) holds. �

Proof of Theorem 4.2. From (25), (28), (31) and Theorem 4.1 it
follows that

max
1≤i≤N

lim sup
T→∞

1
T

T
k=0

E∥xi(k + 1)∥2

= max
1≤i≤N

lim sup
T→∞

1
T

T
k=0


E∥F(θk)(x(N)(k)− g∗

i (k))

+ g∗

i (k + 1)∥2
+ E∥D(θk)wi(k + 1)∥2



≤ 3 max
1≤i≤N

lim sup
T→∞

1
T

T
k=0

E


max
1≤j≤m

∥g∗

i (k + 1)∥2

+ max
1≤j≤m

∥F(j)∥2
∥g∗(k)− g∗

i (k)∥
2

+ ∥F(j)∥2
∥x(N)(k)− g∗(k)∥2


+

m
j=1

πjtr(DjDT
j )

≤ 3


max
1≤j≤m

∥F(j)∥2


C1

N
+

2C2
h δ

(1 − λh)2


+ C3



+

m
j=1

πjtr(D(j)DT (j)). (32)

This together with (27) implies the theorem. �

We now show the optimality.

Theorem 4.3. For the system (1)–(2) with the indices (3)–(4), if
Assumptions (A1)–(A4) hold, then under the distributed control
laws (22) and (23) (i.e., u∗

i ∈ Ul,i), the corresponding index values
satisfy

JN0 (u
∗) ≤

m
j=1

πjtr(D0(j)DT
0(j))+ O


1
N


, (33)

JNi (u
∗) ≤

m
j=1

πjtr(D(j)DT (j))+ O


1
√
N



+

m
j=1
πj∥F(j)− H∥

2C2
h δ

(1 − λh)2
. (34)

Remark 4.3. Comparing (34) with (10), we can see that the above
index value of each minor agent is at most larger than the optimal
index value under the centralized control (Pareto-optimal index
value) with the size
m
j=1

πj∥F(j)− H∥
2C2

h δ/(1 − λh)
2
+ O(1/

√
N).

Thus, as the largest variance δ of the r.v. sequences {αi} decreases
to 0 and the number of agents grows to ∞, the index value tends
to the optimal one reached by centralized control.
Proof of Theorem 4.3. By Assumption (A1), (3), (24), (32) and
Theorem 4.1, we have

JN0 (u) = lim sup
T→∞

1
T

T
k=0

E∥(F0(θk)− H0)[x(N)(k)− g∗(k)]

+D0(θk)w0(k + 1)∥2

= lim sup
T→∞

1
T

T
k=0

E∥(F0(θk)− H0)[x(N)(k)− g∗(k)]∥2

+ E∥D0(θk)w0(k + 1)∥2

≤ max
1≤l≤m

∥F0(l)− H0∥
2 C1

N
+

m
j=1

πjtr(D0(j)DT
0(j))

=

m
j=1

πjtr(D0(j)DT
0(j))+ O


1
N


.

Thus, (33) holds.
From Assumption (A1), (4), (21), (25), (32) and Theorem 4.1 it

follows that

JNi (u) = lim sup
T→∞

1
T

T
k=0

E∥(F(θk)− H)[x(N)(k)− g∗

i (k)]

+D(θk)wi(k + 1)∥2

= lim sup
T→∞

1
T

T
k=0

E

∥(F(θk)− H)[x(N)(k)− g∗

i (k)]∥
2

+ ∥D(θk)wi(k + 1)∥2


= lim sup
T→∞

1
T

T
k=0

E

∥F(θk)− H∥

2

∥x(N)(k)− g∗(k)∥2

+ 2∥x(N)(k)− g∗(k)∥ ∥g∗(k)− g∗

i (k)∥

+ ∥g∗(k)− g∗

i (k)∥
2


+

m
j=1

πjtr(D(j)DT (j))

, I1 + I2 + I3 +

m
j=1

πjtr(D(j)DT (j)), (35)

where

I1 = lim sup
T→∞

1
T

T
k=0

E

∥F(θk)− H∥

2
∥x(N)(k)− g∗(k)∥2,

I2 = lim sup
T→∞

1
T

T
k=0

E

∥F(θk)− H∥

2
∥g∗(k)− g∗

i (k)∥
2,

I3 = 2 lim sup
T→∞

1
T

T
k=0

E

∥F(θk)− H∥

2

× ∥x(N)(k)− g∗(k)∥ ∥g∗(k)− g∗

i (k)∥

.

We now calculate I1, I2 and I3, respectively. By Theorem 4.1 we
have

I1 ≤ max
1≤j≤m

E∥F(j)− H∥
2 lim sup

T→∞

1
T

T
k=0

E∥x(N)(k)− g∗(k)∥2

≤ max
1≤j≤m

∥F(j)− H∥
2 C1

N
.
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Noticing there exists λh ∈ (0, 1) and Ch > 0 such that for any
integer k ≥ 1, ∥Hk

∥ ≤ Chλ
k
h, by Assumptions (A2)–(A3), (31) and

the ergodicity of {θk} we have

I2 = lim sup
T→∞

1
T

T
k=0

E


∥F(θk)− H∥

2

Hk(xi0 − Exi0)

−

k−1
j=0

H j(αi − α)


2

= lim sup
T→∞

1
T

T
k=0

E∥F(θk)− H∥
2

×


∥H2k

∥E∥xi0 − Exi0∥2
+


k−1
j=0

∥H j
∥

2

E∥αi − α∥
2

+ 2E


∥Hk

∥ ∥xi0 − Exi0∥
k−1
j=0

∥H j
∥ ∥αi − α∥



≤ max
1≤j≤m

∥F(j)− H∥
2 lim sup

T→∞

C2
h E∥xi0 − Exi0∥2

T (1 − λ2h)

+ lim sup
T→∞

1
T

T
k=0

E∥F(θk)− H∥
2


Ch(1 − λkh)

1 − λh

2

× E∥αi − α∥
2
+ 2 max

1≤j≤m
∥F(j)− H∥

2 C2
hλ

k
h

1 − λh

× lim sup
T→∞

1
T

T
k=0


E∥xi0 − Exi0∥2E∥αi − α∥

2
 1

2

≤ lim sup
T→∞

1
T

T
k=0

E∥F(θk)− H∥
2 C2

h δ

(1 − λh)2

+ 2 max
1≤j≤m

∥F(j)− H∥
2 lim sup

T→∞

C2
h

T (1 − λh)2


δ0δ
 1

2

≤

C2
h δ

m
j=1
πj∥F(j)− H∥

2

(1 − λh)2
. (36)

By the Schwarz inequality, Theorem 4.1 and (31) we have

I3 ≤ 2 max
1≤j≤m

∥F(j)− H∥
2

×


lim sup
T→∞

1
T

T
k=0

E∥x(N)(k)− g∗(k)∥2

1/2

×


lim sup
T→∞

1
T

T
k=0

E∥g∗(k)− g∗

i (k)∥
2

1/2

≤ 2 max
1≤j≤m

∥F(j)− H∥
2


2C1C2

h δ

N(1 − λh)2

1/2

= O(1/
√
N).

This together with (35)–(36) leads to (34). Thus, the theorem is
true. �

In Remark 4.3, the index values under the distributed control
{u∗

0, . . . , u
∗

N} have been compared with the Pareto-optimal index
values. We now consider the equilibrium property of {u∗

0, . . . , u
∗

N}.
First, we give the definition of a weak Nash equilibrium (Başar &
Olsder, 1999).
Definition 4.4. A set of control {ui ∈ Ul,i, 0 ≤ i ≤ N} is called
an ε-Nash equilibrium with respect to the set of index functions
{JNi , 0 ≤ i ≤ N}, if there exists ε ≥ 0 such that for any 0 ≤ i ≤ N ,

JNi (ui, u−i) ≤ inf
u′
i∈Ug,i

JNi (u
′

i, u−i)+ ε,

where u−i = {u0, . . . , ui−1, ui+1, . . . , uN}, JNi (ui, u−i) = JNi (u).

The following theorem shows that {u∗

0, . . . , u
∗

N} is a weak Nash
equilibrium.

Theorem 4.5. For the system (1)–(2) with the indices (3)–(4),
if Assumptions (A1)–(A4) hold, then {u∗

0, . . . , u
∗

N} is an ε-Nash
equilibrium, where

ε =

m
j=1

πj∥F(j)− H∥
2C2

h δ/(1 − λh)
2
+ O(1/

√
N).

Proof. Noticing

inf
{ul∈Ug,l,0≤l≤N}

Ji(u) ≤ inf
u′
i∈Ug,i

JNi (u
′

i, u−i),

by Theorems 3.1 and 4.3, it follows that

JNi (u
∗

i , u
∗

−i) = JNi (u
∗) ≤ inf

u′
i∈Ug,i

JNi (u
′

i, u
∗

−i)

+

m
j=1
πj∥F(j)− H∥

2C2
h δ

(1 − λh)2
+ O


1

√
N


,

which gives the conclusion of the theorem. �

Next, we will consider the case where the ‘‘reference signals’’ in
the index functions (3) and (4) are more general, i.e. the indices of
N + 1 agents are described by

JN0 (u) = lim sup
T→∞

1
T

T
k=0

E
x0(k + 1)− Φ(x(N)(k))

2 , (37)

JNi (u) = lim sup
T→∞

1
T

T
k=0

E
xi(k + 1)− Ψ (x0(k), x(N)(k))

2 , (38)

whereΦ and Ψ are general functions from Rn to Rn. Assume xi0 ≡

Ex10, 1 ≤ i ≤ N . By constructing the auxiliary system, we get that
the MF estimate function
g∗(k + 1) = Ψ (x0(k), g∗(k)), g∗(0) = x10,
and the following distributed control laws:

u∗

0(k) = Φ(g∗(k))− F0(θk)g∗(k)− f0(θk, x0(k)), (39)

u∗

i (k) = Ψ (x0(k), g∗(k))− G(θk)x0(k)− F(θk)g∗(k)
− fi(θk, xi(k)), 1 ≤ i ≤ N. (40)

From this we have the following closed-loop system:

x0(k + 1) = Φ(g∗(k))+ F0(θk)(x(N)(k)− g∗(k))
+D0(θk)w0(k + 1), (41)

xi(k + 1) = Ψ (x0(k), g∗(k))+ F(θk)(x(N)(k)− g∗

i (k))
+D(θk)wi(k + 1), 1 ≤ i ≤ N. (42)

Assume
(A4′) there exist constants L1, L2 and L3, such that for any x, y,

z ∈ Rn,

∥Φ(x)− Φ(y)∥ ≤ L1∥x − y∥,
∥Ψ (x, y)− Ψ (x, z)∥ ≤ L2∥y − z∥,
∥Ψ (x, y)∥ ≤ L3.

Then, we have the following results of stability and
optimality,whose proofs are similar to those of Theorems 4.2
and 4.3, and thus, omitted here.
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Theorem 4.6. For the system (1)–(2) with the indices (37)–(38), if
Assumptions (A1)–(A3) and (A4

′

) hold, then under the distributed
control laws (39) and (40), the corresponding closed-loop system and
index values satisfy

sup
N≥1

max
0≤i≤N

lim
T→∞

1
T

T
k=0

E∥xi(k)∥2 < ∞,

JN0 (u
∗) ≤

m
j=1

πjtr(D0(j)DT
0(j))+ O


1
N


,

JNi (u
∗) ≤

m
j=1

πjtr(D(j)DT (j))+ O


1
N


,

for 1 ≤ i ≤ N, and the set of control laws (39) and (40) is an ε-Nash
equilibrium, where ε = O(1/N).

Remark 4.4. It is worth pointing out that Assumption (A4
′

) is
merely a sufficient condition to ensure the stability and optimality
of the closed-loop system. More relaxed conditions, including the
sufficient and necessary conditions, need to be explored further.

Remark 4.5. Indeed, it is mainly attributed to the law of large
numbers that mean field approaches work. The approach of this
paper can be used to deal with the case where the index of the
agent i(1 ≤ i ≤ N) is a general function of xi, x0 and x(N). For
instance, for the system (1)–(2), the indices of agents are,
respectively,

J0(u) = lim sup
T→∞

1
T

T
k=0

E∥φ(x0(k + 1), x(N)(k))∥2,

Ji(u) = lim sup
T→∞

1
T

T
k=0

E∥ψ(xi(k + 1), x0(k), x(N)(k))∥2,

where φ and ψ are general functions. For this model, the
distributed control laws can be designed by replacing x(N) with
the iterative random function g∗. However, compared with the
tracking case, it is more complicated to design control and
analyze the closed-loop system. Particularly, when constructing
the distributed control laws, a minimization problem of nonlinear
functions will arise and need to be tackled.

5. Influence of the index parameters on the closed-loop system

In this section, we consider the case of H̄0 = 0. In this case,
from (21) and (25) one can see that the closed-loop minor agents
are not affected by the major agent anymore. Thus, the subsystem
consisting of all the minor agents is equivalent to such an MAS
whose agents are with equal influence.

We now analyze the case where the parameters H and α take
different values.

Case I. H is stable. In this case, M =


H 0
H0 0


is also stable. Thus,

Theorem 4.3 still holds. In particular, when αi ≡ α and θj ≡ 1,
the index value (34) is degenerated to the result of Li and Zhang
(2008b, Theorem 4.3).

Case II. H is unstable and αi ≠ 0. Since H̄ = 0, (21) becomes

g∗

i (k + 1) = Hg∗

i (k)+ αi, g∗

i (0) = xi0, 1 ≤ i ≤ N,

or equivalently,

g∗

i (k) = Hkxi0 +

k−1
j=0

H jαi.
Noticing that H is unstable, we known that there is αi such that
lim supT→∞

1
T

T
k=1 E∥g∗

i (k)∥
2

= ∞. Thus, the stability of the
closed-loop system cannot be ensured.
Case III. H = In and αi ≡ 0. In this case, (20) and (21) can be
rewritten as

g∗(k) ≡ Ex10, g∗

i (k) ≡ xi0, 1 ≤ i ≤ N. (43)

By (22) and (23) we get the following distributed control laws:

u∗

0(k) = (H0 − F0(θk))Ex10 + α0 − f0(θk, x0(k)), (44)

u∗

i (k) = (In − F(θk))xi0 − fi(θk, xi(k))− G(θk)x0(k),
1 ≤ i ≤ N, (45)

and hence, the closed-loop system

x0(k + 1) = H0Ex10 + α0 + F0(θk)(x(N)(k)− Ex10)
+D0(θk)w0(k + 1), (46)

xi(k + 1) = xi0 + F(θk)(x(N)(k)− xi0)
+D(θk)wi(k + 1), 1 ≤ i ≤ N. (47)

This together with Theorem 4.1 leads to

lim
T→∞

1
T

T
k=0

E∥x(N)(k)− Ex10∥2
≤

C1

N
. (48)

We now study the uniform stability of the closed-loop system.

Theorem 5.1. For the system (1)–(2) with the indices (3)–(4), if
H̄0 = 0,H = In, αi ≡ 0 and Assumptions (A1)–(A4) hold, then
under the control laws (44) and (45), the closed-loop system has the
following property:

sup
N≥1

max
0≤i≤N

lim
T→∞

1
T

T
k=0

E∥xi(k)∥2 < ∞. (49)

Proof. By Assumption (A1), (46) and (48) we have

lim sup
T→∞

1
T

T
k=0

E∥x0(k + 1)∥2

≤ 2 max
1≤j≤m

∥F0(j)∥2 C1

N
+ 2∥H0Ex10 + α0∥

2

+

m
j=1

πjtr(D0(j)DT
0(j));

and by Assumption (A1), (47) and (48),

max
1≤i≤N

lim sup
T→∞

1
T

T
k=0

E∥xi(k + 1)∥2

= max
1≤i≤N

lim sup
T→∞

1
T

T
k=0


E
F(θk)(x(N)(k)− Exi0

+ Exi0 − xi0)+ xi0
2 + E∥D(θk)wi(k + 1)∥2


≤ 3 max

1≤j≤m
∥F(j)∥2


C1

N
+ δ0


+ 3 max

1≤i≤N
E∥xi0∥2

+

m
j=1

πjtr(DjDT
j ).

Thus, (49) holds. �

We now study the optimality.
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Theorem 5.2. For the system (1)–(2) with the indices (3)–(4), if H̄0
= 0,H = In, αi ≡ 0 and Assumptions (A1)–(A4) hold, then under
the control laws (44) and (45), the corresponding indices satisfy:

JN0 (u
∗) ≤

m
j=1

πjtr(D0(j)DT
0(j))+ O


1
N


, (50)

JNi (u
∗) ≤

m
j=1

πjtr(D(j)DT (j)) (51)

+

m
j=1

πj∥F(j)− In∥2δ0 + O


1
√
N


, (52)

where δ0 = max1≤i≤N E∥xi0 − Exi0∥2.
Proof. Similar to (33), from (46) and (48) we can get (50). We now
prove (51). By Assumption (A1), (4), (47) and (48) we have

JNi (u
∗) = lim sup

T→∞

1
T

T
k=0

E
(F(θk)− In)[x(N)(k)− xi0]

+D(θk)wi(k + 1)
2

= lim sup
T→∞

1
T

T
k=0

E
(F(θk)− In)[x(N)(k)− Ex10

+ Ex10 − xi0]
2 + ∥D(θk)wi(k + 1)∥2

= lim sup
T→∞

1
T

T
k=0

E

∥F(θk)− In∥2

∥x(N)(k)− Ex10∥2

+ ∥xi0 − Ex10∥2
+ 2∥x(N)(k)− Ex10∥ ∥xi0 − Ex10∥


+

m
j=1

πjtr(D(j)DT (j))

≤ max
1≤j≤m

∥F(j)− In∥2 C1

N
+

m
j=1

πj∥F(j)− In∥2δ0

+

m
j=1

πjtr(D(j)DT (j))+ 2 max
1≤j≤m

∥F(j)− In∥2

×


lim sup
T→∞

1
T

T
k=0

E∥x(N)(k)− Ex10∥2
∥xi0 − Ex10∥2

 1
2

≤

m
j=1

πj∥F(j)− In∥2δ0 +

m
j=1

πjtr(D(j)DT (j))

+O

1/

√
N

.

That is, (51) holds. �

Remark 5.1. Li and Zhang (2008b) considered themodel involving
N agents with the equal role. Each agent was required to know the
statistical expectation of the initial values of all the agents. Here
we get rid of this requirement and only assume that each agent
knows the initial value of itself. This should be very welcome in
real applications. The cost that we should pay for is that only sub-
optimality can be obtained, although the index value (51) coincides
with the one given by Li and Zhang (2008b) in the case of δ0 = 0,
where the initial value of each agent equals its expectation.

6. Numerical examples

We now use a numerical example to illustrate the main result
of this paper, including the consistency of MF estimation, the sub-
optimality of distributed control laws and the influence of the
Fig. 1. Trajectories of x(300), g∗ and g∗

i , i = 1, . . . , 300.

parameters αi and the initial values xi0 on the index values of the
minor agents.

The dynamic equations of N + 1 agents are given by

x0(k + 1) = 3x0(k)+ u0(k)+ F0(θk)x(N)(k)
+D0(θk)w0(k + 1), (53)

xi(k + 1) = 2xi(k)+ ui(k)+ F(θk)x(N)(k)+ 0.25x0(k)
+D(θk)wi(k + 1), 1 ≤ i ≤ N, (54)

where F0(1) = −0.5, F0(2) = −0.4, F(1) = −0.96, F(2) =

−0.9,D0(1) = 1.2,D0(2) = 0.8,D(1) = 1 and D(2) = 0.6.
{θk} is a Markov chain taking value in {1, 2} with the transition
probability matrix

P =


0.75 0.25
0.25 0.75


,

and the stationary distribution (0.5 0.5). {wi(k), 0 ≤ i ≤ N}

is a Gaussian white noise sequence with the normal distribution
N(0, 1). Let the initial value x00 = 5, {xi0, i = 1, . . . ,N} be
independent and identically distributed (i.i.d.) r.v.s with the
normal distribution N(1, 0.2). The index functions, respectively,
are given by

JN0 (u) = lim sup
T→∞

1
T

T
k=0

E
x0(k + 1)− x(N)(k)− 5

2 , (55)

JNi (u) = lim sup
T→∞

1
T

T
k=0

E

×
xi(k + 1)− (H̄0x0(k)+ Hx(N)(k)+ αi)

2 , (56)

where H̄0 = 0.2,H = 0.5, and {αi, i = 1, . . . ,N} is i.i.d. with
αi ∼ N(2, 0.09).
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Fig. 2. Trajectories of JN0 and JN = max1≤i≤N JNi with respect to N .

Noticing H = 0.5 and

M =


0.5 0.2
1 0


, Γ =


0.75 0.25
0.25 0.75


×


0.93 0
0 0.81


,

it can be verified that Assumption (A4) holds. From (22) and (23)
we can get the following distributed control laws:

u∗

0(k) = (1 − F0(θk))g∗(k)+ 5 − 3x0(k), (57)

u∗

i (k) = (0.5 − F(θk))g∗

i (k)− 2xi(k)− 0.05x0(k)+ αi,
1 ≤ i ≤ N, (58)

where

g∗(k) = 0.2x0(k + 1)+ 0.5g∗(k)+ 2, g∗(0) = 1,
g∗

i (k) = 0.2x0(k + 1)+ 0.5g∗

i (k)+ αi, g∗

i (0) = xi0.

We first consider the consistency of MF estimation. When the
number of agents is 300, the trajectories of x(N), g∗ and g∗

i , i =

1, . . . , 300, are shown as in Fig. 1. By Theorem 4.1, the error
between themajor agent’s MF estimation function g∗ and the state
average of all the minor agents x(N) should converge to 0 in the
average sense as N grows to ∞. From Fig. 1, it can be seen that
g∗ almost coincides with x(300), which illustrates the consistency
of MF estimation. On the other hand, due to the influence of the
initial value xi0 and the parameters αi, the trajectories of theminor
agent’s MF estimation functions g∗

i , i = 1, . . . , 300, fluctuate
around g∗.

Then we check the index values of all the agents under the
distributed control laws (57) and (58). Let JN = max1≤i≤N JNi . Then,
by δ = 0.09 and Theorem4.3, JN0 and JN are atmost

2
j=1 πjD2

0(j) =

1.04 and JN =
2

j=1 πjD2
j +(1−|H|)−2m

j=1 πj|F(j)−H|
2δ = 1.42,

respectively. When the number of agents grows from 1 to 300, the
trajectories of JN0 and JN are shown as in Fig. 2, from which one
can be see that the index values tend to the upper bounds 1.04
and 1.42.

We now consider the influence of αi on the indices of theminor
agents. For the model (53)–(56), except that the variance δ of the
Fig. 3. Trajectories JN = max1≤i≤N JNi with respect to N when δ = 0.

Fig. 4. Trajectory of JN = max1≤i≤N JNi with respect to N when xi0 ∼ N(1, 0.09).

parameters αi, i = 1, . . . ,N , is 0 (i.e., αi ≡ 2), all the parameters
are unchanged. When the number of agents grows from 1 to 300,
the trajectory of JN = max1≤i≤N JNi is shown as in Fig. 3. It can
be seen that when the variance of the parameter αi is 0 and N
grows to ∞, the maximum of the indices of all the minor agents
JN tends to 0.68(=

2
j=1 πjD2

j ), which is the optimal index value of
the centralized control.

Finally, we consider the influence of the initial values xi0 on
the indices of the minor agents for (53)–(56) in the case of H̄0
= 0,H = 1 and αi ≡ 0. We take two classes of initial values
{xi0, i = 1, . . . ,N} as example. One is that {xi0, i = 1, . . . ,N} is
i.i.d. and with xi0 ∼ N(1, 0.09), and the other is constant xi0 ≡ 1.
For the first class of initial values, we have δ0 = 0.09, and hence,
by Theorem 5.2 themaximum of the indices of theminor agents JN
should tend to
2

j=1

πjD2
j +

2
j=1

πj|F(j)− 1|2δ0

=

2
j=1

πjD2
j + 0.09 ×

2
j=1

πj|F(j)− 1|2 = 1.02

as N → ∞, and for the second class of initial values, we have δ0 =

0, and the maximum of the indices should tend to
2

j=1 πjD2
j +2

j=1 πj|F(j)− 1|2δ0 =
2

j=1 πjD2
j = 0.68. From Figs. 4 and 5, we

can see that the upper bounds of the index values are achieved as
N grows to ∞.

7. Concluding remarks

In this paper, we investigate the distributed control problem of
large population MASs involving a major agent. There are Markov
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Fig. 5. Trajectory of JN = max1≤i≤N JNi with respect to N when xi0 ≡ 1.

jump parameters in the dynamics and random parameters in
index functions. Except the state of the major player, each agent
only knows the information of its state and parameters. For the
quadratic tracking indices, by using the MF theory, a set of feasible
distributed control is presented. The uniform stability and sub-
optimality of the closed-loop systems are proved.

Although the model (1)–(4) looks like a Stackelberg game, they
are essentially different. In Stackelberg games, the leaders are in
a dominant place and have the superiority to make decision first,
and then the followers give the strategies sequentially. However,
the agents in the model (1)–(4) are equal and can make their
decisions simultaneously, no matter how high or low each agent’s
influence is.

There are many problems worthy of investigating in this area,
including the distributed controls with energy constraints or
actuator saturation, the case with networked communications
among the agents, the strategy design and time-inconsistency
issues in Stackelberg games for MAS with dominant agents etc.
(Kydland, 1977; Kydland & Prescott, 1977).

Appendix

Proof of Theorem 3.1. From Assumptions (A1), (A2) and (3) we
have

JN0 (u) = lim sup
T→∞

1
T

T
k=0

E
f0(θk, x0(k))+ u0(k)+ F0(θk)x(N)(k)

−H0x(N)(k)− α0 + D0(θk)w0(k + 1)
2

= lim sup
T→∞

1
T

T
k=0


E∥f0(θk, x0(k))+ u0(k)− α0

+ (F0(θk)− H0)x(N)(k)∥2
+ E∥D0(θk)w0(k + 1)∥2

+ 2E

wT

0 (k + 1)[f0(θk, x0(k))+ u0(k)

+ (F0(θk)− H0)x(N)(k)− α0]


= lim sup
T→∞

1
T

T
k=0


E∥f0(θk, x0(k))+ u0(k)− α0

+ (F0(θk)− H0)x(N)(k)∥2
+ E∥D0(θk)w0(k + 1)∥2.

Since {θk} is ergodic and {θk} is independent of {w0(k)}, we can
get

lim sup
T→∞

1
T

T
k=0

E∥D0(θk)w0(k + 1)∥2
= lim sup
T→∞

1
T

T
k=0

E{tr[D0(θk)w0(k + 1)wT
0 (k + 1)DT

0(θk)]}

= lim sup
T→∞

1
T

T
k=0

tr{E[DT
0(θk)D0(θk)]

× E[w0(k + 1)wT
0 (k + 1)]}

=

m
j=1

lim sup
T→∞

1
T

T
k=0

tr(DT
0(j)D0(j))pj(k)

=

m
j=1

πjtr(DT
0(j)D0(j)),

where pj(k) = P(θk = j). Hence,

JN0 (u) = lim sup
T→∞

1
T

T
k=0

E∥f0(θk, x0(k))+ u0(k)

+ [F0(θk)− H0]x(N)(k)− α0∥
2

+

m
j=1

πjtr(DT
0(j)D0(j))

≥

m
j=1

πjtr(DT
0(j)D0(j)). (A.1)

By (A1), (A2) and (4) we have

JNi (u) = lim sup
T→∞

1
T

T
k=0

E
fi(θk, xi(k))+ ui(k)

+ (F(θk)− H)x(N)(k)+ G(θk)x0(k)

− H̄0x0(k)− αi + D(θk)wi(k + 1)
2

= lim sup
T→∞

1
T

T
k=0


E
fi(θk, xi(k))+ ui(k)

+ (F(θk)− H)x(N)(k)+ G(θk)x0(k)− H̄0x0(k)− αi
2

+ E∥D(θk)wi(k + 1)∥2


≥

m
j=1

πjtr(DjDT
j ). (A.2)

Take

ū0(k) = (H0 − F0(θk))x(N)(k)+ α0 − f0(θk, x0(k)),

ūi(k) = (H̄0 − G(θk))x0(k)+ (H − F(θk))x(N)(k)
+αi − fi(θk, xi(k)), 1 ≤ i ≤ N.

Then, by the definition of Ug,i, we have ūi ∈ Ug,i, 0 ≤ i ≤ N , and
by (A.1) and (A.2), the corresponding index values are

JN0 (ū) =

m
j=1

πjtr(D0(j)DT
0(j)).

JNi (ū) =

m
j=1

πjtr(DjDT
j ). �

Proof of Lemma 1. Since (PT
⊗In2) diag{Ai⊗Ai} is stable, by (Costa

et al., 2005) we know that

Ni = AT
i

m
j=1

pijNjAi + In, i, j = 1, . . . ,m
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has a unique set of definite solutionsNi, i = 1, . . . ,m. Thus, by the
Markov property of {θk, Xk}, we have

E[XT
k+1N(θk+1)Xk+1]

=

m
j=1

E[XT
k+1N(θk+1)Xk+1I[θk+1=j]]

=

m
j=1

E[XT
k A

T (θk)NjA(θk)XkI[θk+1=j]]

+

m
j=1

E[W T
k+1D

T
j NjDjWk+1I[θk+1=j]]

=

m
j=1

E

E[XT

k A
T (θk)NjA(θk)XkI[θk+1=j]|Gk]


+

m
j=1

pj(k + 1)E[W T
k+1D

T
j NjDjWk+1]

= E


XT
k A

T (θk)

m
j=1

pθkjNjA(θk)Xk



+

m
j=1

pj(k + 1)tr(rDT
j NjDj)

= E[XT
k N(θk)Xk] − E[XT

k Xk]

+

m
j=1

pj(k + 1)tr(rDT
j NjDj), (A.3)

where Gk = σ(Xl, θl, l ≤ k),N(j) = Nj. Summing the both sides of
the above equation from k = 0 to T gives

E[XT
T+1N(θT+1)XT+1]

= E[XT
0 N(θ0)X0] −

T
k=0

E∥Xk∥
2

+

T
k=0

m
j=1

pj(k + 1)tr(rDT
j NjDj).

Since ∥Nj∥ < ∞ and {θk} is ergodic, we obtain

lim sup
T→∞

1
T

T
k=0

E∥Xk∥
2

= lim sup
T→∞

1
T


E[XT

0 Nθ0X0] − E[XT
T+1NθT+1XT+1]

+

T
k=0

m
j=1

pj(k + 1)tr(rDT
j NjDj)



≤ lim sup
T→∞

1
T


E[XT

0 N(θ0)X0]

+

T
k=0

m
j=1

pj(k + 1)tr(rDT
j NjDj)



= lim sup
T→∞

1
T

T
k=0

m
j=1

pj(k + 1)tr(rDT
j NjDj)

=

m
j=1

πjtr(rDT
j NjDj) ≤ C0r

m
j=1

πjtr(DT
j Dj). � (A.4)
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