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ABSTRACT

For both discrete- and continuous-time linear input-output systems, consistent estimates
are given for unknown coefficients, system orders and time-delay. The proposed methods are
characterized by the fact that there is no requirement for stability, minimum phase and any
other behaviour of the system and by the fact that the designed experiment is diminishing.
The latter fact is important when adaptive control problem is simultaneously solved.
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I. INnTRODUCTION

We consider the identification problem for unknown orders, time-delay and
matrix coefficients of the linear systems which are described as

A(2)y, = B(2)u,, n =0 and y,= 0, u, =0 for n< 0 (1)
in the discrete-time case, and as

A(s)y: = B(s)u;, 220 and y, =0, #,=0 for <0 (2)
in the continuous-time case, where z and s are the shift-back operator (zy, = y,_,)
and the integral operator ( 5y, = S; yldl) respectively, y, denotes the m-output and

#, denotes the I-input and A(z), B(z) refer to the matrix polynomials
A(z) =1+ Az+ -+ + A, 270, p =0, (3)
B(z) =Bgz%+ -+ 4 Byz%, go=dy =1, )

whose orders, time-delay and coefficients are unknown, i. e., the delay dy, the
system orders (o, ¢,) and the coefficients

Bf(PB: dﬂs qo) = [— Al"'_ApoBdu"'Bqn] '(5)

are to be estimated.
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This problem has been treated in various areas: In the time series analysis, this
is the ARMA model with {#,}, n€ (— 0o, ©0) being an unavailable martingale
difference sequence and in estimating its unknown parameters one usually as-
sumes™™ that the system is stable or minimum-phase or even both. In the theory of
linear systems when identification problem is concerned, the system input {#,} has
to be designed (experiment design), the orders and the time-delay of the system are
often supposed to be known™™ and one of the conditions such as stability condition,
minimum-phase condition and the condition consisting in |y,| *+ ||l#.|| = 0(a*),
o >0 is assumed to be satisfied”™™. In adaptive control theory, the input is
designed with purpose not only for identifying the system but also for controlling
the system and the assumptions made on the system are almost the same as those
indicated above for theory of linear systemsP 1,

In this paper, not imposing on the systems (1) and (2) any conditions like
stability, boundedness or growth rate condition for the system input-output, we
design inputs for systems (1) and (2) respectively, and using the least squares
algorithms, we obtain consistent estimates for the delay, orders and coefficients of
the systems. The convergence rates of estimates for system coefficients are also
established. The designed input is diminishing and this is important when adaptive
control problem is simultaneously treated.

II. IoenTIFICATION OF DiscrRETE-TIME SysTEMS

We now consider the systems (1), (3) and (4), where the true time-delay d,
and the orders (py, ¢) of the system are unknown, but assume that they belong
to finite sets. To be specific, we need the following condition H;:

Hi. There are known integers p*, g™ and 4*€ [1, ¢*] such that
(2o g) €M £{(p, 9): 0<p<p*, d*<q<gq*}, (6)
deM A {d: d* <d<q*}. (#)
This condition means that the upper bounds for p, and g, are available.
We also need the following identifiability condition H,:

H,. A(2) and B(z) have no common left factor and A, and B, are of row
full rank.

Let {v,, §,} be an arbitrary /-dimensional martingale difference sequence with

properties

1 i
Ev,whi=— 1, |o.]* < ¢*/n® EE[O —-—~>
v gE 12 ” I] < d’[n®, ] O .
where 7, 2 (m 4 1)p* + ¢*, ¢ >0 is a constant and F, 2 ¢{o;, i<n}. {v,}
serves as the excitation source for the system and makes its identification possible.

Further, let #) be the I-dimensional input, which is o{y;, 0 <i<<#n} measur-
able and is designed for control purpose. For pure identification we may set
#% = 0, while in the case of adaptive control we allow #% to grow up but not
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faster than

. 1 — 2e(s, + 1

>3l = 0+, o€ [0, LR E D, ()

Finally, for identifying d, and (po, ¢:), we set the system input
Hy =ty + v,. 9
We now describe the estimation algorithms: For any (p, ¢)€ M and deM,

set

6°(p,d,q)=1[— Ay»++— A,B;---B,], (10)
P2 (psdy q) = [yaryioprithiasr® " #igii] (11)

with agreement 4; = 0 for 7 > p, and Bj= 0 for 1 < d, and i =,

Given initial value 8,(p, d, g), the least squares estimate 8,(p, d, ¢) for 6(p,
d, gq) is defined by

n=1

8.(», d,q)=(2 #p &> DONps d> D+ 1) 3 9oy dy Dyin (12)

i=0 i=0

or equivalently by the recursive algorithm

Onsi(ps ds q) = 8::(?: d, 9) + b, d, Q)Pn(}": d, Q)CPn(f’a d, q)

* a1 — (P> d> 90,005 4d5 9))5 (13)
Poui(psd, ) =Pu(psdy q) — bi(p5 d5 Pt d5 D0ulp5 d5 9)
c @u(ps ds @IP(psds q), Po=1, (14)
bi(ps dy q) = (1 + @i(p, d, DP(25 ds )pa(p> d5 9))7". (15)
Let {a,} be any sequence of real numbers satisfying
@g———> and a,[n'"UFEED = = 0, (16)

It is worth noting that 1— (14 #2)(e+8)=(1—¢€)/2>0, and hence the
existence of {a,} is undoubted.

Set
n-1
oty dy g) = 2 “)"Hl — 0% (P, d, Q){Pi(Ps d, 9)”2 (17)
i=o
and
CIC(p, q)s = o.(p, d*, q) + (p + q)a,, (18)
The estimate (ps»qs) for (po»qo) is defined by minimizing CIC,(p,¢)s:
(s> gs) = arg min CIC(p, g)u, n =1 (19)
(p.g)eM

and the estimate d, for dy is given by

d, = arg rxﬂlin ClGid) ., n21; (20)
de€
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where
CICz(d)u = 0'»({—’“ d: gn) =g * a, (21)
with p,, g, obtained from (19).

Theorem 1. Assume thar Condizions H, and H, hold and the control {u,} is
defined by (9) with (8) satisfied. Then

(Pnb ds) gn) —m (PD) dﬂa %), a. 8. (22)

and

”65(Pn VPOQ du/\dnaqn V'?n) i G(Pn VPO& dﬂ/\dUD 9‘» qu)"
1k
= O(;;m), a. 8., (23)

where a\b and a\/b mean min(a, &) and max(a, b) respectively.

This theorem says that (., ¢,) and d, given by (19) and (20) are consistent
estimates for system orders and time-delay respectively, while (23) indicates the
convergence rates of estimates for system coefficients:

III. Proor oF TueoreM 1

For every (p, g) € M, denote by 1%2(n) the smallest eigenvalue of
n—1
Z (Pi(P, d*, Q)(PE(Pa & Q').
i=0

We have™

Lemma 1. If the positive real numbers {a,} in (18) and the system input
{u,} (not mecessarily given by (9)) satisfy the following conditions

8,—— > 0 and ./ 18:(n) o= 05 a s (24)

for (P> g) = (p0, ¢*) and (p, 9) = (p*, q0); then (pn, q.) and d, given by (19)
and (20) respectively are comsistent, i. e.

(Pss dus 9») ";__;_o:" (Pﬂa dys qo)7 a. S. (25)

Proof of Theorem 1.

By Lemma 1 for proving (22), we only need to show that {a,} satisfying (16),
satisfies (24) as well. For this it suffices to prove that

lim inf a7ttt atd(py £ 0, a. s. (26)

7>

for (2, q) = (po, ¢*) and (p, g¢) = (¢*, q).

If (26) were not true, then there would exist a vector”

p = [a®7. . gfpm0rgla®. gl e ) = 1

satisfying
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g=t a-1
0= >1a"2'(4djA(2))B(z) + >, g% det A(=)]. (27)
i=0 i=d¥
If (P: 9‘) o (Po, q*), then we have
f—=1
deg (3 a5 )< — 1. (28)
i =0
If (p, 9) =(p*, @), then by (27) we have
72—1
deg ( a‘f’rzi) + (m — Do+ g
i=0
gp—1
= deg (Z p’(’v)rz"(detA(z))) < g — 1+ mp,
i=d*
and hence
p—-1
deg (E a(i)rzz)< Po — 1.
i=n
Thus (28) holds for both cases (p, ¢) = (£, g*) and (2, q) = (#*, q).
By Condition H, there are polynomial matrixes M (2) and N(z) so that
A(2)M (2) + B(2)N(=z) = 1.
Then from (27) we have
E=d T s p-t .
Z a2 AdjA(2) = Z a(’)rz"Ad;fA(z)(A(z)M(z) + B(z)N(2))
i=0 i=a
r—1 ) g—-1
= (detA(2)) (Z M () — D) "‘ﬁ‘“’z“N(z)). (29)
i=p =7
From this and (28) we find that
Pp~=-1
deg (Z a(i’rziAde(_z)) <po— 1+ (m— Dpy=mp, — 1
im0
< mp, = deg(detA(=)).
Consequently, from (29) we know a”? =0 for 0<<i<<p— 1 and hence g =0
for d* << i<<g— 1 by (27). This contradicts ||| = 1 and thus we have verified

(26).

Since M and M are finite sets, (22) means that (P, das gs) = (Po» dos q0) for

all sufficiently large =.
From (12) it is easy to see that

l6Ce, d*, g) —0.(p, @*, @)l = 0(1/2ifxe(n)), a. s.
which together with (26) implies (23).
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IV. IpentiricaTioN ofF ConTiNvous-TIME SySTEMs

We now consider the system described by (2)—(4) and still need Conditions
H,; and H,.

The least squares estimate
6:(?; d: q) — [_ Alt' R Athdt' * 'Bqt] (30)
for 0°(p, d, q) defined by (10) is now given by

g =1 (e
6.(p, d, g) = (go rP:(Pa d, Q)‘P:(f’a d, q)ds + I) L fP:(P: d, q)yids, (31)‘
where
e p, d, q) = [syi - sPyistuls® iyl - < s%u}]", (32)

Similar to the discrete-time case, the estimates (p,, ¢,) for (p, ¢) and d, for
dy are respectively derived from

(p:s @) =arg min CICAp, 9D (33)
d, = arg min CILC:(d),, (34)
deM
where

CIC(p> 9)=0lp,d*; @) + (¢ + Das, (35)
CiC(d), = olp,,d, q.)—d " a, (36)
5os &y ) = || Iy — 6Kp, 4, 0oy d qlPds, G7)

and a, is any positive real function such that
g ——= o and ¢/t + 1) ——> 0 (38)

)-

Let (w,, §,) be an I-dimensional Wiener process and G(s) =1+ gs + --- +
gus*, p = g% be an arbitrary polynomial with all roots being real and negative.

for some g€ (0,

b |

The excitation input #, for the system (2)—(4) is defined as the solution of

the following equation:

G(Du, = (1 + 1) ~°w,. (39)

Here #, corresponds to v, in (9) for discrete-time systems and serves purely for
identifying unknown parameters. For controlling the system while identifying its
parameters, it is natural to require that the excitation source superimposed ‘on the
desired control tends to zero as time goes on. Now let us show this. In fact, we

prove

Lemma 2. U,= [# sul-+s*'uj]* ——> 0, a. s. and hence B()u,——= 0,
I —>Cco: i —>00
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where u, is defined from (39).

Proof. Set
F— @l gl e — &ul -
T 0 #hengite 0
0 I “a
Fg = ’ I = I;x;
-0 0 I O -

and let PF,P™" = ], be the Jordan form with diagonal elements — 1;, where 1; > 0
since eigenvalues of F, are the reciprocals of the roots of G(s).

Clearly,
dPU, = J,PU,d:r + Pd[(1 + z)"*w} 0--:0]%, (40)

and for proving U, ——> 0, a. s. it suffices to show PU, ——> 0,
it »>00 I —>Cco

Considering the equation for each component of PU,, from (40) we see that
for verifying PU‘_::D—; 0 we only need to show that x, g 5y 0, where =z, is

the solution of the following equation:
dx, = fidt — Lix,dt + ¢"d((1 4 2)"*w,), 2 =0, (41)

where f, is an F,~adapted continuous process either tending to zero as ?—>00 or
identically equal to zero and ¢ is a constant vector, which, in fact, is the first !

elements of a row of P.

We have

4 2
X, = E e MV d] — ec” j e MU 4 )1 0w,
0

Jo
t
Es ch DT 4 1)y B 1) 4+ L) + LG,

It is easy to see that I,(f) ——> 0 and I,(¢r) —> 0 if we note f, ———>
t —>co t—>co t —->co

and (1 4+ )7 Fw, = 0, where the latter is seen from the iterated logarithm

]aw[n}
lim sup ——1__:__—— “W:" =1, . (42)
i»e /211 loglog ¢
Setting

7(2) = inf {r: r et + 1) 7dL = z},
0
we know™

(e)
S ert(1 4+ 1) *dw;
0
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is an /-dimensional Wiener process.

Then by the iterated logarithm law (42), we find that

1
'\/Zla(T ) loglog a(T)

T
j (1 + 1) *dws| = 0(1),
0

where
t
a(s) = S et (1 4 1)7%da,
0
Hence we have

[ 1,()|| << 0(e **(21a(r) loglog a(;))"'z)m 0.

Theorem 2. Assume that Conditions H, and H, hold and u, is given by
(39). Then

(Pu d;s 4?:) _z_—:o) (Pna dy, QO) (43)

and

16.Ce:N pos diNdos g:N g0) —6(p.N po> diNdoy .\ @)
= 0((1l + )™ ®), a, s, (44)
Before proving the theorem, we first prove two lemmas.

Lemma 3. If the positive real function a, in (35), (36) and the input u,
(not necessarily given by (39)) sarisfying conditions

at—z—>—o:— co and a,/282(e) *;-_:03' 0 .a. % (45)

for(p, ¢) = (pos g*) and (p, q) = (P*s q0)s then (p,, d,, q9:) given by (33) and
(34) are strongly consistent, and

“61(?:\”’0’ d:Ndy, 9.\ ) —G(Pz\/?o, d: N\ dos q:N q0)
= 0(1/2Zm (), (46)

where AF:P(¢) denotes the smallest eigenvalue of

t
go ws(p, d*, @es(p, d*, q)ds.

Proof. The proof for strong consistency is a duplicate of those for Lemma 1

2=
£
if we replace » by # there and the summation >, by integral j , and note that
i=0 2

Y= GT(P*s d*: 9*)@t(P*a d*: 4’*) et 61:-(?0, dy, %)@z(?os dy, ch)
with 4; =0 for i > p; and Bj= 0 for j<<d, or j > ¢, as agreed in Lemma 1

The convergence rate (46) is a direct consequence of the following expression:

ét(?: d*; 9) o 6(?) d*, q) _'6':(?, d*, Q)
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t —1
= ([ et 4%, i or a*, s+ 1) 0o, 4%, 9)

for p=py, and q = q.
Take an arbitrary polynomial of order » = mp™ + g* + 1.
H() =14 bys+ -+ + h,s"
with all roots being real and negative and define /-dimensional », from the equation
H()v, = u, or E(s)v, = (1 + ) *w,, 47)
where #, is given by (39) and E(s) = G(s)H(s) =1 + e1s + + -+ + e 4,57,

Set
T 811 e fzI """ o 3;,.1-,,[’
7 O wrwnsais v wa 0
.. 0
S NS . S S R S S (48)
I | B 0 74 0 =

and similarly to (40) we have
[
V,=F, L eF V(1 + A1) fwi0- - -017dd + [(1 + 2) *wi0---0]", (49)
or equivalently,
dV, = FV.dt + [d((1 + )50~ - -0]1, (50)
where V, = [vispT: - e s#F7 1yT]7

Lemma 4. If V, is defined by (49) and F. is stable, then

1 (7 1
j Vit
0

TiEs FeFe S L] =g

Riia. 8, (51)
where R is positively definite and is expressed by

% E 0
R =5 ch“[D 0] eFiid],,

0

Proof. F, is a stable matrix since E(s) is stable. Then there is a positive

definite matrix P (in fact, P =j efes o gFes ds) so that
0
PF,+ FP=—1, (52)
By using (52) and Ito’s formula, we have
B} . T NET L
av,PV,= — ||V,|*dt + (1 + ) *tr [{} 0] Pd:

+ 2(1 + 2)"*ViP[10---0]"dw,
—2e(l42)" ¢ V,P[I0---0]"w,dz, (53)
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Noticing!®1%

E:(l + )" V5PL10- - 01 dws = O(1) + o ((j ||V11|2d1)””" ) Mg >0 (54)

and

j (1 + 2)"""*V3BL10- - 0] w;da

! t 1/2
- (j 1.4 z)ﬂn—wenvlndz) _ (G ilellld?L) )
0 0
for which the iterated logarithm law (42) is invoked, from (53) we find that
L (Valfd2 = 0(CL + £)). (55)

By stability of F, we have the estimate
efet = 0(e™?*) for some p =0, (56)
Using- (55) and (56) leads to

¢ y i . FYe—2)
g eFelt J.Jg (1 =+ 5) 1 EV‘w:ds ce®
0 0

di
i
= 0 (j e_Zp(t a) (1 A0 5)—1!2 l/ZE”V H ds + dl)

}
= (g o 20(t= n(r v, |2ds> zdl) = O((1 + v e) (57)

and
o g
j; ch“"“j (1 + )7V, dwt - g i
0
t i s 12+
—0 (j et (j (1 + 5)d j 1V d ds) am)
0 0 0
=0 (S "lp(r 1)(1 + 1)(1 4e)(1/2+47) dl)
= O‘((l + ;)(1—4BJ(1;’2+11))_ (58)
Applying Ito’s formula to dV,V} and then using estimates (57) and (58), we
PPLY
find
: 1 (" pr
im ——— V:
- (1 + )2 JnV’ g
= |i 1 — : (t—2) . ~1—¢ 7| .
=i e el G oo

T,
Fl(s—1) .

A [10-++0]7w, - V)ds - ¢ d
t )

+ | 70 [ (1 4 (10017 + (dw )V + V.dwiL10---01)
0
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T,
eF"U_“

oo s
i+ —L 5' ch("")[ ] (1 + ) — 1) dl}
1—2e Jo 0 o0

; I 0 e
=1 im L j euf-v[ ] (14 2y e Pa,
1 —2g >0 (142)72% Jo 0 0

which obviously coincides with ‘R.

1 —12e
I,
Since 4 F,, 0 is controllable, R clearly is positively definite.
0
Proof of Theorem 2. By Lemma 2 it suffices to show

liminf (1 4 2)™07% . 21 8D(p) £ 0, a. s. (59)

7 >w

for (p» ¢) = (o> g*) and (2> 9) = (?*> ).
Define vector
P> q) = [s(AdjA(s))B(s)v}- - -s(AdjA(s)) B(s)v}
- s%*detA(s)oi- + -s7detA(s)vi]17, (60)
which clearly satisfies the following equation
H()¢:(p> q) = (detd(s))p.(p, d*5 ).

Since all roots of H(s) are negative and (det A(s))/H(s) is a proper rational
fraction, we have™

- (S;qu(p, )i(ps q)ds) = inf (5‘ ( det A(s) . (p, d*, g)))l ds

nen=1 \Jo\  H(s)
< ¢+ inf (S’ (x’tp,(p,d*:‘]))zds) = ¢ + J:0(y), (61)
eli=1 \Jo

where ¢ > 0 is some constant and Am;, (X) denotes the smallest eigenvalue of a
matrix X.

Hence for (59) it is sufficient to prove that

i
Lminf (1 4 2)072 .0 (L $.(p> 9) (P> q)ds) #= 0, a. s.. (62)
If (62) were not true, then there would exist a sequence of unit vectors {q,k}
oy = Lofif + - <aft Wi gty (63)
so that
¢
tim(1+ 1070 ([ *Gre, DY) =0, (64)

where (0 <i<<p—1) and piP(d*<j<<q—1) are m- and I-dimensional,
respectively.
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By (60) we see that
g-—1
nidip> q) = sZI off S(ALA() B(o+s ) 7 sidet A(s)w,
i i=a

L [ABY - - B 1o, (65)

where Afj is I-dimensional and bounded in 2. Then from (64) and Lemma 3 it
follows that

. —(1—2& T = T t}% . -
0= 1_1:'(; (1 . Ik) (1—2¢) [kfg) ...hg:+ 1) ] j’o V,V,ds[hfz)f---kgi”’ l)f]t'

¢ (etp—1)F 1 T »—13% 12
lun sup [k“’ - ki n }Z_d(l 7 R[;;g? “'hfi‘* n e,
Hence there holds limA{ =0, 0<<i<< p+ » —1 and for any complex s we have
k—>wm
Ry s
lim H,k(s)_g*um s >0 o $(Adj A())B(s)
g-1 L
+ s> £ (det A())I =0, (66)
i=a*

Let

n = [a(m’_ . _a(p—:)’ ﬁ(d*)’_ S .ﬁtg—l)‘]"‘ with H'q“ —
be a limit point of {n;,}.

Then (66) yields

Z o (Ad]A(:))B(s)—!—Z B9 si(det A()) =0,

i i=q %
which is exactly the same as (27). Its impossibility is proved in Theorem 1. The
contradiction proves the validity of (62) and at the same time completes the proof.

V. Concrusion

This paper concerns the experiment design for identifying linear input-output
system. The characteristics of the proposed methods consist of the following: (i)
Unknown coefficients, system orders and the time delay all are consistently esti-
mated. (ii) Neither stability nor minimum-phase of the system is imposed on the
system. (iii) Both discrete-time and continuous-time systems have similarly been ana-
lyzed. To authors’ knowledge, on system identification this is the first work without
requiring any condition on the system behavior,

Finally, we would like to draw reader’s attention to some open problems: It is
desirable to remove restriction that the upper bounds p* and 4* and the lower
bound 4* are known; it is of interest to develop adaptive control theory without
imposing stability and minimum phase on the system.
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