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A PARAMETER CONDITION FOR RULING OUT MULTIPLE

EQUILIBRIA OF THE PHOTOSYNTHETIC CARBON METABOLISM

Hong-Bo Lei, Xin Wang, Ruiqi Wang, Xin-Guang Zhu, Luonan Chen, and Ji-Feng Zhang

ABSTRACT

In this paper, we propose a reduced molecular network for the photosyn-
thetic carbonmetabolism, which can describe the following key characteristics:
Calvin cycle, utilization of photosynthate, and photorespiration. Taking the
concentrations of the nine major metabolites as variables, we represent the
reduced network by deriving a nonlinear differential-algebraic system with
48 parameters, and theoretically study the multi-equilibrium property in the
photosynthetic carbon metabolism. Specifically, we equivalently transform the
original 9-dimensional system into an independent 2-dimensional subsystem
with ten parameters, and show that the original system has no more than one
physiologically feasible equilibrium when the ten parameters of the subsystem
stay in a certain field around the nominal value of each parameter, no matter
what values the other 38 parameters in the original model are taken. Such a
theoretical result not only provides profound insights for qualitatively under-
standing of the dynamic features of the photosynthetic carbon metabolism,
but also can be used to make an accurate judgement on a correct strategy for
improving the photosynthesis in plants.

Key Words: Metabolic network, multi-equilibrium property, photosynthesis,
photosynthetic carbon metabolism.

I. INTRODUCTION

The grain yield of crops has doubled during the
past century, but it is still unable to meet the growing
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demand [1, 2]. Even worse, some studies suggest that
there is not much probability of getting any further
increase in grain yield by the traditional breeding
approaches [3–5]. Instead, scientists have found that
improving photosynthesis is an effective way to further
dramatically increase crop yield [4–6]. There are two
approaches to increase crop yield by improving photo-
synthesis: one is to increase the total photosynthesis,
such as increasing the leaf area and extending the daily
duration of photosynthesis; and the other is to improve
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the rate of photosynthesis per unit leaf area (i.e. the rate
of CO2 assimilation) [1, 4, 6]. It has also been shown
that increasing leaf photosynthesis rate will boost yield
potential when other factors are held constant [4, 6].

Photosynthesis is a complex system that includes
a large number of biophysical and biochemical reac-
tions, such as absorption of light energy, conversion
of light energy to chemical energy, and some other
biochemical reactions involved in the photosynthetic
carbon metabolism [7, 8]. The carbon in crop yield is
mainly from the CO2 fixed during the photosynthetic
carbon metabolism. Much attention has been riveted
on photosynthetic carbon metabolism since it is closely
related to increasing crop yield.

From a systems viewpoint, the photosynthetic
carbon metabolism can be viewed as a molecular
network which has many important dynamic charac-
teristics, such as the oscillation driven by variation of
external conditions, the sensitivity to each enzyme,
stability, and multi-equilibrium property (i.e. whether
or not the network can admit multiple equilibria).
In particular, the multi-equilibrium property in the
photosynthetic carbon metabolism is intimately asso-
ciated with increasing crop yield for the following
reason. If the photosynthetic carbon metabolism has
two or more equilibria, one of them will correspond to
the higher or highest photosynthesis rate, which clearly
can be used to increase the grain yields by driving the
system into this equilibrium; otherwise, the only thing
one can do is to improve the photosynthesis at the
existing equilibrium. Thus, it is crucial to accurately
judge whether or not this molecular network is able
to admit multiple equilibria so that a correct strategy
can be adopted. Since there is no current biological
experiment available to answer this question [9–12],
one has to resort to the systems modeling approach
and control theory to gain profound insights on it.
Actually, control theory contributes a lot in systems
biology [13–21]. Cheng et al. proposed a control routh
array method to analyze biomolecular networks [13].
Sontag et al. used monotone theory to study biological
systems [14]. Wellstead et al. provided a review of the
role of control and system theory in systems biology
[16]. Wang et al. modeled and analyzed biological
oscillations in molecular networks [17]. Chesi proposed
a recurive algorithm to compute equilibrium point of
genetic regulatory network [18] and analyzed their
global asymptotic stability [19].

Up to now, some reasonable and effective models
have been proposed for the photosynthetic carbon
metabolism to study its multi-equilibrium property
[10, 22–27]. Pettersson and Ryde-Pettersson [23]
proposed a model for the Calvin cycle (a key part of

the photosynthetic carbon metabolism) and found that
there are two equilibria when the cytosolic phosphate
concentration does not exceed 1.9 mM, but one of
them is not stable. Poolman et al. [24, 28] showed
that the Calvin cycle has two different equilibria in
plant leaves at different ages. Zhu et al. [12] proposed
a simple model of the Calvin cycle which has two
key ingredients of the Calvin cycle: Calvin cycle
and utilization of photosynthate. For a group of fixed
parameter values, Zhu et al. found that the model has
multiple equilibria by numerical computation, but only
one is physiologically feasible.

In the previous works, the model parameters
were obtained from different experiments with various
conditions. In fact, the parameter values are always
different for the photosynthetic carbon metabolism
in different mesophyll cells, not to mention different
leaves and different plants. Therefore, rather than fixed
values, it is more biologically reasonable to let the
model parameters vary in an appropriate neighborhood
around their experimental values when investigating
the multi-equilibrium property in the photosynthetic
carbon metabolism, and the results obtained in such a
way will have a good suitability for a wide variety of
plant species or conditions. However, it is a difficult
task to derive such a theoretical result due to the
complicated nonlinearity of the model.

In this paper, we develop a reduced molecular
network for the photosynthetic carbon metabolism,
which describes the following key characteristics:
Calvin cycle, utilization of photosynthate, and photores-
piration. While we investigate the multi-equilibrium
property in the photosynthetic carbon metabolism,
nine major metabolites are considered. We propose a
nonlinear differential-algebraic model with nine vari-
ables and 48 parameters. We first explore the effect
of the photorespiration pathway and then study the
multi-equilibrium property of the model. Specifically,
we equivalently transform the model into an indepen-
dent 2-dimensional subsystem with ten parameters,
and show that the equilibria of the original system
can be determined by the 2-dimensional subsystem
uniquely. Then, we prove that when the ten parameters
in the 2-dimensional subsystem stay in an appro-
priate neighborhood around their nominal values (i.e.
the experimental values), the original 9-dimensional
system has no more than one equilibrium, no matter
what values the other 38 parameters take. Such a result
can help us to make an accurate judgement on a correct
strategy for improving the photosynthesis in plants.

This paper is organized as follows. In Section II, an
introduction of the photosynthetic carbon metabolism
is given, and a nonlinear differential-algebraic model
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Fig. 1. Complete photosynthetic carbon metabolic network.

is derived. In Section III, a parameter condition is
obtained to ensure that the model has no more than
one equilibrium, and a certain parameter field meeting
such a condition is given by numeric computation. In
Section IV, several general remarks and future topics
are given to conclude this paper.

II. MODEL OF THE PHOTOSYNTHETIC
CARBON METABOLISM

2.1 Photosynthetic carbon metabolism

The photosynthetic carbon metabolism contains a
large number of metabolites and biochemical reactions
with several major modules: Calvin cycle, photores-
piration pathway, starch synthesis, triose-P export and
sucrose synthesis, which have been widely studied and
mathematically described in detail in [22]. Taking each
metabolite as a node and each reaction as an edge,
we obtain the photosynthetic carbon metabolic network
shown in Fig. 1. The symbols in the boxes are metabo-
lites. An arrow indicates the direction of a reaction. The
number on each arrow represents the reaction number.
The symbol “· · ·” represents a series of reactions that
utilize the triose phosphate PGA, GAP and DHAP. The
double dotted line represents the chloroplast membrane.
Reactions above the line occur in the chloroplast stroma
and these below occur in the cytosol.

The abbreviations used for each metabolite in this
paper are as follows. RuBP, Ribulose 1,5-bisphosphate;
PGA, 3-Phosphoglycerate; DPGA, 1,3-bisphosphogly-
cerate; GAP, Glyceraldehyde 3-phosphate; Ru5P,
Ribulose 5-phosphate; PGCA, 3-Phosphoglycollate;
GCA, Glycollate; GCEA, Glycerate; DHAP,
Dihydroxyacetone-phosphate; E4P, Erythrose 4-
phosphate; SBP, Sedoheptulose 1,7-phosphate; S7P,
Sedoheptulose 7-phosphate; FBP, Fructose 1,6-
phosphate; F6P, Fructose 6-phosphate; G6P, Glucose
6-phosphate; G1P, Glucose 1-phosphate; Ri5P, Ribose
5-phosphate; Xu5P, Xylulose 5-phosphate; GOA,
Glyoxylate; GLY, Glycine; SER, Serine; HPR,
Hydroxypyruvate; Rubisco, Ribulose1,5-bisphosphate
Carboxylase/Oxygenase.

Our primary interest is whether or not the photo-
synthetic carbon metabolism can admit multiple equi-
libria when the model parameters vary in a certain field.
Such a theoretical result not only can be used to under-
stand the qualitative dynamics of the photosynthetic
carbon metabolism but also may lead a correct deci-
sion on the strategy for improving the photosynthesis
rate on plants. Although the complete network shown
in Fig. 1 provides relatively detailed information on
the photosynthetic carbon metabolism, it is difficult to
theoretically analyze its asymptotical behaviors even
for fixed parameter values due to the nonlinearity of
such a complicated system. Hence, we next convert the
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complete network shown in Fig. 1 to a reduced one
based on some biological principles, which is tractable
for theoretical analysis.

GAP is a 3-carbon compound and Ru5P is a
5-carbon compound. The yield of 3 Ru5P molecules
will consume 5 GAP molecules. Hence, from such an
observation, we simply take reaction GAP→0.6Ru5P
to equivalently represent the complicated conversion
of GAP into Ru5P. Another part of GAP is converted
into starch in the chloroplast stroma by the pathway
GAP→FBP→F6P→G6P→G1P→Starch, and we
represent this utilization of GAP by GAP→Sink.
Part of the triose phosphate PGA, GAP and DHAP
are translocated into the cytosol for different cellular
functions, such as sucrose synthesis. We represent
this utilization of the triose phosphate GAP, PGA and
DHAP by PGA→Sink and GAP→Sink. The transfor-
mation of GCA to GCEA occurs in the cytosol. GCA
is first translocated from stroma to cytosol, and then
goes through a series of reactions to become GCEA.
GCEA is finally translocated back to stroma. We
reduce this process as GCA→GCEA. Then we derive
a reduced metabolic network of the photosynthetic
carbon metabolism, which is shown in Fig. 2. Sink
represents the utilization of the photosynthate PGA
and GAP. The symbol �i on each arrow represents the
rate of each reaction. The subscript of �i represents the
reaction number. The cycle RuBP→PGA→DPGA→
GAP→Ru5P→RuBP represents the Calvin cycle, and
the pathway RuBP→PGCA→GCA→GCEA→PGA
represents the photorespiration.

The reactions in Fig. 2 are

RN Reaction
1 RuBP+CO2−→ 2PGA
2 PGA+ ATP−→DPGA + ADP
3 DPGA+NADPH+H+−→GAP+Pi+NADP
4 GAP−→ 0.6Ru5P
5 PGA−→ Sink
6 GAP−→ Sink

13 Ru5P + ATP−→ RuBP + ADP
111 RuBP+O2−→PGA + PGCA
112 PGCA+H2O−→ GCA + Pi
7 GCA −→ GCEA

113 GCEA + ATP −→ PGA + ADP

where RN represents the reaction number. Clearly,
such a reduced metabolic network not only simplifies
the model but also represents the key processes of
the photosynthetic carbon metabolism: Calvin cycle,
utilization of photosynthate, and photorespiration.
Moreover, GAP and Ru5P can be viewed as input and
output in the conversion of GAP to Ru5P, respectively.
Such a process can be taken as a functional module,

111v13v

112v
4v

GCAGCEA 7v

1v

Ru5P RuBP PGCA

GAP DPGA PGA3v 113v
2v

5v6v
Sink

Fig. 2. Reduced photosynthetic carbon metabolic network.

and then reduced as GAP→0.6Ru5P . Similarly,
PGA→ Sink and GAP→ Sink. From the view of
function, the reduced network (Fig. 2) is equivalent to
the complete one (Fig. 1).

2.2 Rate equation of each reaction

Generally, a metabolic network can be modeled
by ordinary differential equations (ODE) or stochastic
differential equations (SDE). Different modelsmay lead
to different results. Lipshtat et al. studied the stochastic
effects on bistability of genetic switch systems [29].
Since a reasonable and effective ODE model has been
proposed and improved [10, 22–27], we model the
photosynthetic carbon metabolic systems in a deter-
ministic approach based on the existed works. We now
derive some appropriate expressions to describe the rate
for each reaction in Fig. 2 in a mathematical manner.
We use the symbols of the metabolites to represent
their own concentrations.

Badger and Lorimer [30] found that some interme-
diates of the Calvin cycle, such as PGA, SBP and FBP,
can also bind to the Rubisco active sites and compet-
itively inhibit RuBP carboxylation. To model such an
inhibition, Badger and Lorimer [30], Pettersson and
Ryde-Pettersson [23] took the reaction rate v1 of RuBP
carboxylation as

v1 = Vmax1RuBP/(RuBP+KM13�),

� = 1+ PGA

KI11
+ FBP

KI12
+ SBP

KI13

+ Pi

KI14
+ N ADPH

KI15
,

(1)

where Vmax1 represents the maximal velocity of the
enzymatic reaction, KM13 is the Michaelis-Menten
constant for RuBP, KI11, KI12, KI13, KI14 and KI15
are respective constants for PGA, FBP, SBP, Pi and
NADPH inhibition of RuBP binding to Rubisco active
sites. Moreover, the concentration of Rubisco active
sites in the chloroplast stroma can be as high as that
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of the substrate RuBP [26, 31–33]. Thus, Farquhar and
Caemmerer [10, 25] represented the reaction rate of
RuBP carboxylation approximately as

v1=
Vmax1CO2min

(
1,

RuBP

Et

)

CO2+KM11

(
1+ O2

KM12

) ,

where min(·, ·) is the function which returns the lowest
value in its elements, Et is the total concentration of
Rubisco, KM11 and KM12 are respective Michaelis-
Menten constants for CO2 and O2. Based on those
previous works, Zhu et al. [22] gave

v1= RuBP

RuBP+KM13�

Vmax1CO2min

(
1,

RuBP

Et

)

CO2+KM11

(
1+ O2

KM12

) , (2)

where � is given in (1).
Since FBP and SBP do not exist in the reduced

network (Fig. 2), the inhibition of these two metabo-
lites can be equivalently represented with their upstream
metabolite GAP by choosing an appropriate inhibition
parameter KI16 from mathematical viewpoint. More
specifically, the term FBP

KI12
+ SBP

KI13
in the denominator of

v1 in (2) can be replaced by GAP
KI16

. Hence, we take

v1 = RuBP

RuBP+�

Vmax1CO2min

(
1,

RuBP

Et

)

CO2+KM11

(
1+ O2

KM12

) ,

� = KM13

(
1+ PGA

KI11
+ GAP

KI16
+ Pi

KI14
+NADPH

KI15

)
.

(3)

RuBP oxygenation, i.e. reaction 111 (see Fig. 2), is also
catalyzed by Rubisco. Thus, we take

v111= RuBP

RuBP+�

Vmax111O2min

(
1,

RuBP

Et

)

O2+KM12

(
1+ CO2

KM11

) . (4)

The reactions 4, 5, 6 and 7 (see Fig. 2) are all
simplifications of a series of biochemical reactions. We
assume that all these reactions obey Michaelis-Menten
kinetics, and the corresponding reaction rates are

v4 = Vmax4GAP

GAP+KM4
(5)

v5 = Vmax5PGA

PGA+KM5
(6)

v6 = Vmax6GAP

GAP+KM6
(7)

v7 = Vmax7GCA

GCA+KM7
. (8)

Note that the reverse reaction of the reaction 2
(see Fig. 2) is not considered since it is a very weak
process. The rate equations of the reactions 3, 13, 112
and 113 (see Fig. 2) are assumed to be consistent with
those developed in [22]. The mathematical expressions
are

v2 = Vmax2PGA×ATP

(PGA+KM21)(ATP+KM22)
(9)

v3 = Vmax3DPGA×NADPH

(DPGA+KM31)(NADPH+KM32)
(10)

v112 = Vmax112PGCA

PGCA+KM112

(
1+ GCA

KI1121

)(
1+ Pi

KI1122

) (11)

v13 =
Vmax13

(
Ru5P×ATP− ADP×RuBP

KE13

)
(
Ru5P+KM131

(
1+ GAP

KI131
+ RuBP

KI132
+ Pi

KI133

))
ATP

(
1+ ADP

KI134

)
+KM132

(
1+ ADP

KI135

) (12)

v113 =
Vmax113

(
GCEA×ATP− PGA×ADP

KE113

)
(
ATP+KM1131

(
1+ PGA

KI113

))
GCEA+KM1132

. (13)
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2.3 Model of the reduced metabolic network

With the above preparation, we take the concen-
trations of the orthophosphate Pi in the stroma and
the eight metabolites RuBP, PGA, DPGA, GAP, Ru5P,
PGCA, GCA and GCEA in Fig. 2 as the variables, and
take the concentrations of ATP, ADP, NADPH, CO2
and O2 as the parameters. Then, the rate of change of
each metabolite concentration is given by the differ-
ence between the rates of the reactions that generate the
metabolites and the rates of the reactions that consume
the metabolites:

dRuBP/dt = v13−v1−v111 (14a)

dPGA/dt = 2v1+v111+v113−v2−v5 (14b)

dDPGA/dt = v2−v3 (14c)

dGAP/dt = v3−v4−v6 (14d)

dRu5P/dt = 0.6v4−v13 (14e)

dPGCA/dt = v111−v112 (14f)

dGCA/dt = v112−v7 (14g)

dGCEA/dt = v7−v113, (14h)

where the rates vi are given in (3)–(13). The export of
photosynthate PGA, GAP and DHAP from the chloro-
plast to the cytosol is mediated by the phosphate translo-
cator of chloroplast membrane, and is associated with
a counter-import of orthophosphate from the cytosol
to the chloroplast. Therefore, the total concentration of
phosphate (CP) in stroma remains constant [22, 23, 34].
We write the conserved quantity of phosphate approxi-
mately as

CP = Pi+PGA+2DPGA+ATP+PGCA

+2RuBP+Ru5P+GAP. (15)

Thus, the differential Equations (14) and the algebraic
Equation (15) form a coupled nonlinear differential-
algebraic system that represents a reduced model of the
photosynthetic carbon metabolism with nine variables
and 48 parameters.

III. THEORETICAL ANALYSIS

3.1 Effect of the photorespiration

For a dynamic system

dX

dt
= f (X), (16)

where X is a vector-valued function of t and f (·) is a
known vector-valued function with appropriate dimen-
sion, the equilibrium is defined as the solution of the
system of equations obtained by setting the right-hand
side of (16) to zero, i.e. the solution of f (X)=0.

The difference between the reduced photosyn-
thetic carbon metabolic network (Fig. 2) and that in [12]
is that our reduced network includes the photorespira-
tion pathway RuBP→PGCA→GCA→GCEA→
PGA, which represents a key biological process in the
photosynthetic carbon metabolism. Hence, we will first
investigate the effect of the photorespiration pathway
on the photosynthetic carbon metabolism. We take the
orthophosphate Pi as a parameter and consider the
model (14) as the original model here. Without the
photorespiration pathway, the model (14) becomes

dRuBP/dt = v13−v1 (17a)

dPGA/dt = 2v1−v2−v5 (17b)

dDPGA/dt = v2−v3 (17c)

dGAP/dt = v3−v4−v6 (17d)

dRu5P/dt = 0.6v4−v13. (17e)

We find that under a mild condition on the reaction rates,
the metabolites PGA, DPGA and GAP have the same
equilibria regardless of the photorespiration pathway.
This property is summarized in the following proposi-
tion, which is proven in Appendix 5.1.

Proposition 1. Let {RuBP=RuBP0,PGA=PGA0,

DPGA=DPGA0,GAP=GAP0, Ru5P= Ru5P0} be an
equilibrium of the system (17), where RuBP0, PGA0,
DPGA0, GAP0 and Ru5P0 are fixed positive numbers.
Assume that the rate equations v2,v3,v4,v5 and v6 do
not depend on the variables RuBP, Ru5P, PGCA, GCA
and GCEA. Then, if the system (14) has an equilibrium,
it must have the form {RuBP=RuBP1, PGA=PGA0,
DPGA=DPGA0, GAP=GAP0, Ru5P= Ru5P1,
PGCA=PGCA0, GCA=GCA0, GCEA=GCEA0},
where RuBP1, Ru5P1, PGCA0, GCA0 and GCEA0 are
some positive numbers.

Remark 1. In Proposition 3.1, there is no requirement
on the detailed form of the reaction rate vi . It requires
only that the same vi in system (17) and (14) has the
same expression.

Generally, the biochemical reactions 2, 3, 4, 5 and
6 (see Fig. 2) are not affected by the metabolites RuBP,
Ru5P, PGCA, GCA and GCEA [22]. Hence, the condi-
tion on the reaction rates in Proposition 1 is always held
for the photosynthetic carbon metabolism. Since there
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is no requirement on detailed expressions of reaction
rates v2,v3,v4,v5 and v6, Proposition 1 is suitable for
a wide variety of models of the photosynthetic carbon
metabolism.

3.2 A parameter condition for ruling out multiple
equilibria

For the model composed by the differential equa-
tions (14) and the algebraic equation (15), it is still
difficult to analyze its multi-equilibrium property when
all the 48 parameters vary in certain intervals. Thus,
we need to equivalently transform this system into a
simplified one.

By setting the right-hand side of (14) to zero and
with an equivalent transformation, we get the following
algebraic equations,

0.6v4−v1−v111 = 0 (18a)

1.2v4−v2−v5 = 0 (18b)

v2−v3 = 0 (18c)

v2−v4−v6 = 0 (18d)

0.6v4−v13 = 0 (18e)

v111−v7 = 0 (18f)

v112−v7 = 0 (18g)

v7−v113 = 0. (18h)

With the rate Equations (3)–(13), (18b) and (18d) form
an independent subsystem,

1.2Vmax4GAP

GAP+KM4
− Vmax5PGA

PGA+KM5

− Vmax2PGA×ATP

(PGA+KM21)(ATP+KM22)
=0 (19a)

Vmax2PGA×ATP

(PGA+KM21)(ATP+KM22)

− Vmax4GAP

GAP+KM4
− Vmax6GAP

GAP+KM6
=0, (19b)

which contains just two variables (i.e. PGA and GAP)
and 10 parameters (i.e. Vmax2, Vmax4, Vmax5, Vmax6,
KM21, KM22, KM4, KM5, KM6 and ATP ).

Lemma 1. If the subsystem (19) has only one positive
solution, then the original system (18) has no more than
one positive solution.

The proof of this lemma is given in Appendix 5.2.
Based on Lemma 1, we only need to discuss the

subsystem (19). Let x= 1
PGA and y= 1

GAP . Then, from
(19) we have

1.2Vmax4

1+KM4y
− Vmax2ATP

(1+KM21x)(ATP+KM22)

− Vmax5

1+KM5x
=0 (20a)

Vmax2ATP

(1+KM21x)(ATP+KM22)
− Vmax4

1+KM4y

− Vmax6

1+KM6y
=0. (20b)

This transformation only loses the zero root {PGA=
0,GAP=0} of (19), which has no meaning. Thus, the
roots of the systems (19) and (20) are a one-to-one
correspondence, and have the same signs.

Eliminating y in (20), we obtain a fractional equa-
tion with one variable x that can be written as a poly-
nomial equation of degree 3,

ax3+bx2+cx+d=0, (21)

where a, b, c and d are all polynomials of (KM ,Vmax,
ATP), KM=(KM21,KM22,KM4,KM5,KM6) and
Vmax=(Vmax2,Vmax4,Vmax5,Vmax6).

We take the values of the parameters (KM ,Vmax,

ATP) used in [12, 22, 23] as the nominal values in
our work, see Table I. For such nominal values
(KM0,Vmax0,ATP0), the corresponding roots of (21) are

x10=−1.385, x20=−1.134, x30=18.521. (22)

That is, (21) has only one positive solution x30=
18.5209. The corresponding solution of y is y30=
0.562646. Thus, {PGA=0.054,GAP=1.777} is the
only positive solution to the subsystem (19), which falls

Table I. Nominal values of the parameters Vmax,KM ,ATP.

Parameter Value Reference

Vmax2 10.3 [22, 26, 36]
Vmax4 1.5 [22, 37, 38]
Vmax5 0.3 [22, 37, 38]
Vmax6 0.7 [22, 37, 38]
KM21 0.240 [22, 39]
KM22 0.390 [22, 39]
KM4 0.84 [12]
KM5 0.75 [12]
KM6 5.0 [12]
ATP 0.68 [22, 26]
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within the physiologically relevant range (0.0001−
5mM) [35].

Next, we discuss the multi-equilibrium prop-
erty of the original system when the 10 parameters
(KM ,Vmax,ATP) vary in some field around their
nominal values. Before deriving the main result, we
give the following lemma about polynomial equation
of degree 3, whose proof is given in Appendix 5.3.

Lemma 2. Suppose that the coefficients a, b, c and d
of the polynomial equation

ax3+bx2+cx+d=0 (23)

are continuous real functions of P= (p1, p2, · · ·, pn)∈
Rn (n is a positive integer), i.e. a=a(P), b=b(P),
c=c(P) and d=d(P). Let xi0= xi0(a,b,c,d)=
x̃i0(P0), i =1,2,3, be the roots of (23) with respect
to the parameter P0= (p10, p20, · · ·, pn0) and x10<0,
x20<0, x30>0. Assume that �⊂Rn is connected and
P0∈�. If ad(ad−bc) has the same sign for all P∈�,
then the positive root x3= x̃3(P) will keep its sign and
the other two roots will stay in the left open half plane
when P varies in �.

Remark 2. The two roots of (23) that stay in the
left half plane could be a pair of conjugate complex
numbers, two distinct negative numbers, or two repeated
negative numbers.

Theorem 1. Let �⊂R10+ ={(z1, · · ·, z10) : zi ∈R+ =
(0,∞), i=1, · · ·,10} be connected and contain the
nominal values (KM0,Vmax0,ATP0) listed in Table I,
and a,b,c and d be the coefficients of (21). Then, (18)
has no more than one equilibrium if ad(ad−bc) does
not change its sign whenever (KM ,Vmax,ATP)∈�.

Proof. The first two roots in (22) are negative and the
last one is positive. Noticing that ad(ad−bc) has the
same sign for all (KM ,Vmax,ATP)∈�, we can claim
that (21) has one and only one positive root for each
(KM ,Vmax,ATP)∈� by Lemma 2. This implies that the
subsystem (20) has no more than one positive root. By
Lemma 1, the original system (18) has no more than
one equilibrium for any (KM ,Vmax,ATP)∈�. �

Remark 3. To get the result in Theorem 3.1, it only
needs some condition on the subsystem parameter
(KM ,Vmax,ATP), which implies the other 38 parame-
ters can vary arbitrarily.

3.3 Numeric results

Based on Theorem 1, we can find a certain param-
eter field in which the original system (18) has no more
than one equilibrium by some numeric computation.

Let�={(KM ,Vmax,ATP):LKMi ≤KMi ≤UKMi ,

i =21,22,4,5,6, LVmax j ≤Vmax j≤UVmax j , j=2,4,5,
6, LAT P≤ATP≤U AT P}, where LKMi and UKMi ,
LVmax j and UVmax j , LATP and UATP are some posi-
tive numbers. In other words, � is a neighborhood of
the nominal values (KM0,Vmax0,ATP0).

For the nominal values (KM0,Vmax0,ATP0)
listed in Table I, the coefficients of (21) satisfy
a0d0−b0c0<0,a0d0<0. Thus, we can find some �
satisfying ad(ad−bc)>0 for all (KM ,Vmax,ATP)∈�.
Actually, if the minimal value of the function

f (KM ,Vmax,ATP)=ad(ad−bc),

is positive on �, then such an � will meet the require-
ment. It is difficult to obtain the largest �. But for a
given �, it is relatively easy to verify whether or not
the condition is satisfied. Varying 25% , 20% and 20%
around the nominal values for Vmax’s, KM ’s and ATP,
respectively, we can get the following field,

Vmax2∈[7.725,12.875], KM21∈[0.192,0.288],
Vmax4∈[1.125,1.875], KM22∈[0.312,0.468],
Vmax5∈[0.225,0.375], KM4∈[0.672,1.008],
Vmax6∈[0.525,0.875], KM5∈[0.6,0.9],
ATP∈[0.544,0.816], KM6∈[4.0,6.0].

(24)

Using Mathematica, we find that the function f (KM ,

Vmax,ATP) takes its minimal value 7.17058×106 in �
at Vmax2=7.75853, Vmax4=1.13436, Vmax5=0.373942,
Vmax6=0.534386, KM21=0.192427, KM22=0.312,
KM4=1.00787, KM5=0.602485, KM6=4.00263 and
ATP=0.555017. Therefore, based on Theorem 1, we
claim that the model composed by the differential
Equations (14) and the algebraic Equation (15) has no
more than one equilibrium, when the 10 parameters
Vmax2, Vmax4, Vmax5, Vmax6, KM21, KM22, KM4, KM5,
KM6 and ATP stay in the field (24) and the other 38
parameters are arbitrary.

IV. CONCLUSION AND FUTURE WORK

In this paper, we first proposed a reduced molec-
ular network for the photosynthetic carbon metabolism,
which describes the key characteristics of the photosyn-
thetic carbon metabolism: Calvin cycle, utilization of
photosynthate, and photorespiration. Then a nonlinear
differential-algebraic model is derived to represent
the reduced network. By investigating the effect of
the photorespiration pathway on the multi-equilibrium
property in the photosynthetic carbon metabolism, we
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found that under a mild condition on the reaction rates
v2, v3, v4, v5 and v6, the metabolites PGA, DPGA and
GAP have robust dynamic behavior and are indepen-
dent of the dynamics of the photorespiration pathway.
Moreover, we studied the multi-equilibrium property
of the network allowing the parameters to vary in an
appropriate domain. Although there are 48 parameters
in our model, we proved that if the 10 parameters in the
subsystem stay in a certain field, no matter what values
the other 38 parameters take, there exists no more than
one equilibrium in the original system. Such a result
not only provides profound insights for qualitatively
understanding dynamic features of the photosynthetic
carbon metabolism but also can be adopted as a quan-
titative criteria to find a correct strategy to improve the
photosynthesis in plants.

From the view of function, the reduced network
is equivalent to the entire one. This paper only gives a
parameter condition for ruling out multiple equilibria of
the reduced network. The parameter condition for the
presence of multiple equilibria and the stability of each
equilibrium are still worth investigating.

V. APPENDIX

5.1 Proof of Proposition 1

Proof. By setting the right-hand side of the ordinary
differential Equations (17) and (14) to zero and with
some equivalent transformations, respectively, we get
the following algebraic equations,

v13−v1 = 0 (A1a)

1.2v4−v2−v5 = 0 (A1b)

v2−v3 = 0 (A1c)

v3−v4−v6 = 0 (A1d)

0.6v4−v13 = 0, (A1e)

v13−v1−v111 = 0 (A2a)

1.2v4−v2−v5 = 0 (A2b)

v2−v3 = 0 (A2c)

v3−v4−v6 = 0 (A2d)

0.6v4−v13 = 0 (A2e)

v111−v112 = 0 (A2f)

v112−v7 = 0 (A2g)

v7−v113 = 0. (A2h)

Since v2, v3, v4, v5 and v6 do not depend on {RuBP,
Ru5P, PGCA, GCA, GCEA}, (A1b)–(A1d) and (A2b)–
(A2d) just include the variables PGA, DPGA and GAP,
and form two independent subsystems of the systems
(A.1) and (A.2), respectively. It is obvious that the
subsystems (A1b)–(A1d) and (A2b)–(A2d) are the
same. That is, the two systems (A.1) and (A.2) have the
same independent subsystem. Thus, the values of PGA,
DPGA and GAP in the solutions of systems (A1a) and
(A2a) are the same. �

5.2 Proof of Lemma 1

Proof. Since the subsystem (19) (i.e. (18b) and (18d))
contains only two variables PGA andGAP, we can solve
PGA and GAP first. Then, by the following procedure,
we can uniquely solve the other seven variables DPGA,
GCEA,GCA, Pi , PGCA, RuBP andRu5P, whichmeans
GAP and PGA can determine the other seven metabo-
lites uniquely. Thus, if the subsystem (19) has only one
positive solution, then the original system (18) has no
more than one positive solution.

Procedure for solving DPGA, GCEA, GCA, Pi ,
PGCA, RuBP and Ru5P.

Step 1: Obtaining the value of each reaction rate.
After having obtained the values of {PGA,GAP}

by the subsystem (19), we can get the values of v2, v4,
v5 and v6 accordingly. By (18c) and (18e), it is obvious
that

v3 = v2, (B1)

v13 = 0.6v4. (B2)

Denote

WC = Vmax1CO2

CO2+KM11

(
1+ O2

KM12

) ,

WO = Vmax111O2

O2+KM12

(
1+ CO2

KM11

) ,

W = WC +WO .

Then

v1 = WC

W
(v1+v111),

v111 = WO

W
(v1+v111).

Let

�= 0.6

W
v4.

q 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society



Asian Journal of Control, Vol. 13, No. 5, pp. 1 14, September 2011

Then, by (18a) we have (18f), (18g) and (18h),

v1 = WC ·� (B3)

v111 = WO ·� (B4)

v7 = WO ·� (B5)

v112 = WO ·� (B6)

v113 = WO ·�. (B7)

Step 2: Solving DPGA, GCA and GCEA.
With the rate equations (8), (10) and (13), we can

obtain unique DPGA , GCA and GCEA by (B1), (B5)
and (B7), respectively.

Step 3: Solving PGCA, RuBP and Ru5P for
fixed Pi .

For fixed Pi , GCA can determine PGCA(Pi)
uniquely by (B6).

For given PGA and GAP,

�(Pi) = KM13

(
1+ PGA

KI11
+ GAP

KI16

+ Pi

KI14
+ N ADPH

KI15

)

is only a function of Pi . Combining (3) and (B3), we
have

RuBPmin

(
1,

RuBP

Et

)

RuBP+�(Pi)
=�. (B8)

If RuBP≥Et , then (B8) becomes a linear equation

RuBP

RuBP+�(Pi)
=�. (B9)

If RuBP<Et , then (B8) becomes a quadratic equation

RuBP
RuBP

Et

RuBP+�(Pi)
=�, (B10)

or equivalently,

RuBP2−�EtRuBP−�(Pi)�Et =0. (B11)

Noting that Et , �(Pi) and � are all positive, we have
−�(Pi)·� ·Et<0. Therefore, one root of the quadratic
equation (B11) is positive, and the other is negative.

For fixed Pi , denote the root of (B9) by
RuBP1(Pi), and the positive root of (B11) by
RuBP2(Pi). Then we can show that RuBP1(Pi) and
RuBP2(Pi) are not positive roots of the original equa-
tion (B8) simultaneously, since otherwise, there would

be that RuBP1(Pi) and RuBP2(Pi) were both positive
roots of the original equation (B8) simultaneously. This
results in 0<RuBP2(Pi)<Et ≤ RuBP1(Pi),

� =
RuBP2(Pi)

RuBP2(Pi)

Et

RuBP2(Pi)+�(Pi)
<

RuBP2(Pi)

RuBP2(Pi)+�(Pi)

<
RuBP1(Pi)

RuBP1(Pi)+�(Pi)
=�,

which is obviously a contradiction. Therefore, we can
obtain an unique positive RuBP(Pi) for fixed Pi .
Thus, RuBP(Pi) and GAP can determine an unique
Ru5P(Pi) for fixed Pi by (B2).

Step 4: Solving Pi , PGCA, RuBP and Ru5P.
We will first show that PGCA(Pi), RuBP(Pi)

and Ru5P(Pi) obtained for fixed Pi in Step 3 are all
strictly increasing functions of Pi .

Define function f (·, ·) as

f (RuBP, Pi)=
RuBPmin

(
1,

RuBP

Et

)

RuBP+�(Pi)
.

Then f (RuBP, Pi) is strictly increasing in RuBP and
decreasing in Pi . Let Pi2>Pi1>0 be any two fixed
values of Pi , and RuBP(Pi1) and RuBP(Pi2) be the
corresponding roots of (B8). That is, f (RuBP(Pi1),
Pi1)=� and f (RuBP(Pi2), Pi2)=�. Noticing the
monotonicity of f (·, ·), we have

f (RuBP(Pi1), Pi2)< f (RuBP(Pi1), Pi1)

= f (RuBP(Pi2), Pi2),

which implies

RuBP(Pi1)<RuBP(Pi2).

Thus, RuBP(Pi) is strictly increasing in Pi . Similarly,
we can show that PGCA(Pi) and Ru5P(Pi) are also
strictly increasing in Pi .

Now, we will solve Pi by (15). Define function
g(·) as

g(Pi) = Pi+PGA+2DPGA+ATP+GAP

+PGCA(Pi)+2RuBP(Pi)+Ru5P(Pi),

where PGCA(Pi), RuBP(Pi) and Ru5P(Pi) are
obtained in Step 2. Then (15) becomes

g(Pi)=CP . (B12)

By the above argument, g(Pi) is strictly increasing in
Pi . Thus, if the solution of (B12) exists for a given
parameter CP , then it must be unique. Suppose that Pi
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is the unique solution of (B12). Then we can obtain
PGCA=PGCA(Pi), RuBP=RuBP(Pi) and Ru5P=
Ru5P(Pi) uniquely. �

5.3 Proof of Lemma 2

Proof. We will first show that “ad(ad−bc) has the
same sign for all P∈�” is equivalent to “ − d

a>0 and
bc>ad ( or bc<ad) for all P∈� ”. Note that bc>ad (or
bc<ad) for all P∈� means that ad−bc keeps its sign
for all P∈�, and − d

a>0 is equivalent to ad<0. Thus,
− d

a>0 and bc>ad (or bc<ad) for all P ∈� implies that
ad(ad−bc) keeps its sign for all P∈�. Conversely,
assume that ad(ad−bc) keeps its sign for all P∈�.
First, − d(P0)

a(P0)
= x10x20x30>0 implies a(P0)d(P0)<0. If

there would exist a P2∈� such that a(P2)d(P2)>0,
then there would be a P3∈� such that a(P3)d(P3)=0
by the connectivity of � and the continuity of a(P) and
d(P). Then, a(P3)d(P3)(a(P3)d(P3)−b(P3)c(P3))=
0. This contradicts the condition that ad(ad−bc) keeps
its sign for all P∈�. Thus, ad<0 for all P in �, which
implies − d

a>0. Similarly, we can show that bc>ad (or
bc<ad) for all P∈�.

Next, we will show that the roots xi = x̃i(P) (i =
1,2,3) cannot be on the imaginary axis for all P∈�.
Noting that x1x2x3=− d

a and the assumption− d
a>0 for

all P∈�, we have xi �=0 (i =1,2,3). Assume, to arrive
at a contradiction, that there existed P1∈� such that
the corresponding roots x11(P1), x21(P1) were a pair of
conjugate imaginary roots. Then (23) would have the
form

a1(x+ p)(x2+q)=0, q>0,

or equivalently,

a1x
3+a1 px

2+a1qx+a1 pq=0, q>0.

That is, b1=a1 p, c1=a1q and d1=a1 pq, which
implies b1c1=a1d1. This contradicts the assumption
that bc>ad (or bc<ad) for all P∈�. Hence, there
must be no root of (23) on the imaginary axis for
any parameter P∈�. This means the root set of (23)
corresponding to the parameter P∈� is divided into
two parts by the imaginary axis.

Since the roots of a polynomial equation of degree
3 depend on the parameters continuously, the roots xi =
x̃i(P) (i =1,2,3) cannot cross the imaginary axis when
the parameter P varies in � continuously. Noticing the
connectivity of�, we can claim that the roots xi = x̃i(P)

(i=1,2,3) will stay in its original field, either the left
half plane or the right half plane, no matter how the
parameter P varies in �.

Finally, we will show that the positive root x3=
x̃3(P) will stay on the positive real axis when P varies
in�. Otherwise, x3= x̃3(P)would become into a pair of
conjugate complex roots x31 and x32 since they cannot
be two positive roots, and the other two roots (i.e. x1
and x2) would merge into an negative number, say x12.
Thus, the product of the three roots x12x31x32 would
be negative, that is − d

a = x12x31x32<0. This contradicts
the condition − d

a>0 for all P∈�. �
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