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Abstract—A new criterion CIC is introduced to estimate
orders (pg, o, 7o) Of the linear stochastic feedback control
system with correlated noise described by a CARMA model.
It is proved that the estimate is strongly consistent when the
upper bounds for p, g, and r, are available, but neither the
stability condition nor the ergodicity of the input and output
are imposed on the system.

1. Introduction

THE ORDER ESTIMATE for an ARMA process is one of the
important problems in time series analysis. The estimates
(P, r,) for unknown orders (po, r,) are usually given by
minimizing some criterion, for example, AIC(p, r) (Akaike,
1969), BIC(p, r) (Akaike, 1977) and ®IC(p, r) (Hannan and
Quinn, 1979). But all these results cannot be applied to the
feedback control system, described by the so-called CARMA
model, which essentially differs from the ARMA model by
additional control terms which are crucial for all real control
systems and depend upon the past input and output.

In a recent paper (Chen and Guo, 1987b), having
introduced a new criterion to be minimized, the authors
obtained consistent estimates for orders of the multidimen-
sional feedback control system with uncorrelated noise. In
this paper by introducing a new criterion CIC, we have
generalized these results to the correlated noise case, i.e. we
have obtained strongly consistent estimates (p,,, ¢, 1,,) for
orders (pg, o, ro) of the CARMA process. At the same
time, the criterion and conditions used in Chen and Guo
(1987b) are simplified.

2. Statement of problem
Let the l-input, m-output stochastic control system be
described by the following CARMA model

A(2)y, = B(z)u, + C(z)w,,
Ya=w,=0, u,=0, n<0 1)

where w, is an m-dimensional driven noise, A(z), B(z) and
C(z) are matrix polynomials in the shift-back operator z

n=0;

A@R)=I+A;z+ - +A,2%, p,=0, (2a)
B(z)=Byz+---+ Bquz"o, go=0, (2b)
Ciz)=1+Ciz+- - +C, 2%, 1,=0 (2c)

with unknown orders pg, g, and ry, and unknown matrix
coefficients 4;, B and C, (1<i<p,, 1<j<gq,, 1sk=n)
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In the sequel, we denote by A, (X) the minimum
eigenvalue of a matrix X, and by the norm || X|| we mean the
maximum singular value of X.

We make the following assumptions.

(H,). The driven noise is a martingale difference sequence
with respect to a non-decreasing family of o-algebras {%,}
and such that

sup E[||W,.111%| F] <, a.s. for some f=2.
(H,). For any n =1, u, is %,-measurable.

(H;). The transfer matrix C ~(z) — 31 is strictly positive real,
ie.

C Y+ C (e ) —1>0, VBel0,2x].

(H,). The true orders (py, ¢¢, 7o) belong to a known finite
set M:

M2 {(p,q,r):0sp=p*0=g=<q*0<r<r*}

(Hs). A sequence of positive numbers {a,} can be found
such that

(log 5;)(log log §,) ¢~

P —= 0, as. forsome a>1, 3)

and !
aﬂ

T = 0,as. Y(p, g ryeM* (4)

where 8(.) is the Dirac function
1, x=0
800) = [ ’
G 0, x#0’
and M* denotes the set consisting of three points:
M*={(po, g%, r*), (P*, 40, "), (P*, g% )} (5)

and where A%;?")(n) denotes the minimum eigenvalue of

n—1

= 1 &
> #p @, N (P a. )~ 5L (d=mp®+lg*+mr?),
i=0

(6)
with
®a(p. 4. 7)
s volesus W o Wign Wae Wl
(7
and .
=2 198" ¢ rIP+ 1. ®)

i=0

System (1) under Assumptions (H,)-(Hs) is, generally
speaking, neither stationary nor ergodic because (i) the
system input u,, may be an arbitrary %, -measurable function;
(ii) the matrix polynomial A(z) may be unstable, i.e. zeros of
det A(z) may lie outside the closed unit disk and (iii) the
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system (1) is causal, i.e. the process vanishes for negative
time n. Therefore, the usual treatments and criteria
developed for estimating orders of stationary ARMA
processes (Hannan and Rissanen, 1982; Hannan and
Kavalieris, 1984) are not applicable in the present situation.

In Section 3 for a large class of adaptive systems we shall
specify {a,} and show that Assumption (Hs) is indeed
satisfied.

We introduce the regression vector

M
©®)

corresponding to the system of largest possible orders, where
the estimate W, for w, is recursively defined as follows:

= T T T T T
‘pn_[yn"'yn—p'+1 un"‘unﬁq‘+1 Woeo

P =Yy = 0i@,1, n=0; W,=0, n<0, (10)
6p1=0+a,P.0,(y5.1— 956,), i
Po1=P,~3,P,0,0:P,, a,=(1+@iBg,)",

with initial value 6, arbitrarily chosen and B, = dI, where d is
given in (6).
For any (p, g, r) € M set

8(p,q,r)=[-A,...-A, B,...B, C,...C]* (12)
where by definition
A;=0, B;=0, C, =0 for i>p,, j>q, k>r. (13)
The extended least squares estimate

6.(p,q,7)

=[-Ay...~Ap By...B, Cn...C,JI% (14)

for 6(p, g, r) at time n is given by

pn

n—1
T

6.(p,q,7)= (E @(p, a, )el(p,q, 1)
=0 —1n-1

1 T
+Ei) 2 @i(p, g, r)yis, (15)
i=0

where
@.(p, g, 1)
S 10E Phmtlll s U eeA W o W sal’, K1)

We introduce a new information criterion CIC(p, q, ),
where the first “C” emphasizes that the criterion is designed
for feedback control systems:

CIClp, g, r)y=0,(p, g, )+ (p+q+r)a,,  (17)

where the subscript n denotes the data size, and where a,, is
given in Assumption (Hs) and o,(p, g, r) is a residual given
by

n—1
0P, 4, 1) = 2, 11— 05(p, 4, N @ip, g, DI (18)
i=0

Finally, the estimate (p,,, g,, r,,) for (py, g0, 1) is given by
minimizing CIC(p, g, r),,,

(Pns G 1u) = arg min CIC(p, g, 1), (19)
(p.q.r)eM

3. Strong consistency of order estimates

Theorem 1. Under conditions (H,)—(H;) the order estimate

(Pns Gn> 1) for (po, ga, 7o) given by (19) is strongly
consistent:

(Pa» s 1) 552 (Pos G0, o), @S
We first prove three lemmas. Define
B =W =W =Y — W~ 03Py (20)
where W, is defined by (10).

Lemma 1. If conditions (H,)-(H,) hold then
n—1
2 1151l = O((log 57)(log log 55 ~2), a5, Ve>1,
i=0

where 57 is defined by (8).

Proof. The estimation established in the proof of Theorem 1
of Chen and Guo (1986a) holds true, and from (29) and (30)
of that paper it follows that

n—1
2 15al?
i=0
=0((log5,)(loglog5,)°**~2)) as. Ve>1, (21)
where §, is defined by ;
So=1+ 2 @7
i=0

with @, given by (9).
Using (9), (7), (8), (20) and (21) it is easy to show that

5,=0(Y), as. (22)
From this and (21) the desired result follows. O

Lemma 2. Let Assumption (H,) be satisfied, and let the
random vector @, be &, -measurable, Yn. Then as n— o,
-1/2n—-1

n—1
(E @i+ EI) Z BWii
i=0

i=0
=O((logs,)(loglogs,)*®=2)  as. Ve>1,

2

where £>0, and .
521+ 3 el
i=0
Proof. Set

n—1 n—1 =1
5= 3 vt Ro=(3 ewite) . @)
i=0

i=0
By the matrix inversion formula, it is clear that
R,.1=R,—b,R.9,@:R,, b,=(1+¢iR,9,) "
Hence

tr S8y 1Ry 15,01 =T STR, S,

+ 2 (2b,wi 1 STR@; + bpI Rl lw, 4 |
im1

= b ISTR@: 1) (24)

By the estimate for the martingale difference sequence
(Chen and Guo, 1986a; Lai and Wei, 1982) we know that

tr S 1Ry 118,41 =0(1) + Z bipiRi@; w4 1||2~ (25)
i=0

But in (29) and (30) of Chen and Guo (1986a) we have
shown that

>, bR wl?

‘ = O((log s,,,,)(loglog s, . )*°®~2), as. Ve>1. (26)
Thus, combining (25) with (26) we conclude that
IRAF 18 Al < tr 8% 4 1R, 1 Sy

=0((logs,.,)(loglogs, . )*®*~?), as. Ve>1.
This proves the lemma. O

Lemma 3. Under conditions (H,)-(Hs), CIC(p,q,r),
defined by (17) satisfies
CIC(p, g, r), = CIC(po, 4o, To)n
a,(p+q+r—py—qgo—ry+o(1)), as.
it(s,, )= (p, q, 1), (27)
A (n)(Gag + 0(1)), as.
if (s, 1, ) #(p, g, 1), (28)
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for any (p,q, r)eM, where ap=min {||4,|I% B>
1C,llI} >0,

()2 (PVPeq VoV, (29)
and a v b denotes max (a, b).

Proof. By Lemma 1 we have

n—1
> ligdp, g, 1) — @¥(p, g, DI
i=0
= 0((log§%)(log log 59)°°®~), a.s. Ye>1, (30)

for any (p, g, r) € M, where @,(p, g, r) is defined by (16). By
(18) we have for (s, 1, A)=(p, ¢, 1)
n—1

0.(p, g, 1) =t 85(p, 0. 1) 2 @lp, 4 7)

i=0

x @i(p, 4, 7)6.(p, 4, 7)
n—1
+2t65p,a, 1) 2 @dlpr g, 7)
i=0
x[-8%(p, g, )F(p, g, r) + Widl®

n—1
+ 3 18°(p, ¢, N9ip, 4. 1) = Wil (31)
where . fith
6.(p,q,r)=0(p,q, )~ 6.(P, 4, 7),
@5(p, 4. 7)=@u(p. 4, 7) — PP 4, 7)-
By (30) and Schwarz inequality it follows that for any
(p.a,r)eM,

;e 1 -1z
( > 9P, a, Nej(p. g, 1) + 7 I)
j=0

2

n—1
x > @p, @, N (. q,7)

o[3(

=0

n—1 1 -1
> e a.njp g0+ EI)
i=0

n—1

> e e, g, I
i=0

= 0((log %) (log log 52)°*®~2), Ve>1, a.s. 32)

X @dp, 9, Nei(p; 0, r)]

Further, by Lemma 1 and an estimation for martingales (see
e.g. Chen and Guo (1986a)) it is easy to see that

n—1
> 118%(p, 4, N@E(P, g, 1) — Wissll?

i=0
n—1
= Zﬂ lIW+1lI> + O((log 52)(log log 53)°*F ™). (33)

Hence, by Lemma 2 and by using (22), (31)-(33), it is not
difficult to conclude that for all (s, t, A)=(p, q, 1)
a,(p. g, r) = O((log 55)(log log 5,)7**~?)
+ HE_:] [IWiall®s Ve>1. (34)
From this and (17) we get =
CIC(p, 4. ) — CIC(Po; Go: 7o)

=ﬂn(P+q+"_Pu_‘Iu_fo

=0 =0\c8(A—2)
1 oftogsiNioglogs?)

a,

)), a.s. (35)

for any ¢ >1 and (s, t, A) = (p, g, 7)-
Taking ¢ € (1, ) and using Assumption (Hs), we obtain
(27) from (35).
Now we proceed to prove (28).
For any fixed (p, g, r) € M, set as
é:l(pr Q: r):[Al_A;n‘ * 'A.riAsln
B,—B;....B,—B,
€y~ Chy o G =Cial (36)

where A, B, C\, [<i<s, ISj<t I<k=2] are defined by
(2a)—(2c) and (13), and
A, I<p {B- , J<q {C,( , ksr
.! ey n 3 ’ =g mn a; ! — n
Aln {0' i>p L] B,IH 0, j>q 2 Ckn 0’ k>r-
(37

By a similar method to (31), for any (p, g, r) € M, we have

n—1
o,(p, . )=t 6.7 (p,q, 1) 2, @5, 1, 2)

i=0

x @i(s, t, A)0.(p, q, 1)

n—1

+2tr8.%(p, q, 1) 2 @i(s, 1, A)

i=0

X (—67%(s, t, @i(s, 1, A) +wipq)"
n—1

+ D Weer — 07(s, 1, M@E(s, 1, M1 (38)
i=0

By (6) and (7), in the case where (s, t, A) #(p, g, r), we have
1G5 () = min (ALY ),
AL m), AL ()}, (39)

'min

which tends to infinity as n— o by Assumption (Hj).

By an argument completely similar to that used in the
proof of Theorem 2 of Chen and Guo (1986a) it can be
shown that for sufficiently large n

ot (Eﬂ @5, 6 Do, 1 7))

n—1
= (D, G5, £ DG, ) = 34555700,
i=0

40
for (s, t, ) #(p, g, 7). (o)
Also, in the case where (s, t, A)# (p, g, r), it can be seen
from (36) that
1622, ¢, VI =min {[lA, |17, [|BglI%, 1Cl1"} = @ > 0.
(41)
Hence, by (40) and (41), for the first term on the right-hand
side of (38), we have

n—1
tr6.%(p, g, ) 2, @ils, t, V@5, 1, 1)8,(p, q, 1)

i=0

v

ixoAniV(n). (42)

By Lemma 2 and (32), we estimate the second term on the
right-hand side of (38) as follows

n—1
2(tr 67 (p. g 1) 2 @ils, 1, A)
i=0

X (~0%s, 1, )gk(s, 1, 1) + w.-ﬂ)*\

=

= n—1 1/2
0(p. 0.1 S, w1 DiCe,1,)
- O(V(log 5,)(log log 57) ***~2). 43)

By a similar consideration to (33), we have

n—1
3 W1 — 87, £, V@EGs, 1, VI
i=0

= [Iw;. /P + O((log 59)(log log 57)** ). (44)

i=0

Combining (38), (42), (43) and (44) it follows that

o,(p,q. 1)
@ (log §%)(log log 52)*3F—21 12

<o of (2P ))
n—1

+ 2wl (45)
i=0

for (s, ¢, A)#(p, g, 7).
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On the other hand, from (34), we have

n—1
,.(Po qo, o) = O((log 57)(log log 50) **F2) + 3 1w, 1%,

i=0
which, together with (45) and (17), implies
CIC(p, 4, 7). = CIC(po. 40, To)n

5., o log §%)(log lo j-g ad(B—2)\ 1/2
alﬁn’a,;v(n)(f+0((( g )(A(fr.l)%n)) ) )

‘min

(log 53)(log log §9) >~
A(s!l,l)(n)

'min

+of

a?l
+ O(W)), for (5, t, l) #(p, q, r). (46)
Then, by (3),(4) and (39), the desired result (28) follows
from (46). This completes the proof of Lemma 3.

Proof of Theorem 1. We need only to show that any limit
point of (p,,q,,7,) coincides with (pg, qq, ). Let
(p',q',r') € M be the limit of a subsequence (p,,, 4,,,, 7.,,)-
It suffices to prove the impossibility of the following
situations:

(1) p'<po or g'<q, or r'<ry 7

@) p'+q' +r'>potgetr,. (48)
If (47) was true, then by the definition (19), (28) with

(p,g,r)=(p',q',r"), (39) and (Hs), we could see that for
all sufficiently large &,

0=CIC(Pu> Gnyr Tridne = CIC(Pos G0 Tod,
=CIC(p’, q', 1')n, — CIC(Po) G0 To)n,

= 15852+ o)) > 49)

But this is impossible.
If (48) was true, then by (19), (27), (Hs) and the
impossibility of (47), for a sufficiently large & we would have

0= CIC(Pnk’ Gnys rr!k)nk - CIC(POJ 9o "o)nk
= CIC(p’! q'-v r')m‘ - CIC(pO, o, rU)nk
Za,(p'+q' +r' —po—qo—rto(l)) = =

But this also is impossible.
Thus the proof has been completed.

4. Application to adaptive control systems

In this section we specify the sequence {a,} used in (17)
and show that the selected {a, } satisfies Assumption (Hs) for
a large class of important adaptive control systems.

In adaptive control, the attenuating excitation technique is
very successful in getting the minimality of control
performance and consistency of parameter estimate simul-
taneously (Chen and Guo, 1986a,b). We shall describe this
method.

Let {v,} be a sequence of I-dimensional mutually
independent random vectors independent of {w,} with
properties,

B 1 o [ 1 )
Ew,=0, Ev,,v,,—nel, [|u,l $J’LE, €€ 0’2(r+1)

(50)

where £ (m+1)p*+q*+r*—1and ¢°>0 is a constant.
Without loss of generality, we assume that

.@,,=O’{Wl-, ‘IJ,-,I‘%H}, .“};:o{w,-, ui—lsiS‘n}'

Let u® be an [-dimensional #-measurable desired control.
Obviously, any feedback (adaptive) control is of this kind.
The attenuating excitation technique suggests that one takes
the actual control for the system as

u, =u’ +u,. (51)

The control defined by (51) is termed “attenuating excitation
control” (Chen and Guo, 1986b).

We need the following assumptions.
(Hg). There is a positive definite matrix R, such that

fom > wwi=R>0, as.

n—w= 2
(H;). A(z), B(z) and C(z) have no common left factors and
A, By, and C, are of row full rank.

Theorem 2. Suppose that the “attenuating excitation
control” (51) is applied to system (1) and that Assumptions
(H,), (H;), (H,), (Hg) and (H,) are satisfied. If there is a
non-negative number &, & € [0, (1 —2&(r + 1))/(2t + 3)] such
that

1 n
= 2 (InlP + 1ufI) = O(n%), as., (52)
i=0
then

(P> @n» 1) == (Po, 90: o), 2.5,
where (p,, q,, r,,) is given by (17)-(19) with a, being any
sequence satisfying

1 log | ad(f-2)
(log n)(log log ) — 0, forsomea>1, (53)

a, i

and
a,

e e O (54)

where € and ¢t appear in (50). In addition, assume that A(z) is
stable. Then, condition (52) can be weakened as

1 n
n 2 114117 = O(n?).

Proof. Noticing that 1—(t+1)(e+ 8)>0, we know that
there exists a sequence {a,} satisfying (53),(54). By
Assumption (H,) and (52), it follows that

.'i'_?, = o(n[+6)‘

Hence by (53) we see that (3) is satisfied. Consequently, by
Theorem 1 and (54) for proving Theorem 2 it suffices to show
that

liminf n~*AL2 ) (n) #0, as., (55)

n—sw

for any (p, g, r) e M*, where a; =1~ (t + 1)(e + 8).

If (55) was not true, then along the lines of the argument
used in Chen and Guo (1986a, 1987a), we could find a
(p + r)m + lg-dimensional vector 7 satisfying |||/ = 1 and

n=(a®". . D" BON_ pa-DTOF =Dy

0="S a0"2(Adi A@)IB(), C)
i=0
+S B et a1, 0
i=0

+ S:l 9270, (det A(z))L,,.]. (56)
i=0

We now show that
deg (2 am’z') <p,—1. (57)
i=0

If (p, q, r) = (po, g%, r*) then (57) is trivial.
If (p, g, r)=(p*, qo, r*), then by (56) and (H,) we have

p—1 i
deg ( > cv“"z') +(m—1)p,+4qq
i=0
q0—

1

=deg (S A2 (0etAR)) <401+ mp,
i=0

which is tantamount to (57). Similarly, (57) can be verified in

the case where (p, g, r) =(p*, ¢*, ry). Thus (57) has been

proved.
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By Assumption (H,) there exist matrix polynomials
M(z), N(z) and L(z) such that
A(2)M(z2) +[B(z), C(2)][N(2)", L(z)"]* =1
From this and (56) it follows that
= -1
pzl a2 Adj A(z) = p}_j a2 (Adj A(2))(A(z)M(2)
i=0 i=0
+[B(2), C(2)][N(2)", L(z)])

p—1

= (det A(z))( > aD2iM(2)

i=0

q—1 F=1 i i
= 2, PN~ T }f(‘)'z‘l_.(z)).
=0 i=0 (58)
By (57) we have

p—1 .
deg ( > a2 Adj Az ))
i=0

=po—1+(m—1)po=mpo— 1 <mpo=
deg (det A(z)). (59)

Consequently, from (58) and (59) we conclude that a? =0,
0<i<p-1. Then by (56) it follows that B =0,
0<i=qg-1, y?=0,0<j<r— 1. Therefore n =0, and this
is impossible.

5. Conclusion

Up until our most recent paper (Chen and Guo, 1987b)
the order estimation problem was solved exclusively for the
ARMA model containing no control term. This paper gives a
consistent estimate for orders of the feedback control
systems with correlated noise, while in Chen and Guo
(1987b) only the uncorrelated noise case is considered.
Applying results obtained to the adaptive control system
leads to consistent estimates for both orders and unknown
coefficients of the system. The estimate presented in the
paper is nonrecursive and requires availability of upper

bounds for unknown orders. This probably requires further
research.
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