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SUMMARY

Rate and amplitude saturation of the actuator is common in practical control systems. When the actuator
is rate and amplitude saturated, the control performance can deteriorate rapidly, and in the worse case, the
closed-loop system can become unstable. It is therefore important that both types of saturations are
properly compensated. Following the approach for compensating amplitude constraints, a scheme for
compensating systems with both rate and amplitude saturation is proposed in this paper. The conditions
for the compensated system to be globally stable are derived, and from this result, a procedure for
designing the rate and amplitude saturation compensators is devised. As it is difficult to design both the
rate and the amplitude saturation compensators simultaneously, a two-step approach is adopted. In the
proposed compensator design procedure, the amplitude saturation compensator is designed first, followed
by the rate saturation compensator. As the compensators designed using the proposed procedure satisfy
the conditions for global stability, the compensated system is therefore globally stable. It is also shown that
these compensators can be designed using the LMI technique. The implementation of the design procedure
is demonstrated by a simulation example. Copyright © 2004 John Wiley & Sons, Ltd.

KEY WORDS: global stability; amplitude and rate saturation; saturation compensation; strictly positive
real control

1. INTRODUCTION

Rate and amplitude constraints are common in practical control systems. The amplitude
constraint often arises from the physical size of the actuator, whilst the inertia of the driving
mechanism in the actuator often leads to rate constraint. It is well known that if the actuator is
amplitude saturated, the control performance can deteriorate rapidly, and the closed-loop
system can even be unstable in the worst case. Clearly, the addition of rate saturation will in
general make the situation worse, not better. It is, therefore, important to devise suitable
compensation methods to ensure the closed-loop system remain stable when amplitude and/or
rate saturation occur. It is shown in Reference [1] that a linear system subject to amplitude
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saturation of the actuator can be globally asymptotically stabilized, if and only if it is
asymptotically null controllable with bounded controls. However, this result does not in general
apply to linear feedback systems subject to amplitude constraint [2-4]. Several feedback control
laws that ensure these nonlinear systems are globally asymptotically stable are proposed in
References [5.6]. In References [7-9], feedback control laws utilizing the low and high gain
technique are derived, such that these nonlinear systems are semi-globally stable. Based on the
singular perturbation approach, dynamical feedback control laws that tracks the set point
subject to the maximum allowable control rate are proposed in Reference [10]. Similar to
systems with only amplitude saturation, there are two approaches to compensate for systems
subject to both amplitude and rate constraints. In the first approach, the controllers are
designed taking into account both constraints [I11-18]. A simple approach to tackle the
saturation problem is to introduce a supervisory loop in the control system for adjusting the
gain of the controller such that no rate and amplitude saturation of actuator occur [11-14]. A
drawback of this approach is that the closed-loop response is likely to be sluggish, as the control
tends to be very conservative. It is shown in Reference [15] that low gain feedback control laws
can be designed, such that linear systems subject to both amplitude and rate saturation closed-
loop system are semi-global stabilized. A continuous-time predictive control via state feedback
for single-input single-output linear systems with actuator amplitude and rate saturation was
derived in Reference [16], and the local stability of the closed-loop system is analysed using the
Lyapunov function. By applying the separation principle and using a deadbeat observer for
state estimation, it is shown in Reference [17] that global asymptotic stability and offset-free
tracking of admissible set-point references are achieved for discrete-time systems without
violating the constraints. An approach to design LQG-type of fixed-structure optimal control
law that guarantees the domain of attraction for linear systems with independent amplitude and
rate saturations is proposed in Reference [18]. In the second approach, the rate and the
amplitude saturation compensators are designed separately [19-21] similar to that for
compensating amplitude saturation [4], after the controller is designed assuming no saturation.
The main advantage of this approach is that the closed-loop system can achieve the designed
performance when there is no actuator saturation, as saturation compensators are activated
only after saturation has occurred. Further, only linear control systems design techniques are
required to design the controller and the saturation compensators [20]. The sequence of
saturation in systems with both rate and amplitude constraints is important. as it leads to
different analysis of the performance and stability of the closed-loop system. For physical
systems, rate saturation is more likely to occur before amplitude saturation. This is because
amplitude saturation only occurs after the actuator has reaches its limits. Before reaching this
limit, the actuator is likely to be rate saturated first, especially when the change in control is
large. Therefore, following the discussions in References [19-22], it is assumed here that rate
constraint precedes amplitude constraint. By extending the results on the compensation for
amplitude saturation, a compensation scheme for both rate and amplitude constraints is
proposed in References [19-22]. Though some design guidelines for the rate and amplitude
saturation compensators are proposed in these papers, only few stability results of the
compensated system are presented there, and little results can be found elsewhere in the
literature. For this reason, the main aim of this paper is to derive the global stability conditions
for systems with both rate and amplitude compensation. The organization of the paper is as
follows. In Section 2, the system with rate and amplitude constraints is presented. The model of
the actuator with both constraints is then discussed, followed by the derivation of the

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2005; 15:155-170



GLOBAL STABILITY OF SYSTEMS 157

compensators for these constraints. The conditions for global stability of the systems with rate
and amplitude compensation are derived in Section 3. The design of both the rate and amplitude
compensators that satisfy the global stability conditions are devised using the LMI in Section 4.
The results presented in this paper are illustrated by a simulation example presented in
Section 5.

2. COMPENSATION OF RATE AND AMPLITUDE CONSTRAINTS

Denote R™*" the set of all real matrices with m rows by n columns, R" the set of all real n
dimension vector, and A’ the transpose of matrix A.

Consider a linear multi-input multi-output (MIMO) system P described by the following
minimal state-space realization.

Xp(t) = Axp(f) + Bu(t)

(1)
W) = Cxp(f)

where x,(1) € R" is the system state, u(¢) € R™ is the actuator output, y(¢) € R” is the system
output. 4 € R, Be R"™" and C € RP*" are constant matrices. From (1), the transfer function
matrix of the system P is T,(s) = C(s] — A7 'B.

Assume that the following linear controller K has been designed such that the closed-loop
system without rate and amplitude saturation is asymptotically stable.

."(;f(f) = F.\';\—(I) + Ge(_t)
w(1) = Hxp(1) (2)
e(t) = w(z) — y(1)
where w(r) € R” is the reference input, v(z) € R” is the controller output, x;(¢) e RY is the
controller state. F e R G e R?’ and H e R™Y are constant matrices, and the transfer

function matrix of the controller is K(s) = H(sI — F)~'G.
The rate and amplitude constraints for the actuator are given by

u(t) = sat[v(1)] = (sat[vi(1)] sat[va(5)] --- sat[v, ()]
and
i(r) = sat[vp(0)] = (sat[i(1)] sat[ia(n)] -~ sat[iy(1)])

where

+ +
u;, Vi > U

satlvi()] = ¢ vlt), uy <vi<u’

u; Vi <u,

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2005; 15:155-170



158 J.-Z. WANG, C. W. CHAN AND J.-F. ZHANG

and

Hr, vi(t) = L'n'r

sat[v;(1)] = < vi(0)., o <vin) <

i <

The amplitude limits « > 0, «; <0, and the rate limits & > 0, i <0 are assumed known.

In practical control systems, rate constraint often occurs before the amplitude constraint,
because the inertia of the actuator limits the rate at which control can be implemented by the
actuator. Therefore, it is assumed in this paper that the actuator with both rate and amplitude
constraints can be represented by a model with the rate constraint followed by the amplitude
constraint [19,20], as shown in Figure 1. To model the rate constraint, it is necessary to
introduce a differentiator first to obtain the rate of change in control, and an integrator
afterwards to restore it back to amplitude. Since the output of this model ensures that the
actuator is no longer subject to both rate and amplitude constraints, the actuator can therefore
be omitted if this model is inserted in the closed-loop system.

For simplicity, it is proposed in References [19, 20] that the rate and the amplitude saturation
are compensated separately, as shown in Figure 2. Similar to the compensation for amplitude
saturation [4], the input of the rate and amplitude saturation compensators the discrepancy in
either the rate of change in the control, or the amplitude of the control that cannot be
implemented by the actuator. Denote the rate saturation compensator by P, and the amplitude
compensator by P, = Py, = P

U, v u ¥y
T® 7]
S
Figure 1. System with rate and amplitude saturation.
¥y
Figure 2. Rate and amplitude saturation compensated system.
Copyright @ 2004 John Wiley & Sons, Lid. Int. J. Robust Nonlinear Control 2005; 15:155-170
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-]l

Figure 3. The equivalent system.

From (2), v(t) = HFx(f) + HGe(1) if there is no rate saturation. To compensate for the rate
saturation, &(7) € R™ is added to (1),

v(1) = HFx(f) + HGe(t) + &(1) (3)
Where £(1) is the output of the rate saturation compensator P, given by
Xe(f) = Aexe(t) + B:on(1)
(1) = Cexe(1)
In (4), 6,(7) 1s the rate of change in the control that cannot be implemented by the actuator,
d,(1) = u, (1) — v,(1) &)

4)

where
u, (1) = sat(v,(1))

and x:(f) € R*. The matrices A; € R, Bz € R**™ and C: € R in the compensator (4)are
chosen by a user ensuring that the overall system remains globally stable when there is rate
saturation.

Similarly, from Figure 1, v(r) satisfies v(z) = w,(f), when there is no amplitude saturation
compensation. With amplitude saturation compensation, »(7) is added to ¥() in the presence of
amplitude saturation: v(r) = u,(f) + (7). Let x,(z) be a auxiliary variable, v(f) = x,(7), then

\1([) — M,-([) + ’7({)

(6)
v(1) = x,(1)
The amplitude compensator is given by
.f(”(f) = Ar}xn(t) e Bu(sa(f)
(7

?;'(TJ = Cl‘,"\‘i,’(r) -+ Dlréa(r)

da(t) = u(t) — (1) (8)

where x,(f) € R", 5() € R™, and the matrices 4, € R™', B, e R, C, e R™" and D, € R"™"

are also design parameters that should be determined appropriately for the system to be globally
stable under actuator saturation.

From (3)—(8), the transfer function matrices of (3) and (6) with rate and amplitude saturation

compensation are
v(s5) = gK(s)e(s) + P(5)d,(s) (9)

W) = éur(s-) + Payit(s) — Pa¥(s) = é 4r(5) + Pul)34(5) (10)
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where s is the Laplace transform variable and ¢ = s, P,(s) and P.(s) are, respectively, the
transfer function matrices of rate and amplitude saturation compensators which is given by

P,(s) = Ce(sT — A)™'B: (11)

1 . 1
Pys)= P = Py = E [le(S] - An) IB); + Dn] s E P,,(S) (12)

The reference input w is set to constant reference input in the following discussion of stability.
To analyze the stability of the compensated system, it is rewritten as an equivalent system shown
in Figure 3, which consists of a linear block and the nonlinear block representing actuator
saturation. The compensated system has the same property as the following equivalent system.

From (1), (2). (4), (6) and (7):

Y.\U) = A.&‘X.\‘(’) == B?L-"(I)
Gg: (13)
(1) = Cixs(1)
(1) = —sat(¥(1) (14)
where
A 0 0 0 0 i [ —B 0
—-GC F 0 0 0 0 0
Ay = 0 0 By G 0 , By=|-D, -I (15)
0 0 B, 4, 0 =H,
| BBHGC —BHF 0 0 A;—B:C:| | 0 —B:]
0 0o I 0 0 u(1) V(1)
C, = , () =— , W= (16)
—_HGC HF 0 0 C: (1) v (1)
and
x(H) = [x;)(!) X (1) x(0) x’ﬂ(r) xé(r)]’ + o
in which 2 = [0 (F~'Gw) 0 0 0]'. The transfer function matrix of the system (13) is
U+P) =T =M+ P
Gils) = Co(sI — A)' By = ' : (17)
(I + Ps) 'sK()Tp(s) (I +Pus) —1

Remark 1
Since the compensated system is asymptotically stable when there are no rate and amplitude
saturation, the auxiliary variable x,(7) must satisfy the initial condition x,(0) = Hx(0).

Copyright © 2004 John Wiley & Sons. Ltd. Int. J. Robust Nonlinear Control 2005; 15:155-170
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3. STABILITY ANALYSIS OF THE COMPENSATED SYSTEM WITH RATE AND
AMPLITUDE CONSTRAINTS

The global stability of the compensated system shown in Figure 2 is investigated in this section.
From the discussion of last section, the compensated system with actuator saturation is globally
stable if the equivalent system (13), (14) is asymptotically stable for all actuator limits.

Definition (Khalil [23])
A p x p proper rational transfer function matrix Z(s) is said to be positive real if

(1) all elements of Z(s) are analytic for Re[s] > 0,

(2) any pure imaginary pole of any element of Z(s) is a simple pole and the associated
residue matrix of Z(s) is positive semidefinite Hermitian, and,

(3) for all real @ for which jw is not a pole of any element of Z(s), the matrix
Z(jw) + Z'(—jw) is positive semidefinite.

The transfer function Z(s) is strictly positive real (SPR) if Z(s — ¢) is positive real for some
&> 0, and 1s extended strictly positive real (ESPR) if Z(s) is analytic in Re(s)=0 and satisfies
Z(jw) + Z'(—jw) > 0 for w [0, o0] [23].

Remarik 2
From the definitions of SPR, ESPR and Lemma 10.1 in Reference [23], if Z(s) is SPR, then Z(s)
must be Hurwitz. If Z(o0) + Z'(00) > 0, then Z(s) is SPR if and only if Z(s) is ESPR. It is shown
that in Reference [24] ESPR transfer function matrix can be characterized by linear matrix
inequality.

Definition (Khalil [23])
A memoryless nonlinearity :[0, o¢] x R” — RP is said to satisfy a sector condition if

[(r,y) — Kmin}’]T[lub(I,J") — Knaxy]1€0, Viz0, Vyel c R (18)

for some real matrix Ky, and Ky, where K = Ky — Ko IS a positive definite symmetric
matrix, and the interior of I' is connected and contains the origin. If I = R?, then i/(-, -) satisfies
the sector condition globally, or simply, ¥(-,-) belongs to the sector [Kpin. Knax]. If (18) holds
with strict inequality, then (-, -) is said to belong to the sector (Kmin, Kmax)-

The following assumptions are necessary in deriving the global stability of the compensated
system. N

(Al): The plant and controller are all stable, i.e. the eigenvalues of 4 and F are in the open
left-half plane.

(A2): The controller K is designed such that the closed-loop system without any actuator
saturation is asymptotically stable.

The global stability of the compensated system is derived from the multivariable circle
criterion [23], as given below.

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2005; 15:155-170
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Theorem |
For the compensated system shown in Figure 2 satisfying assumptions (Al) and (A2), to be
globally stable, the rate and amplitude saturation compensators (4) and (7) given by Ag, Bg, C;,
A4,, B, and C, are chosen such that (4,,B,) is controllable, (4, C,) is observable and
Zp(s) = I + Gg(s) is strictly positive real, where Gg(s) is defined by (17).

From (13) , Gg(s) has a state space realization:

¢ | 4s| Bs
Gels)=
cl 0

It is clear that A, is a stable matrix if 7 + Gg(s) is SPR. For global stability, the nonlinearity ¢(v)
belongs to the sector [0, /], which satisfies the sector condition (18) globally with Ky, = 0 and
Kmax = I. The system G is therefore globally stable from Lemma 10.1 in Reference [23] and
thus x,() is convergent to the constant vector —o as ¢ — 00. This also implies that the output of
the compensated system is asymptotically stable, as y = Cx, and the global stability of the
compensated system is established.

4. DESIGNING OF A RATE COMPENSATOR AND AN
AMPLITUDE COMPENSATOR

In this section, a method to design the rate compensator P,(s) and the amplitude compensator
P,(s) such that I + Gg(s) to be SPR is given. Since the compensated system is globally stable
with either the amplitude saturation compensator or the rate saturation compensation, the
design of the rate and amplitude compensators is divided into two steps. Firstly, the amplitude
saturation compensator P,(s) is designed such that the compensated system with no rate
saturation is globally stable. Secondly, the rate saturation compensator P,(s) is chosen using the
previous designed P,(s) such that 7 + Gg(s) is SPR. The advantage of this design procedure is
that the compensated system with both rate and amplitude saturation is always globally stable.

4.1. Design of the amplitude saturation compensator Py(s)

From (13), the dynamics of the compensated system with only amplitude saturation
compensation is given by

A 0 0 0 —B
-GC F 0 0 0
Xq(1) = Xa(t) + u(r) (19)
—-HGC HF -D, C, —Dy;
0 0 qu Aﬂ. ABI;
v(1) =10 0 I 0]x,(1) (20)
(1) = —u(t) = —sat(v(1)) 2D

where

xa) = X (0) xi () X0 X, ()] + B

Copyright © 2004 John Wiley & Sons, Lid. Int. J. Robust Nenlinear Control 2005; 15:155-170



GLOBAL STABILITY OF SYSTEMS 163

in which f =[0 (F~'Gw)" 0 0]'. The transfer function matrix of (19) and (20) is
Ta($) = (I + Pu(8)) (I + K()T,(s)) — 1

From the circle criterion, the compensated system with only amplitude saturation is globally
stable if 7 4 T,(s) is SPR. The amplitude saturation compensator is designed by choosing Ay,
By, Cy and D, that satisfies this condition, which can be transformed to the following strictly
positive control problem. Note that / + T,(s) can be expressed in terms of linear fractional
transformation [25],

I+ Tu(s) = F o(Nyls), Tf,l(S))

where Ny(s), T,(s) have the following state space realizations:

[AGO Bal -B(fZ -|
5 i | Aa| =By
Ny(s)= | Ca I 0 |, Tr;(-g) == Dn e Pr;(j) = 0
CrrZ I 0 !
and _
A 0 0 —B
Aa = -GC F 0 s Ba = 0
~HGC HF -D, -, |

Cii=Cgs= [O 0 1]5 By = CYi,]

Clearly, the problem of finding P,(s) such that 7 ++ T,(s) is SPR can now be transformed to the
strictly positive real control problem with an appropriate matrix D, being chosen a prior. That
is, it is equivalent to find a transfer function matrix T,(s) such that # .(N,(s), T,(s)) is SPR,
which can be solved by the LMIs (see the remark following Theorem 4.1 of Reference [24]), as
summarized in the following theorem.

Theorem 2
There exists a proper transfer matrix P,(s) such that I + T,(s) is SPR for some chosen matrix D,
if and only if there exist two positive definite matrices W, W3 and matrices Wa, Wy such that

. AWy + W]A:io + B W + WIZBIaE W, C;:I — By
(i) <0 (22)
Cu] W] == B:” —27
i) AgWs + Widag + WaCpp + Clu W, W3By + Wy —C, 23)
il 3
B Wi+ Wjy—Cqu —21
(111) The spectral radius p(YpXo)<1, where Xo = W, ! and Y, = Wi (24)
If (22)—(24) hold. then an amplitude compensator
1 1
Pals) = Py(s) = ~(Cy(sT — 4y)"'By + Dy)
Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Contrel 2005; 15:155-170
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can be obtained such that 7 + T,(s) is SPR. With the matrices 4,, B, and C, given by,
B, =MLy, C;=F
Ay = Aw + BaaFo + MoLoCaz + Ao
where Fo = WaWil, Lo = Wi W, My = (I — YoXo)™' and
Ap = — $(Bar + MoLo)(Cat — By Xo) + Mo YoRo(Xo) — Mo YoFyB.,Xo
Ry(Xo) = (Aao + BiaFo) Xo + Xo(Aao + BaaFo) + 3(Cat = By Xo) (Car — B, Xo)

4.2. Design of the rate saturation compensator Py(s)

Assume that P,(s) have now been designed as discussed in Section 4.1, such that the
compensated system with only amplitude saturation is globally stable. From Theorem 1, the
compensated system with rate and amplitude saturation is globally stable if I + Gg(s) is SPR.
Similarly, I + Gg(s) can also be expressed as

I+ GE(s) = Fe(Ni(s), T)(s))
where N,(s), T,(s) have state space realizations, respectively:
l—Al'U l Brl Br2 -l

5 . {A;—chi —Bg—l
N)=|Cu| I Dml|, TA)= : :
| C [ 0]
Col| Do O
and
[ A 0 0 0 -B 0
-GC F 0 0 0 0 0
A = ) B}I = ) BI'Z = 0= D?u =
0 0 _D’i C,; _Di; =1 1
L D 0 _B’T Aq _Bn 0
[0 O L 10
Cu= . Cp=[-HGC HF 00, Dai =0 1]
LfHGC HF 0 0

Therefore, the problem of choosing P.(s) such that I + Gg(s) is SPR can also be transformed to
a strictly positive real control problem, i.e. finding a transfer 7,(s) such that Z(N,(s), T:(5)) is
SPR. Similar to the design of the amplitude saturation compensator, this problem can be solved
using the LMIs approach as given in Theorem 2. After 7,(s) is selected, P,(s) is obtained by
P(s)=U+Tus) ' -1

Theorem 3
There exists a strictly proper transfer matrix P,(s) such that I + Gg(s) is SPR if and only if there
exist two positive definite matrices @), Q3 and matrices O, Q4 such that

. A0Q1 + 014, 0.C,+ 05D, — By
(i) 1 0 7l 25rl2 r <0 (25)
Ch Q1 + D202 — B, -21

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Robust Nenlinear Control 2005; 15:155-170
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. AlyO3+ 0340 + 0Q4Ca + C, 04 O3B, + 04Dy — Cy
(11) <0 (26)
B,0s+ D Q4 — Cn 27

(iif) The spectral radius p(Y,X|)<1, where X| = Q;l and Y, = Q;l. 27

If (25)-(27) hold, an amplitude saturation compensator P.(s) = Cs(si — Ag)_lBg is obtained
such that / + Gg(s) is SPR, with the matrices A¢, B; and C: given by

Be=ML, Ci=F
As = B:Ce+ A+ MILiCo+ Ay
where F| = 0,07, L = 05'Q4, My = (I — Y1X;)™' and
Ay = — LBy + ML\ Dy (Cry — B X1 + DyaFy) + M YL Ri(X))
— A M\ Y\F\ D, 5s(C,1 — B, X| + D2 1)

Ri(X)) = A0 X1 + X140 +1(Cy — B, Xy + D2 F)) (Cpy — Bl X1 + Dy Fy)

Remark 3

For single-input single-output system, P,(s) can be obtained by another method. Since from
Theorem 10.2 in Reference [23], the globally stable condition that T + T,(s) is SPR is equivalent
to Re{T,(jw)} > —1 as given in Reference [4]. Since a class of proper transfer functions Tu(s)
that satisfies Re{fu(jm)} > 1 can always be found from the Nyquist plot of T,(s) [4]. P.(s) can
be computed from the chosen T.(s) as follows:

Pu(s) = (1 + K& Tp())(1 + Tols)) ' — 1

where K(s) and Tp(s) are transfer matrices of the system P and controller K, respectively.

5. EXAMPLE

Consider the model of Bank-to-Turn Missile [26, 18],
Xp(t) = Ax() + Bu(t) y=ex

where
—0.818 —0.999 0.349 0.147 0.012
A= |[80.29 —0.579 0.009 |, B=|-1944 3761 |, C= [1 ’ Oji
2734  0.5621 -2.10 2176  —1093 o
and
x, = [sideslip, yawrate, rollrate]’, u=[rudder,aileron]’, y = [sideslip, yawrate]
Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2005; 15:155-170
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Figure 4. The closed-loop system without saturation: (a) System state x(7); (b) v(1)

and ¥(r); and (c) system output y(z).

H.. design methodology [27] is used to obtain a linear controller,

xX(1) =

wit) =

[—47.1269 0 0 0.009 0
0 —47.1269 0 xe (D) + | 0.002 —0.06 |e(r)
0 0 —47.1269 0 0.002
[—0.5 1 07
xx (1)
o3 -1 B

() = w(t) — (1)

which ensures that the closed-loop system without rate and amplitude saturation is
asymptotically stable and H.. norm of transfer function 7, from w to y is less than 1. Let
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Figure 5. Saturated system without compensation: (a) System state x(r); (b) v(7)
and v,(¢); and (c) system output y(7).

w = 0, and the initial state x,(0) = (0, —3.78,0), x,(0) = (7.98,0.21, —1.2598)". The state, output.
control and rate of change in control for the closed-loop system without rate and amplitude
saturation are shown in Figure 4. The simulation is repeated with the actuator subject to the
following rate and amplitude constraints: u; = 8,u] = —8, and L}T = —10, a4y = —10, let the
initial state be x,(0) = (0,—3.78,0), xx(0) = (7.98,0.21, —1.2598)', x,(0) = Hx;(0) = (—4.6619,
—7.8943). The state, output, controller output and rate of controller output for the saturated
system without compensation are shown in Figure 5. Note that v(0) = (—4.6619, —7.8943)" and
v(0) = (219.4772,372.3221) giving rate saturation before amplitude saturation. From Figure 5,
it is clear that the saturation system without rate and amplitude compensation is not
asymptotically stable, as the output approaches a constant instead of zero for large 7. Now, the
rate and amplitude compensators are designed using the procedure presented in Section 4. as
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given below
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Figure 6. Saturated system with compensation: (a) System state x(z); (b) v(z)
and v.(7); and (c) system output (7).

Let the initial state x,(0)=(0,—3.78,0,7.98, 0.21, —1.2598, —4.66185, —7.89432,01.14)', the
state, output, control and rate of change in the control for the saturated system with both
rate and amplitude compensators are shown in Figure 6. It is clear that the output of the
compensated system is asymptotically stable, as it approaches to zero as 7 increases.

6. CONCLUSIONS

In this paper, the compensation for multivariable control systems subject to rate and amplitude
saturation of the actuator is presented. It is assumed that the rate saturation occurs before the
amplitude saturation, as this is more common in practical control systems. It is shown that the
compensated system is globally stable if the equivalent system of the compensated system is
strictly positive real. A procedure to design the rate and amplitude compensators based on
this stability result is proposed. First, an amplitude saturation compensator is designed
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such that the system with only amplitude saturation is globally stable. Using this
amplitude saturation compensator, the rate saturation compensator is designed next such that
the overall compensated system is globally stable. The design procedure is demonstrated by an

example.
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