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System Identification Using Binary Sensors

Le Yi Wang Senior Member, IEERi-Feng ZhangSenior Member, IEEEand G. George YinFellow, IEEE

Abstract—System identification is investigated for plants that
are equipped with only binary-valued sensors. Optimal identifica-
tion errors, time complexity, optimal input design, and impact of

disturbances and unmodeled dynamics on identification accuracy
and complexity are examined in both stochastic and deterministic
information frameworks. It is revealed that binary sensors impose

fundamental limitations on identification accuracy and time com-
plexity, and carry distinct features beyond identification with reg-

ular sensors. Comparisons between the stochastic and determin-

istic frameworks indicate a complementary nature in their utility
in binary-sensor identification.

Index Terms—Binary sensors, estimation, system identification,

time complexity.

|I. INTRODUCTION

INARY-VALUED sensors are commonly employed

in practical systems. Usually they are far more cost
effective than regular sensors. In many applications they are
the only ones available during real-time operations. There are
numerous examples, such as switching sensors for exhaust
gas oxygen, ABS, shift-by-wire, in automotive applications;
industry sensors for brush-less dc motors, liquid levels, pressure
switches; chemical process sensors for vacuum, pressure, and)
power levels; traffic condition indicators in the asynchronous
transmission mode (ATM) networks; gas content sensors (CO,
COs, Hs, etc.) in gas and oil industry. In medical applications,
estimation and prediction of causal effects with dichotomous
outcomes are closely related to binary-sensor systems. Before
proceeding further, we present examples in three different

application areas.
1) ATM ABR Traffic Control [28] : An ATM network con-

sists of sources, switches, and destinations. Due to varia-
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signals.

tions in other higher priority network traffic, such as con-
stant bit rate (CBR) and variable bit rate (VBR), an avail-
able bit rate (ABR) connection experiences significant
uncertainty on the available bandwidth during its oper-
ation. A physical or logical buffer is used in a switch to
accommodate bandwidth fluctuations. The actual amount
of bandwidth an ABR connection receives is provided to
the source using rate-based closed-loop feedback control.
One typical technique for providing traffic information
is relative rate marking, which uses two fields in the re-
source management (RM) cell—the no increase (NI) bit
and the congestion indication (CI) bit. The NI bit is set
when the queue reaches lengdth, and the CI bit is set
when the queue length reachés (Cy > C4).

In this system, the queue length is not directly available
for traffic control. The NI and CI bits indicate merely
that it takes values in one of the three uncertainty sets [0,
C1], (C1, Cs] and (Cs, o0). This can be represented by a
typical case of tracking control with two binary sensors.
It is noted that the desired queue length is usually a value
betweenC; andCsy, rather tharC; or Cs.

LNT and Air-to-Fuel Ratio Control With an EGO
Sensor [36], [37] In automotive and chemical process
applications, oxygen sensors are widely used for evalu-
ating gas oxygen contents. Inexpensive oxygen sensors
are switching types that change their voltage outputs
sharply when excess oxygen in the gas is detected. In
particular, in automotive emission control, the exhaust
gas oxygen sensor (EGO or HEGO) will switch its out-
puts when the air-to-fuel ratio in the exhaust gas crosses
the stoichiometric value.

To maintain conversion efficiency of the three-way cat-
alyst or to optimize the performance of a lean NOXx trap
(LNT), itis essential to estimate the internally stored NOx
and oxygen. In this case the switching point of the sensor
has no direct bearing with the control target. The idea
of using the switching sensor for identification purposes,
rather than for control only, has resulted in a new emis-
sion control strategy [36], [37].

Identification of Binary Perceptrons: There is an in-
teresting intersection between this study and statistical
learning theory in neural networks. Consider an unknown
binary perceptron that is used to represent a dynamic
relationship:

y(t)=s(wru(t)+wou(t —1) + - - + wpu(t —n+1) — C)
1in all these examples, as well as many other applications, actual systems
are discrete-time and involve signal quantization or data compression for com-
puter or digital communication networks implementations. Quantization errors
are usually negligibly small. This paper deals with discrete-time, analog-valued

where C' is the known neuron firing threshold,
wy,...,w, are the weightings to be learned, and
s(+) is a binary-valued function switching at 0. This
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learning problem can be formulated as a special caBe Organization of the Paper

of binary-sensor i(jentificat?qn without disturbances or The paper is organized as follows. After a brief problem for-
unmodeled dynam|cs. Traditional neural models, suqh Rtulation in Section I, we start our investigation in Section Il
McCullqgh—P|tts and Nagqmo—Sato models, cont.amo% system identification in a stochastic framework. Identifi-
neurgl firing threshold that introduces naturally a b'na.‘rgation input design, convergence of the estimates, upper and
Luenu(:rg?r}egfr]r;i%s]théé% 5”3(}iezﬂﬂgagggﬁisziozg%iﬁower bounds on identification errors, and time complexity
algorithms for neural parameters [32]—[34] "WPe estabhs_hed. Sectl(_)n I_V studies the identification problem
' when the disturbance is viewed unknown-but-bounded as in a
worst-case framework. The results are significantly different
from that of Section Ill. Identification time complexity and
error lower bounds are established first, underscoring an
'é@erent relationship between identification time complexity
nd the Kolmogorove-entropy. ldentification input design

A. Problems

The use of binary sensors poses substantial difficulti
since only very limited information is available for systen‘?l

modeling, identification and control. Since switching senso d upper _bour;]ds Ignl identification errc_)rz arg éh?n derr|]ved,
are nonlinear components, studies of their roles and impact onstrating that Kolmogorasentropy indeed defines the

systems are often carried out in nonlinear system framewor g,mplexny rates. Section _\/_pr_esents a comparison between
such as sliding mode control, describing function analysi e stochastic and deterministic frameworks. Contrast to the

switching control, hybrid control, etc. In these control schemeg>mmon perception that these two are competing frameworks,

the switching points of the sensors are directly used to defind’g s.h.ow_that they complement each other in pmary—;ensor
control target. However, their fundamental impact on Systell%entn‘|cat|on. Several examples are presented in Section VI

modeling and identification is largely unexplored. This pap?(? illustrate utilities of the approach. Finally, some potential

intends to study the inherent consequences of using Switchmit:?ure research directions are highlighted in Section VII. An

sensors in system identification and its potential in extendi
control capabilities.

The main scenario, which has motivated this work, is )
embodied in many applications in which modeling of sucl Related Literature
systems is of great importance in performing model predictive This paper explores the issues arising in system identifica-
control, optimal control strategy development, control adaptéen with switching sensors. Traditional system identification
tion, etc. When inputs can be arbitrarily selected within certain;ing regular sensors is a relatively mature research area that
bounds and outputs are measured by regular sensors, svehrs a vast body of literature. There are numerous textbooks
identification problems have been extensively studied in tlg@d monographs on the subject, such as [4], [18], and [19]. The
frameworks of either traditional stochastic system identificdecus of this paper is the impact of binary sensors on time com-
tion or worst-case identification. The issues of identificatioplexity, identification accuracy, identifiability, and input design,
accuracy, convergence, model complexity, time complexityhich is a significant departure from early works of theoretical
input design, persistent excitation, identification algorithmsgievelopments.
etc., have been pursued by many researchers. A vast literaturg key issue studied in this paper is time complexity. Com-
is now available on this topic; see [19] and [22], among otherglexity issues in identification have been pursued by many

Some fundamental issues emerge when the output sensgegearchers. The concepts ohet ande-dimension in the
limited to be binary-valued: How accurate can one identify th€olmogorov sense [17] were first employed by Zames [43] in
parameters of the system? How fast can one reduce uncertagttdies of model complexity and system identification. Time
on model parameters? What are the optimal inputs for fast idexomplexity in identification was studied in [30], [6], [25],
tification? What are the conditions for parameter convergenci?], [38], [35], and [39]-[41]. A general and comprehensive
What is the impact of unmodeled dynamics and disturbancesfommework of information-based complexity was developed in
identification accuracy and time complexity? In contrast to claf29]. Milanese is one of the first researchers in recognizing the
sical system identification, answers to these familiar questiomsportance of worst-case identification. Milanese and Belforte
under switching sensors depart dramatically from the traditio{20] and Milanese and Vicino [22] introduced the problem of
setup. set membership identification and produced many interesting

It will be shown that binary sensors increase time complexitgsults on the subject. Many algorithms for worst-case identi-
significantly; the optimal inputs differ from those in traditionafication have been reported; see [21], [22], and the references
identification; identification characteristics depart significantlyherein.
between stochastic and deterministic noise representations; anthe idea of treating unmodeled dynamics and noise using
unmodeled dynamics have fundamental influence on identifigaixed assumptions was explored in deterministic frameworks
tion accuracy of the modeled part. Contrast to traditional system[31]. A unified methodology which combines deterministic
identification in which the individual merits of stochastic versuglentification and probability framework was introduced in [39]
worst-case frameworks are still hotly debated, these two fransd [40]. Many significant results have been obtained for iden-
works complement each other in binary-sensor identificatidification and adaptive control involving random disturbances in
problems. the past decades [4], [14], [16], [18], [19].

pendix containing the proofs of several technical results are
included at the end of the paper.
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The utility of binary sensors in this paper carries a flavor thagt < C ory > C. Without loss of generality, assunéé > 0.2
is related to many branches of signal processing problems. Ofde will use the indicator function
class of adaptive filtering problems that has recently drawn con-
siderable attention uses “hard limiters” to reduce computational s(t) = Ityy<cy = {
complexity. The idea, sometimes referred to as binary reinforce-
ment [11], employs the sign operator in the error or/and the e epresent the output of the sensor.
gressor, leading to a variety of sign-error, sign-regressor, and'r:Or a given model order, the system parameters can be de-
sign-sign algorithms. Some recent work in this direction can t&%mposed into the modeléd pakt = [ao, ..., an_1] and the
foun_d Iin [5], 7], an_d [8.]' Emergingdapg!iqa.tions olf.trlﬂs ideahnmodeled dynamich = [an, Gnyt1 ] THerTIL the system
in wireless communications, e.g., code-division multiple-acce. : , ne o mr il '
implemented with direct-sequence (CDMA/DS), have been rE\_?)ut—output relationship becomes
ported in [42]. y(t) = ¢T (D0 + ST+ d(t), t=to+1,... (2
Signal quantization and data compression is a typical A-D
conversion process that has been studied extensively in Wiere¢” (t) = [u(t), u(t —1),...,u(t—n+1)], and%T(t) =

signal processing and computer science community. Studieqqp(ft —n),ut—n—1),..].

impact of quantization errors can be conducted in a worst-caseJnder a selected input sequencethe outputs() is mea-

or probabilistic framework, depending on how quantizatiogured fort = ¢, + 1,...,t, + N. We would like to estimate
errors are modeled. We refer the interested reader to [1], [1Z]on the basis of input/output observation oft) and s(t).

and [26] for a comprehensive coverage of this topic. Quantizgfle issues of identification accuracy, time complexity, and input

sensor information is fundamentally different from binargesign will be discussed in both stochastic and deterministic
sensor information since binary sensors do not provide sighglmeworks.

error bounds which are essential in quantization analysis.
_ Statistical learning theory [32], [33], especially its applica- . STOCHASTIC FRAMEWORKS
tion to neural network models [3], [13], [15], [23], has led to
some very interesting new development [34], in which dynamic When the disturbancé is modeled as a stochastic process,
system identification is studied in neural networks. The probleR9thy ands become stochastic processes. We assume the fol-
considered in this paper is motivated by entirely different appl@Wing prior information on the system uncertainty, including
cations. We study different problem aspects and move towatgmodeled dynamics and disturbance.
different directions from neural learning methods. Nevertheless,ASSumption Al):
the intersection witnessed here due to model structure similarityl) {d(¢)} is a sequence of independent and identically dis-
makes potential applications of our results in neural learning  tributed (i.i.d.) zero-mean random variables with distribu-
theory andvice versa tion functionF'(z), which is a continuous function whose
inverseF'~! exists and is continuous. The moment gen-
erating function ofi(t) exists.
2) |10l < m.
Remark 1: A typical example of the noise satisfying Al)
Il. PROBLEM FORMULATION is Gaussian random variables. The cases of random variables,
whose distribution functions are only invertible in a finite in-
For a sequence of real numbers= {z(¢);t = 0,1,...}, terval [-x,x], can be handled by applying the technique of
llz|lp, p > 1, will be the standard® norm.R™ denotes the.-di-  dithers (see Section IlI-E) or combining stochastic and deter-
mensional Euclidean space (the setdfiples of real numbers). ministic binary-sensor identification (see Section V). The as-
A ball of centerc € R™ and radius- > 0 (using/” norm) inR™  sumption of the noise being a continuous random variable is not
will be denoted byBall,(¢,7) = {x € R™ : ||z — ¢||, < r}.In a restriction. When one deals with discrete random variables,
this paper, the base-2 logarithiog, will be simply written as suitable scaling and the central limit theorem lead to normal

1, ify@)<C
0, otherwise

)

log. approximation.
Consider a single-input-single-output (SISO) linear time-in- The following formulation was introduced in [39] and [40]. It
variant stable discrete-time system treats the disturbance as stochastic but unmodeled dynamics as
unknown-but-bounded uncertainty. Consequently, a worst-case
oo probability measure is used as a performance index. For a given
y(t) = Z aiu(t — i) +d(t), t=to+1,... setl (to, u, N') of admissible estimatesof the true parameter
i=0 #, on the basis oIV measurements onstarting at, with input

u, and an error tolerance levelwe define
whered(t) is the disturbancefu(t)} is the input withu(t) =

0,t < 0;anda = {a;,i = 0,1,...}, satisfying|lal]|1 = An(e)= inf sup _ inf sup P(||§—0||1 >e).
Yoo lai| < oo, is the vector-valued parameter. The input lelloe ttmexto” Get (t0,u,N) 5], <o
is uniformly bounded|u||» < umax, but can be designed oth- 3)

erwise. The outpuy is measured by a pingry sensor with the 2Sensors withC' = 0 can only detect the sign and usually do not provide
known threshold”. Namely, the sensor indicates only whetheddequate information for identification.
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This is the optimal (over the inputand admissible estimaté}a on compact subsets. The Glivenko—Cantelli theorem is the best-
worst-case (ovef andty) probability of errors larger than the known uniform strong law of large numbers in the literature.
given levele. Then, for a given confidence lewel< o < 1 We will find the limit distribution of a suitably scaled se-
. ) guence ofFy(x) — F(z) so that the convergence rate can be
Na(e) = min{N': An(e) < a} “) determined. gI'h)e cenirazl limit theorem gives us hints on using a
is the probabilistic time complexity. It is noted thatdf = 0, scaling facton/k. The limit turns out to be a Brownian bridge
N, (e) is reduced to (module a set of probability measure 0) dgsee [2, p. 64] and [24, p. 95]). Note that a Brownian bridge is a
terministic worst-case time complexity for achieving estimatiofunction of a Brownian motion defined on [0, 1]. Loosely, it is
accuracye. a Brownian motion tied down at both endpoints of the interval
[0, 1]. Between the two end points, the process evolves just as a
Brownian motion. Now in the current case, sigean take real
For notational simplicity, assum®¥ = kn for some integer values outside [0, 1], the Brownian bridge becomes a stretched
k > 0. As a result, we can group thé input—output equations one. The terminology “stretched Brownian bridge” follows that

A. ldentification Algorithms and Convergence

into k blocks of sizen of [24, p. 178].
Y = &0 + 3,8 + D, I=01,. k-1 SinceF is invertible, we can define
i =101 (x\ — p—1(¢i -
whereY; = [y(to+ln+1). ..., y(to+In+n)]T, & = [p(to+ Ve =F(Fe(@)) = (&), i=1,. i and
In+1),...,¢(to+In+n)]* <I>l [p(to+In+1),...,¢(to+ . _ ]
In + )T, Dy = [d(to + In +1),...,d(to + In +n)]T. Y =0is ) =F7 &), Lk=C | 1| — k- (8)
In particular, if the input i:-periodic, i.e.u(t 4+ n) = u(t), 1

Vt, we have®, = ®; and®;, = &y = [®g,Pp,...], | = When the inputs is n-periodic and full rank®, is invertible
,...,k — 1. Moreover, then-period input is said to béull and we define the estimate
rankif @ is invertible. In the following, a scalar function that is

0 -1
applied to a vector will mean component-wise operation of the O = o L. ©)
function. Theorem 2:Under Assumption Al), if the input is n-pe-
For each (fixed but unknown) and, define riodic and full rank, therd), converges to a constafit That is,
k1 Gk ) w.p. 1 ask — oo. Furthermorel|€ |1 < n, whered
&= 1 Z s(to + In + 1), i=1,...,n (5) s the true vector-valued parameter.
k= Remark 3: If » = 0, i.e., no unmodeled dynamics, then this

. timate is unbiased.

& = (&,...,&)T. Note that the evenfy(to + In + i) < es ) ;
C} s the same as the evefii(ty + In + i) < &}, where Proof: By virtue of Theorem 1, as — oo
¢ = C — C; andC; is thei the component ofb,0 + ;6. &= (6. &) = (F(@EY),...,FE)T w.p.l.

T -~
Denotec = [¢y, .. ., ,en)t. Then Ek is precisely the value of the Thus the continuity o —1(-) implies thatF—! (F4 () — &
k-sample emplrlcal dIStrIthIOFk( z) of the noised atz =¢;. p. 1. Hence
Denotet;, = (Fy(¢1),. ... Fi(c,)). Let

C1 1
Bi(z) = VE(Fy(z) — F(z)), for each z € R. w—i=|:]=c — (B0 + Boh) w.p.l..
Theorem 1: Under Assumption Al), the following assertions Cn 1
hold. Due to the periodicity of the input, we have
a) For any compact subs€tc R 1
klim su}s) |}/7\k(x) — F(z)] — 0 w.p.1. (6) é\k = ‘I)ElLk = @51 Cli|—w]|—0+ @515052: )
1

b) Bi(-) converges weakly td3(-), a stretched Brownian P ~ ~
bridge process such that the covarianceR() (for W-P- 1. Note thay &0 = [I,1,...]. Finally, by A1),[¢ —
z1,22 € R) is given by Ollv = I[L, 1, .. 0]l < [|16]] < n. O

EB(z1)B(x2) = min(F(x1), F(z2)) — F(z1)F(z2). (7) B. Upper Bounds on Estimation Errors and Time Complexity

Proof: By virtue of the well-known Glivenko—Cantelli ~ Next, we shall establish bounds on identification errors and

Theorem [2, p. 103]]@(;1:) — F(z)] — 0 w.p. 1, and the time complexity for a finitek. For a fixedk > 0
convergence is uniform on any compact suli&eThis yields M1
a). Part b) follows from the convergence of a centered and g, _§ —¢- (C
scaled estimation error of empirical measures; see, for instance,
[2, p. 105] and [24, p. 95]. O -

Remark 2: The processes considered here is known as the 1 i ~ ~
empirical measure or sample distribution of the underlying se- =0 [ O] 1| =7 = (®of + Pof)
quence. Part a) above says that for |d¢’g§k($) should approx- L1
imate the corresponding distribution functidi«) uniformly =5 (C— ). (10)

- %) — (0 + D5 ' @of)
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Recallthat = [¢1,...,¢,]" = [C=C,,...,C—C,]".Since  Corollary 1: Foranys > 5 > 0, let N = kn. Then

165 — 8ll1 < [|1@5 17][¢ — ~ll1, where] - [|; is thel;-induced  a)

operator norm, for any; > 0

9. — 9 €
P~y 2 ) <P (1w =2l 2 )
o511

~ €1
sp@%—ﬂmz——f—)
all@g

7 ~ €1
<P <U?_1 {|’Y;c —¢i| > 7})
n|®g s
n 4 N £1
< P<|’Y}2—6i|24>-
Z n|®y s

The inequalitylyi — ¢| > (e1/n]|®5 )1 is equivalent to
€ €1
)| @g |11 |5 11

Note thaty; = F~1(¢1). SinceF’~1(-) is monotone

> T+ or 7 < —

€1

(11)

An(€) < Heo—y(k) (18)
where)y (¢) is defined in (3) andZ._, (k) in Theorem
3

b)

No(e) < nminfk : H. (k) < a}. (19)

Proof:
a) By Theorem 3, the selected input and the estirﬁatebe—
fined in (9) guarantee that
P(|[8 = 011 > &) <P(|[6 = Ol + 1 = 6]l1 > ¢)
<P(|0k —0llL =2 e —n)
<H. (k).

i >+ LI € >F (E' n Ei1 ) (12) Since this is valid for alt, andé, (18) follows.
nl|®g Iz nl|®g Iz b)

and N,(g) =min{N : An(e) < a}
<G - ——t e <F (a - 6411> . (13) <min{kn : H._, (k) < a}
@0 s nli®o iy <nmin{k : H._,(k) < a}

1

n ) B e
< Py, —cl> 7_>
Z; Qk > e
- ; ~ €1
<y r 5‘,2F<ci+7_ ))
; < t nll%lllf
n . . -
Sr(aer(o ) ae
276 n||®g ||,

=1

yields (19). O
Remark 4: Note thats{, has

mean F(¢;) and varianceF'(¢;)(1 — F(¢;)).  (20)

In the special case of Gaussian distributiond@f), s} is also
normally distributed with moment generating function

Gi(z) = exp <F(Ei)z + %F(’c})(l — F(E))z2>

Hence gi(t) = exp(—(F(@) — )*/(2F(@)(1 - F(@)))).
For simplicity, use short-hand notatiep = s(to + In + 7). Using gi(¢), one can then obtain more explicit bounds in

Since {d(t)} is i.i.d., for eachi = 0,1,...,n — 1, {si} is 1heorem3.

also a sequence of i.i.d. random variables. Denote the mom&nt

generating function of, by G;(z) = F exp(zs{)) with z € R. '

Let g;(t) = inf, Eexp(z(s) — t)) = inf, exp(—2t)G;(2). To obtain lower bounds on the estimation error when the

By the definition of sy, Es) = F(¢;). By the mononicity above full rank periodic input is used, we use a similar argu-

of F(:), we haveF (¢ +51/n||q>51||1) > F(¢) and mentas that of the upper bound case. R

F (¢ —e1/n|| @5 ||;) < F(&). Consequently, an application_ From® (6 —0) = ¢—,, we have|c— [l < [|@ol|7]|0k—

of Chernoff’s inequality [27, p. 326] yields 6]]1. In view of (10), the independence ¢f fori = 1,...,n

r implies that for any; > 0 I
. ~ €1 ~ €1
P (fk >F (Ci + —_>) < (gi (Ci + 7_)>
n|®5 1 n|| @5 s
(15)

Lower Bounds on Estimation Errors

0, — 0|l >
P (=], 2 )
. >P([le = wlls > e1llPollr)

- - Dol|7
. K >p ([ — i > Sl ®ollz
P(flchF(Ez—Eiil)) < (gh‘ (Ei——gil )) . - =[G =] 2 n
nl|®q 7|z nl|®g |1
(16)

. . j zHP(I%;—a-IzM)
Combining (14)—(16), we obtain the following upper bounds. h n
Theorem 3: For anye; > 0 n

[ R S )

:; [(gi(EﬁnH;ingI))H(gi (a_nH;—SlHI))k] (17) +HP <§§ <F <g7 - @)) ) 1)
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Our approach of obtaining the lower bounds involves two Theorem 4:For anys; > 0
steps. First, if the random variables are normally distributed, the A
lower bounds can be obtained via the use of an inequality in [9] P(||6x — 8||1 > €1)

together with the properties of a normal distribution. The second = 1 1 3 (G e /2)
_ e— 011 £1
o 1) ( 51))

step deals with the situation in which the noises are not normal> H

but are approximately normal via Barry-Esseen estimate. i=1
Assume thati(t) is normally distributed with mean 0 and L | 1 1 3 (G (e1))?
. o . . + _ + e~ (a7 (€1))%/2)

variances“. Suppose thak (z) is the distribution of the stan- H NG ) (a €1 )

dard normal random variable, i.&(z) = [*__ z({)d(, where =1 ‘

z(x) = 1/V2mexp(=2?/2), o0 < & < oo. Itwas shownin  Furthermore, we also obtain the following corollary with

[9, Lemma 2, p. 175] that g1 = e+

Corollary 2: Settinge; = ¢ + 1 in Theorem 4, we have

(l _ i) A(r) < 1= 2(@) < 12(x), fora > 0. (22)

v P((|f. = lls > & + 1)
3
Since d() is normally distributed with mean zero and>H 1 1 _< 1 ) o= (@ (c+m)?/2)
variance o2, ¢ is also normally distributed with mean V2r \ af (e +1) ai(e+n)
F(c) and variance F(¢;)(1 — F(¢))/k. Therefore, n

VEE — F@E)/JF@E) 1 —F(a» is normally dis- 4[] LI (R (N_ 1 )3
tributed with mean 0 and variance 1. As a result, to obtain ;; V27 \ @; (e+mn)  \a; (e +mn)
the desired lower bounds via (21), for amy > 0, it o= (@7 (c+m)?/2)
suffices to considerP(§;, > F(¢; + ei1f|®oflr/n)) and
P& < F(¢; — e1]|®o|r/n)). Denote

\/E (F (a 4 51||i’0||1) . F(a))

D. Lower Bounds Based on Asymptotic Normality
The idea here is to approximate the underlying distri-

S+~
& =ai(e) F(c;)(1 - F(c)) ) bution by a normal random variable. It is easily seen that
i, = V(& —F(@))/\/F(@)(1— F(c)) converges in
Then distribution to the standard normal random variable. By virtue
4 e1]|o|| of the Berry—Esseen estimate [10, Th. 1, p. 542], the following
P (fi >F (Ei 4 L0 I>) lemma is in force.
" Lemma 1:|P(pi, < Z) — p(z < Z)| < 6, whereA, =
_rlve (& — F(¢)) Sat) O(l_/x/E) ask — oo andZ is the standard normal random
Fle)(1-F(g) ~ " variable.
Using this lemma, we obtain the following.
Therefore, by (22) Theorem 5: We have the following lower bounds:
» (fi . (~ .\ sln%nz» 2@ P((|f = 6ll1 > & + )
n

7L 1 1 ’ o—(@F (em)?/2
UF( i (e+n) <&?(€+n)>>
b=

1 1 3
N
Ca () NG (e+m)
(a7 (=+m)?)

e” 2 + Ay

Likewise, denote

a; =a; (e1) =

S~ al®lll) o whereA, = O(1/Vk) ask — .
vk (F (CZ n ) F(Cl)) _ Proof: Note that by Lemma 1

F(e)(1 - F(c))

; ~ e+ Pollz
Note thata; (e;) < 0. We obtain P (f’“ 2 ¥ (cl * n
= P(p, > af (e +n) > P(Z > af (e +n)) - Af
ple - all®llr ) _ o
GsFle—-——))= 1-Z(-q;)
n whereA} = O(1/Vk). Similarly

i ) () @ (o o)

n
Combining (23) and (24), we obtain the following lower bounds. =P(pi <a a; (e+mn)>P(Z<a;(e+n)—A
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whereA; = O(1/Vk). Define A, = —(A; + Af). Using A. Lower Bounds on Identification Errors and Time
the estimates of lower bounds as in Theorem 4 for the norn@bmplexity

random variableZ, the desired result then follows. u We will show in this subsection that identification time com-

E Dithers plgxity is bognded below by the Kolmogorov entropy of the
: prior uncertainty set.
When the disturbance has a finite support, i.e., the densityCase 1: Disturbance-Free Observations and No Unmodeled
fa(x) = 0,2 < —k Orz > s with afinite », the corresponding Dynamics:
F(x) is not invertible outside the intervak-s, x]. The results  Theorem 6:Let § = 0 andy = 0. Suppose that for a given
in this section are not applicabledf ¢ [—«,x] for somei. , > 1 the prior uncertaintf2, = Ball, (6o, o). Then, for any
Consequently, the identification capability of the binary senser< ¢, the time complexityV (&) is bounded below by (&) >
will be reduced. In other words, it is possible that for a selectefiog (e, /).
input, s(t) is a constant (0 or 1) for all, hence no information Proof: Ball,(c,e) in R" has volumea, ,c™, where the
is obtained in observations. coefficienta,, ,, is independent of. To reduce the identification
One possible remedy for this situation is to add a dither trror frome, to belowe, the volume reduction must be at least
the sensor input. Hence, assume the disturbdmomtains two ,, ,.c" /a, el = (e/0)™.
parts:d(t) = do(t) + h(t), wheredy(t) is an i.i.d. disturbance  Each binary sensor observation defines a hyperplane in the
with density f, andh(t) is an i.i.d. stochastic dither, indepenparameter spadé™. The hyperplane divides an uncertainty set
dent ofd,, with density f5,. In this case, the densitf; of d is  into two subsets, with the larger subset having volume at least
the convolution:f; = fo * f,. By choosing an appropriaté,, half of the volume of the original set. As a result, in a worst-case
fa will have a larger support and possess the desired properigenario one binary observation can reduce the volume of a set

for system identification. by 1/2 at best. Hence, the numbaft of observations required
to achieve the required error reduction is at le@s)y <
IV. DETERMINISTIC FRAMEWORKS (e/eo)™, 0r N > nlog(eg/e). O

This section will focus on deterministic representation of the It 1S noted thatnlogeo/e is precisely the Kolmogorov

disturbance. Since some results in this section will be val‘fdentrOpy of the prior uncertainty sé, [17], [43]. Hence,

under any” norm, the following assumption is given in genera'|I'heorem 6 provides an interesting new interpretation of the

I» norm. The norm will be further specified if certain results ar§°Imogorov entropy in system identification, beyond its
valid only for somep values. application in characterizing model complexity [43]. Theorem

Assumption A2):For a fixedp > 1, to be specified later 6 establishes a lower bound of exponential rates of time com-

1) the unmodeled dynami@sis bounded in thé” norm by plexity. Upon_obtalnlng_an upper bound of the same rates in the
next subsection, we will show that the Kolmogoroentropy

161, < n: - : : - o
; . . . . indeed defines the time complexity rates in this problem. Next,
2) g;/e”3|||stur<ba;cd is uniformly bounded in thé> norm we present an identifiability result, which is limited o= 1.

Proposition 1: The uncertainty séBall; (0, C'//umayx) iS NOt
identifiable.
Proof: For anyf € Ball; (0, C'/umax ), the output

3) the prior information oné is given by Qp =
Ball,(6g,e0) C R™ for some knownd, € R™ and

eg > 0.
For a selected input sequeneelet s = {s(t), t = to + T
1,...,to + N} be the observed output. Define y(t) =4~ (1)8
<[lp()lloo10]]2
o1 = ctmx 01
. J— ~ ~ umax
{6 : s(t) _I{¢T(t)9+¢T(t)9+d(t)§C} for some

10llp <n, lldlloc <& and ¢ =t +1,...,t0+ N} It follows thats(t) = 1, V£. Hence, the observations could not

provide further information to reduce uncertainty. O
and Case 2: Complexity Impact of Bounded Disturbancésthe
case of noisy observations, the input—output relationship be-
eN = ol iIif sup suprad, (Qn(to,u,s) N Ball,(fo,€0))  comes
Ul[oo SUmax  tg s
whererad,, is the radius of the set iff norm.ey is the op- y(t) = ¢T ()0 +d(t) s(t) = Ity<cy (25)

timal worst-case uncertainty aftéf steps of observations. For
a given desired identification accuragythe time complexity of

< 6. i T i §
Ball, (6, co) is defined as whereld(t)| < 6. For any givenp” (), an observation og(t)

from (25) defines, in a worst-case sense, two possible uncer-

N(e) = min{N : ey < e}, tainty half planes

We will characterize:, determine optimal or suboptimal in- 21 ={# €R": T () <C+6},  s(t)

1
putsu, and derive bounds on time complexi¥(e). Q={eR": ¢T(t)§ > C -6}, s(t) = 0.
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Uncertainty reduction via observation is possible only if the urwhere||§||1 < 1. We will show that unmodeled dynamics will
certainty set before observation is not a subset of each half plamteoduce an irreducible identification error on the modeled part.
(so that the intersection of the uncertainty set and the half plane~or anyq(t), the set{¢” (¢)6 : [|0]|ly < 1} = [—nme, nmy],
results in a smaller set). wherem; = ||(t)]|co-

Theorem 7:1f ¢ < §/umax, then for anyd, € R™ either Theorem 9:If ¢ < 7, then in a worst-case sense, for agy
Ball1(fg,e) € Q4 or Ball;(#y,e) C 9. Consequently, in a Ball; (g, €) is not identifiable.
worst-case sendgall; (6, €) is not identifiable. Proof: Under (26), an observation aiit) provides obser-

Proof: Suppose thdBall; (6y,¢) Z Q1. Then, there exists vation information

0, € Balh(&o./e) such thath(t)Hl >C+6.0¢€ Ba111(007€)

satisfieg|§ — 01]|1 < 2e. We have Q; ={0 e R": ¢T ()0 < C + 1y}, s(t) =1
Qy ={0 e R": ¢T ()0 > C — nmy}, s(t) = 0.
¢T (1)) =¢" (1)1 + ¢7 (£)(0 — 61)
>C+ 6+ oL (t)(6 - 6y) In the worst-case sens@all; (6o, <) can be reduced by this ob-
>C 4 6 — Upan 26 servation only ifBall; (6, €) is neither a subset ¢¥; nor .

Suppose thatBally(6p,e) € Q. We will show that
Ball;(6p,e) C Q4. Indeed, in this case there exists
61 € Balli(6p,¢) such that¢p(t)§; < C — nm,. Since
anyé € Ball; (o, ¢) satisfies||§ — 61]|; < 2e, we have

>C -6

for anyé € Bally(y, ). This implies thaBall; (6y,¢) C Q.

The opposite case can be proved similarly. O
Theorem 7 shows that worst-case disturbances introduce ir- T T T B
reducible identification errors of size at le@$tuy.«. This is a o7 () =¢" ()01 + ¢ ét)(e o)
general result. A substantially higher lower bound can be ob- <C —nmy + ¢ (8)(0 = 61)
tained in the special case of= 1. <C — nmy + my2e
Consider the system(t) = au(t) + d. Suppose that at time <C + nms.
t the prior information ornu is thata € Q = [a,a] with ¢ >
C/umax for identifiability (see Proposition 1). The uncertaintyrpis impliesBall; (6, ) C ;. 0O

set has centery = (1/2)(a + @) and radiug = (1/2)(a — a).
To minimize the posterior uncertainty in the worst-case sense, General Upper Bounds
the optimalu(t) can be easily obtained a$t) = C/ao.

Theorem 8:If § < C, then the uncertainty seta] cannot In this section, general upper bounds on identification errors

be reduced it < §(tumax /(1 — 8/C)) or time complexity will be established. For a fixed> 1, sup-
Proof Let e — § /(e (1 - §/C)). Then, 5 = POse that the prior information ahis given byBall, (6, o).
' i ' ' For identifiability, assume that the signs ef have been de-

eC/(C/umax + €). For anya € [a,a], notingay = a + &, we

i 15 = 3
havela — ao| < ¢, and tected andr = min{|a;|,7 = 1,...,n} > C/umax-* Denote

@ = MaxXgepall, (6o,) ||f]lco- We will establish upper bounds
on the time complexityV(e) for reducing the size of uncer-

C c . :
au(t) =a x — = (ap + (a — ag)) X — tainty fromeg to &, in [ norm.
0 C 0 Case 1: Disturbance-Free Observations and No Unmodeled
=C+ (a —ag) X — Dynamics: Letn) = 0 andé = 0 and considey(t) = ¢ (¢)6.
o %o Theorem 10:Suppose that,.x > C/a. Then, the time
<C+ €+ complexity to reduce uncertainty frosg to ¢ is bounded by
a 13
eC
<C+ uncw e N(e) < (n* —=n+1) {% logn—l-log%o-‘ . (27)
=C+54.
Sincen is a constant independent &f, this result, together
Hence, the observation(t) = 1 does not provide any with Theorem 6, confirms that the Kolmogorov entropy de-
information. fines the time complexity rates in binary-sensor identification.

Similarly, if s(t) = 0, we can show that all € [a,a] will The accurate calculation fd¥ (¢) remains an open and difficult

resultinau(t) > C — 6. Again, the observation does not reduc8Uestion, exceptfat = 1 (gain uncertainty) which is discussed
uncertainty. O inthe next subsection. N _
At present, it remains an open question if Theorem 8 hold_sThe proqf of Theorem 10 utilizes the following lemma. Con-
for higher order systems. sider the first-order system(t) = au(t), s(t) = Itym<c)
Case 3: Complexity Impact of Unmodeled Dynamitghen Wherea € [a,a] anda > C/umax > 0. Leteg = (1/2)(@ - a).

the system contains unmodeled dynamics, the input—output restye sign ofa; can be obtained easily by choosing an initial testing sequence

lationship becomes of w. Also, those parameters wilh;| < C/u.m.. can be easily detected. Since
uncertainty on these parameters cannot be further reduced (Proposition 1), they
~ ~ will be left as remaining uncertainty. defined here will be applied to the rest
y(t) = o7 ()0 + o7 (1) 5(t) = Itym<cy (26)  of the parameters. The detail is omitted for brevity.
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Lemma 2: There exists an input sequengesuch thatN  y(t) = au(t) + d(t), we can derive the following iterative un-
observations ors(t) can reduce the radius of uncertainty t@ertainty reduction relationship. If the prior uncertaintyt a
e = 27 Neg,. [a(t) —e(t), a(t) +e(t)], then the optimal worst-case input)
Proof: Let [a(¢),a(¢)] be the prior uncertainty before acan be shown as(t) = C/a(t).# The posterior uncertainty
measurement o8(t). Then,e(t) = (1/2)(a(t) — a(t)). By will be either [a(t) — e(t),a(t) + (6/C)a(t)], if s(t) = 1; or
choosingu(t) = C/(a(t) + (t)), the observation og(t) will  [a(t)—(6/C)a(t),a(t)+e(¢)], if s(t) = 0. Both have the radius
determine uniquely either € [a(t), a(t) + e(t)] if s(¢t) = 1; or

a € [a(t)—e(t),a(t)] if s(t) = 0. In either case, the uncertainty e(t+1) _1 <€(t) + éa(t))
will be reduced byl /2. Iteration on the number of observations 2 c
leads to the conclusion. O 1 6 16

The proofs of this subsection rely on the following idea. =3\l 5) () + 55 let) +et)
Chooseu(t) = 0 except those with indexn? —n+1)+i,i = 5a
Ln+1,...,(n—1)n—n+3,5=0,1,.... This input design Sp€<t>+%'

results in a specific input—output relatlonshlp ) .
Starting frome, after IV, observations, we have

y(j(n* —n+1)+n)

Ni-1
o (i~ +1) 4 1) ) e + 22 5
y(j(nz—n—i—l)—f—n—}—l)
2 5@1—
=aqpu (j(n*—n+1)+n+1 —, M el
. ( ) =p €0+20 -,
=pNigg 4+ (1 — p™)
y(J(” —n+ )+(”_1)“+1) =pNi(eg — o) + 0.

=an_ou(jm2=n+1)+(n—-n—-n+3). 28
2 (J( )+ ) ) (28) To achieves(V;) < ¢, it suffices

In other words, within each block af> — n + 1 observations,
each model parameter can be identified individually once. Less
conservative inputs can be designed. However, they are more
problem dependent aratl hog and will not be presented here.

Proof of Theorem 10:By Lemma 2, uncertainty radius
on each parameter can be reduced by a faztd after N,
observations. This implies that by using the input (28), after 1 g £=2
N = (n®> — n + 1)N; observations, the uncertainty radius can N=(n*=n+1) {— logn + %-‘
be reduced to P sr

log =

Ep—O

le(€0 —o0)+0<e or N>
log p

Following the same arguments as in the proof of Theorem 10,
we conclude that

will suffice to reduce the uncertainty from to  in /? norm.]

1/p .
rady () <n”Frads (2y) Case 3: Unmodeled DynamicConsidery(t) = ¢ ()6 +

<nt/r =N/ =t Dpad o (Q0) ¢ (t)0. The results of this case hold for= 1 only. The unmod-
Snl/pg—N/(nZ—n+1)radp(go) eled dynamics introduces an uncertainty on the observation on
Vg N/ n ), y(®): AT (O < 10]12 < m} = [=mpme, mma], e = [|$(8)oo-
o Theorem 12:Supposel) < 1 < C/umm Let
Hence, fom!/r2=N/("*=nt1l)¢ < ¢ it suffices to have p1 = (1/2)(1 = Ntimax/C), 01 = Numaxt@/(2C(1 — p1)).
1 € log =21
N:(nQ—n-l-l) [—logn+10g—0—‘. N(E)S(’I’L2—’I’L+1) logn-l-m . (30)
P € log p1
d

Proof: By using the input (28), the identification of
[ h of . F I
d(t), where|d()| < 6. is reduced to each of its components. For a scalar system

y(t) = au(t) + ¢ ()8, since|p” (¢)8] < Numax We can apply
Theorem 11:Supposed < C. Letp = (1/2)(1 — 6/C) ;
ando = 67/(2C(1 — p)) = @8 /(C(14 6/C)). lfeg > & > Theorem 11 withd replaced bynu,,... Inequality (30) then

Case 2: Noisy ObservationsConsidery(t) = ¢ (t)f

. . _ foll from Th 11. O
o andum.x > C/a, the time complexityN (e) for reducing oflows from Theorem
uncertainty frome, to ¢ is bounded in” norm by C. Special Cases: Identification of Gains
1 log £=2 In the special case = 1, explicit results and tighter bounds
N(e) < (n*—n+1) ElognﬂL ﬁ (29) can be obtained. When = 1, the observation equation
becomes

Proof: Using the input in (28), the identification of the TNT
parametersy, ..., a,_1 is reduced to identifying each param- y(t) = au(t) + ¢~ (1) + d(t).
eter individually. NOW for identification of a single parameter 4More detailed derivations are given in the next subsection.
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Assume that the initial information om is thata(0) < a < wherea(t) anda(t) are updated by the rules
@(0), a(0) # 0,a(0) # 0, with radiussy = (1/2)(@(0) —a(0)). o

Case 1: y(t) = au(t). Itis noted that this is a trivial identi- a(t) =a(t — 1), a(t) = ———, if s(t) =0
fication problem when regular sensors are used: After one input u(t)
u(0) # 0, a can be identified uniquely. a(t) =a(t — 1), a(t) = ¢+ 6. if s(t) =1.

Theorem 13: T ' u(t)

1) Suppose the sign aof is known_, say,g(o)_ > 0, and 2) a(t)/a(t) > (1+6/C)/(1—8/C) for all t > 1;
Umax > C/%(VO)' Then, the_ optimal |den_t|f|(_:at|0n error {a(t)} is monotone increasindz(t)} and {a(t)/a(t)}
is ey = 2 Teo and the time complexity isV(e) = are monotone decreasinglim;_,.oa(t)/a(t) =
[logeo/e]. . . , (1+6/C)/(1=5/C).

If at ¢ — 1, the information oru is thata € [a(t — 3) At each timet, uncertainty reduction is possible if and
1), a(t — 1)], then the optlmah(t) IS only if E(t . 1)/@(75 . 1) S (1 + 5/0)/(1 o 5/0)_
20 Proof: In the Appendix.
u(t) = at-1D+alt-1 (31) Theorem 15:Let oy = (1/2)(1 —_6_/0) and as =
(1/2) (1 + 6/C). Then, under the conditions and notation of
whereq(t) anda(t) are updated by Theorem 14
a0 = La(t— 1) +a(t— 1)), ifs(t)=0 1) lf)ort > 1, the optimal identification errar(t) is bounded
AT at-1), if s(t) =1 y
__fat-1), if s(t) =0 . da(l —atb)
alt) = { Lalt = 1) +a(t— 1)), if s(t) =1 e + =5
_ _ ot
2) If a(0) anda(0) have opposite signs and <ate(0) + ba(t é)(l o1)
%]
c . c da(t —1)(1 — ol
b1 = ma{a(0), ———} 8 = min{a(0), ——} <e(t) < abe(0) + 24 C{.fl 2)
then the uncertainty intervab ¢,) is not identifiable. <abe(0) + ba(l - a%). (33)

Furthermore, in the case ef0) < &, anda(0) > &, Coy
if 6, — 6, < e andey > 2¢ then the time complexity 2) Letey = e(0) andey > & > 8a/(Cay) = 26a/(C — 6).

N(e) is bounded by Then the time complexityV (¢) for reducing uncertainty
_ _ from ¢q to ¢ is bounded by
[log —| < N(e) < {log f0 = (on 51)-‘ +2
&
log — Caz log - C“l
Proof: In Appendix. e <N< e
log ary log cp

In this special case, the actual valde> 0 does not affect
identification accuracy. This is due to noise-free observation.
The valueC will become essential in deriving optimal identifi- 3) There exists an irreducible relative error
cation errors when observation noises are presgnt 0 is a s s

25 U)o 25

singular case in which uncertainty eacannot be reduced (in the < < ) (34)
sense of the worst-case scenario). Indeed, in this case one can 1+ % a 1- %
only test the sign of. It is also observed that the optima(t L .
depends on the previous observatiéh— 1). As a resulrgfgtg 4) The parameter estimation error is bounded by
can be constructed causally and sequentially, but not offline. a(c0) —a 2% a — a(co) 2%
Case 2: y(t) = au(t) + d(t). Here, we assumid(t)| < § < 0= 20) 132 0< a(>0) <{_s 9
C'. Prior information oru is given bya € Qo = [a(0),a(0)], ¢ - ¢
anda(0) > 0. Proof: In the Appendix.
Theorem 14:Suppose thatum.x > C/a(0) and  Remark 5: It is noted that the bounds in item 2) of Theorem
a(0)/a(0) > (1+6/C)/(1—¢6/C). Then 15 can be easily translated to a sequential information bounds by
1) the optimal inputu(t) is given by the causal mappingreplacings with the online inequalitieg(t—1) < a < a(t—1).
from the available information at— 1 Case 3: y(t) = au(t) + ¢T(t). Letu, = {u(r), 7 < t}.

Then, ||lu¢ || is the maximum|u(r)| up to timet. Since we
assume no information ofy except that|d||; < , it is clear
thatsup, = _ |¢ (t )9| = nm; wherem; = ||¢( )] oo
The optimal identification error satisfies the iteration ol =n or or
Letw(t) = 7 (1)8. Then{d (1)6 : [|0]l < n} = {w(?) :

equation lw(t)| < nmy}.

Theorem 16: Suppose thai(0) > 0, upmax > C/a(0),n <
@t-1+at-1) (32 40

2C
ul(t) = at—1) +a(t—1)

DN | =
Ql >

e(t) = %e(t -1+
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1) The optimal input:(¢), which minimizes the worst-casethis leads to a very fast exponential rate of uncertainty reduc-
uncertainty at, is given by the causal mapping from thdion. However, when the uncertainty setis close to its irreducible

available information at — 1

2C

v = D rae= 1) (36)
The optimal identification error dtsatisfies the iteration
equation
1 nmg
e(t) = 5e(t -1+ f(a(t —1)+a(t-1)) (37)
wherea(t) anda(t) are updated by the rules
- _ C—nmy _
a(t) =a(t — 1), a(t) o) fs(t)=1
_ a(p) = S _
a(t) =a(t — 1), a(t) ) fs(t)=0
2) The uncertainty is reducible if and only @t — 1) >
a(t— 1)+ 2n.
3) Fort > 1, the optimal identification errar(¢) is bounded
by

I1 A0) < e

j=it1

[15:6) | o)+ G 3 m,

I %G) @8

j=it1

< (TI:0) ) et0) + 225" m,
j=1 i=1

where (1 (¢) (1/2) (1 —nm¢/C) and [a(t)
(1/2) (L +nm:/C).

4) Let gg e(0) andeyg > e > 2na(0)/(a(0) —n).
Also, denote (3, (1/2) (1 —n/a(0)), Bo
(1/2) (1 + n/a(0)). Then, the time complexityV (¢) for
reducing uncertainty from, to ¢ is bounded by

__mna na_
log - ()5 log —=20%
TR0 | N(e) €0 a(0)A1 (39)
log 31 - log (3>

Proof: In the Appendix.
Note that3s(t) > B1(t) andBy(t) + B2(t) = 1;andB; — o
asn — 0, uniformly int.

V. DISCUSSIONS ONCOMBINED STOCHASTIC AND
DETERMINISTIC BINARY -SENSORIDENTIFICATION

limits due to disturbances or unmodeled dynamics, its rate of un-
certainty reduction decreases dramatically due to its worst-case
requirements. Furthermore, when the disturbance magnitude is
large, the irreducible uncertainty will become too large for iden-
tification error bounds to be practically useful.

In contrast, in a stochastic framework, noise is modeled by
a stochastic process and identification errors are required to be
small with a large probability. Binary-sensor identification in
this case relies on the idea of averaging. Typically, in stochastic
identification the input is designed to provide sufficient exci-
tation for asymptotic convergence, rather than fast initial un-
certainty reduction. Without effective utilization of prior infor-
mation in designing the input during the initial time interval,
initial convergence can be very slow. This is especially a severe
problem in binary-sensor identification since a poorly designed
input may result in a very imbalanced output of the sensor in
its 0 or 1 values, leading to slow convergence rate. In the case
of large prior uncertainty, the selected input may result in non-
switching at the output, rendering the stochastic binary-sensor
identification inapplicable. On the other hand, averaging distur-
bances restores estimate consistency and overcomes a funda-
mental limitation of the worst-case identification.

Consequently, it seems a sensible choice of using the deter-
ministic framework initially to achieve fast uncertainty reduc-
tion when the uncertainty set is large, then using the stochastic
framework to modify estimation consistency. In fact, we shall
demonstrate by an example that these two frameworks comple-
ment each other precisely, in the sense that when one framework
fails the other starts to be applicable. Consider the first-order
systemy(t) = au(t) + d(t), whered(¢) is i.i.d. but with sup-
port on [-4, 6]. Suppose that the prior information ens given
by Qo = [ag — €,a0 + €], withag — e > 0.

First, we will show that i is large, then some subsets{f
cannot be identified by the stochastic averaging approach. More
precisely, we note that the stochastic averaging method requires
that one select a constanft) = w such that the following
condition is satisfiedP(y(t) > C) > 0 andP(y(t) < C) >
0. Under this condition, the distribution functiafi is invert-
ible at the convergent point of the empirical distributigg(z).
Consequently, The results of Section 11l can be applied to iden-
tify a.

However, ife > ad/C, then for any choice ofi, either
P(y(t) > C) = 0or P(y(t) < C) = 0, that is, the above
condition is always violated. Indeed, suppose tRay(t) >
C) > 0, for all possiblex € Q. In particular, this implies that
fora = ap — agd/C € Qo, we have(ag — agd/Clug + 6 > C

The theoretical development of this paper highlights the digr équivalentlyaguo > C.
tinctive underlying principles used in designing inputs and de- Now, consider the subs&t = [ag + aod/C, ag + €] C Q0.
riving posterior uncertainty sets in stochastic and determinisff@" anya € €2, we have

information frameworks.

In the deterministic worst-case framework, the information
on noise is limited to its magnitude bound. Identification prop-
erties must be evaluated against worst-case noise sample paths.
As shown earlier, the optimal input is obtained on the basis of

aug + d(t) > aug — 6 > <a0+aic,6>uo—6

0
1+ — —-6=C.
><+O>C 0=C

choosing an optimal worst-case testing point (a hyperplane) for
the prior uncertainty set. When the prior uncertainty set is largehis implies thatP(y(t) < C') = 0.
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On the other hand, if we apply the deterministic identificatio [ ‘ ‘ ' ‘
first to reduce uncertainty om first, by Section IV, the uncer- ~ %°p = - Uppor Bounds |+
tainty can be precisely reduced & = [ag — a¢6/C, a0 + 8001
apd/C]. It is easy to show that fof2, the stochastic binary-
sensor identification is applicable since we have

\,
1=}
=)

@
o
S

§ H _
If P(y(t) < C) =1, thena = ag — %00 g =0
C(S E 400
If P( ( )>C) =1, thena_a0+% Seof '

n
Q
=]

Otherwise P(y(t) > C)> 0 or P(y(t) < C) > 0. |

The following numerical example is devised to furtherillus. | K , . ‘ .
trate these ideas. Consider the systgft) = au(t) + d(t), 0 2 “ & & 100 20
where|d(t)] < ¢ with a uniform distribution in ¢, 6]. The (@)
true valuea = 200. Suppose that the threshald = 50, dis-
turbance bound = 10, and prior information oru is that . = owerBown®s
a € [1,1000]. Deterministic identification starts with a fastun- **/, 2 Tk Parametr
certainty reduction, but settles to a final irreducible uncertain s ®°f —— Eelinaie
set [167.6, 251.4], as shown in of Fig. 1(a).

On the other hand, if one elects to use stochastic framewo
it is critical to find an input value that will cause the sensor t
switch. The large prior uncertainty amakes it difficult to find
such an input. For instance, € [1,1000] andC' = 50 imply
possible values of; in [0.05,50]. A sample of 10 randomly
selected values in [0.05,50] gives 20.8123, 47.1245, 0.52] ST T T T T s s s
19.4371, 18.7313, 0.5676, 25.4479,16.9107, 9.1140, 44.10 B
all of them fail to be a viable inputy(¢) = 200u — 10 > 50 for
all z).

Next, we combine deterministic and stochastic approachg 1. Comparison of stochastic and deterministic frameworks.
First, the deterministic approach is used to reduce the uncgjDeterministic identification. (b) Combined identification.
tainty set to, say, [165, 255]. This is achieved after ten observa-

tions. We then switch to tr(')e stochastic framework. Select 5 thresholdo. Traditional control in this problem is to design

- = - 0.2381. a feedback control that will maintain(¢) close toC. How-
0.5(255 + 165) ever, if the sensor threshold is not equal to the targe# v*,

This leads taru = 200 x 0.2381 = 47.62, which satisfies the the traditional feedback will fail to drive to the targety*.

condition of stochastic binary-sensor identification (invertibilityJsing the identification approaches to estimate system param-

of F'). Upon changing to stochastic identification, the outpigters first, however, one can potentially contyét) to a small
s(t) is observed. The estimate anis calculated by (9). The range around* after identification.

trajectory of the estimate is shown in Fig. 1(b). Let the true system be

Q
=3
T

P - SN
S & © o
S o o o

w
S
=]

Information Bounds and Estimate ol

n
=3
=]
L

o
=]
L

o

I I I L
40 60 80 100 120

(b)

o
n
o

VI. |LLUSTRATIVE EXAMPLES y(t) = aru(t ) +azu(t — 1) +d(t)
with a; = 12 anday = 5. The disturbancel is i.i.d. with
Winiform distribution in H 1] The target output ig* = 30.
%?ﬁ)pose that the sensor has thresltiold 20. u.,,., = 40. Let
prior information on the parametersdyes [1,51],7 = 1, 2.
By the input (28) withn = 2, we have index3; + ¢,

In this section, we will use two examples to illustrate how
the algorithms developed in this paper can be applied to addr
the motivating issues discussed in Section I. In example 1,
will show that by using binary sensors for identification one can
achieve output tracking for reference set points that are d|ffereLn 1or3 j — 0,1,.... Hence, the input sequence is
from the sensor switching point. Example 2 demonstrates that

i = {0,u(1),0,u(3),u(4),0,u(6),u(7),0,u9),...}. The

the common practice in industry applications, in which two bkorresponding input—output relation becomes

nary sensors are used to force a controlled variable in the set

bounds, does not impose additional difficulties in applying our y(3j +2) =au(3j+1), j=0,1,...
results to output tracking control. Since online identification (es- y(37 + 3) =a1u(3j + 3), Jj=0,1,....
pecially persistent identification problems in which identifica
tion is needed beyond its initial parameter convergence) is 0
meaningful when system parameters drift slowly but subst
tially from their initial values, we use a slowly varying system
to demonstrate our methods in Example 2. 5For simplicity, we use a minimum-phase system for this example. As aresult,

Example 1: Tracking Control Using One Binary Sensor. after identification, tracking control can be designed by simple inversion. In the

. case of nonminimum-phase plants, tracking design should be done by optimal
Suppose that the goal of control is to $ét) = y*, wherey™  odel matching such @ control. In both cases, the identified model can be

is a desired reference point. A binary sensor is deployed wiiked to track an output that differs from the threshold.

r?y choosing:(3;j+1) andu(3;+3) optimally for identification
individual parameters, we can reduce parameter uncertainty
Aikst to, say, a radius of 0.5 on each parameter.
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Fig. 2. Tracking control with one binary sensor. Fig. 3. Tracking control with two binary sensors.

Atthe end of the identification phase, the centers of the uncéhe threshold”s, identification is employed again. This identi-
tainty sets for the parametergsanda, are used as the estimatedication captures the new values of the parameters and improves
a, andas. Then, the control for tracking* is calculated by tracking performance.

1, .,
u(t) = —(y* — azu(t — 1)).

a1
VII. CONCLUSION

Fig. 2 shows the uncertainty sets (upper and lower bounds) on

a; andas during the identification phase, and outputs in both Identification with binary-valued sensors is of practical
identification and tracking control phase. It is seen that aftemportance and theoretical interest. The main findings of this
binary-sensor identification, one can achieve tracking contrgiaper reveal many distinctive aspects in such identification
even when the desired output value is far away from the senpooblems from traditional identification. Furthermore, the
threshold. It should be noted that the large fluctuationgyonrelationships between time complexity and the Kolmogorov en-
during the identification phase is unavoidable due to the lartfepy and between stochastic and deterministic frameworks in
prior uncertainty set [1,51] assumed on parameters. their identifiability provide new understandings of fundamental

Example 2: Tracking Control Using Two Binary Sensors. links in identification problems.

It is noted that if system parameters in Example 1 are varyingBinary-sensor identification introduced in this paper was ini-
with time, then parameter drifting may cause tracking perfotially motivated by several typical industrial control problems. A
mance to deteriorate without being detected by the sensorlimited investigation to different application areas has generated
Example 1, escaping of toward infinity will not be detected many examples in a broader range of applications, including bi-
sincey* > C. One possible remedy is to employ two binarplogy, economy, medicine, and further links to other branches
sensors with the thresholds; < y* < Cs. When parameter of information processing methodologies. It is important to mo-
drifting causeg/(t) across these thresholds, reidentification willivate further investigations by studying these application areas
be employed. This is illustrated later. vigorously and rigorously.

Suppose that the parameters of the system change with timeRotential extensions of the work reported in this paper
drifting slowly from the current values; = 12, a; = 5 tothe are numerous, including from the MA models to ARMAX
new valuesz; = 20, ao = 10. A new binary sensor is addedmodels, from linear systems to Wiener or Hammerstein non-
with thresholdCy; = 40. Fig. 3 shows the impact of this pa-linear models, and from input—output observations to blind
rameter variation on the outpyt Wheny increases to cross identification.
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APPENDIX

A. Proof of Theorem 13

1)

2)

The identification error and time complexity follow di-
rectly from Theorems 6 and 10 with = 1. As for the
optimal input, notice that starting from the uncertainty
[a(t),a(t)] an inputu(t) defines a testing point’/u(t)
on a. The optimal worst-case input is then obtained by
placing the testing point at the middle. That is
c 1

wd) 5(2@) +a(t))
which leads to the optimal input and result in posterior
uncertainty sets.
When the input is bounded by(¢) € [—tmax; Umax],
the testing points cannot be selected in the interval
[—C/umax, C/umax]. Consequently, this uncertainty set
cannot be further reduced by identification. Furthermore,
by usingu(1l) = —Umax aNdu(2) = Umax as the first
two input values,a can be determined as belonging
uniquely to one of the three intervalgi(D), —C/umax),
[_C/umaX7 O/umax]i [C/uma)ua(o)]' By taking the
worst-case scenario @f0) — C/tumax = €0 — (6n — &1),
the time complexity for reducing the remaining uncer-
tainty to e is [log ((eg — (6n — 61))/€)]. This leads to
the upper bound oV (¢). The lower bound follows from
Theorem 6 withn = 1. O

B. Proof of Theorem 14

1

e(t) =

2) We prove a(t)/a(t)

Sinceu(t) > 0, the relationship (25) can be written as
a = (y(t) — d(t))/u(t).
The observation outcomgt) > C will imply that
C—dit) _C-6
T oou(t) T u(t)

which will reduce uncertainty from € [a(t—1),a(t—
to [(C—8)/u(t),a(t — 1)] with error e(t)
a(t — 1) — (C =6)/u(t). Similarly, y < C im-
pliesa < C + 6/u(t) anda € [a(t — 1), (C + 6)/u(t)]
with ex(t) = (C + 6)/u(t) — a(t — 1). In a worst-case
scenarioe(t) = max{ei(t),ea(t)}. Consequently, the
optimalu(t) can be derived frornf,, e(t). Hence, the
optimalu(t) is the one that causes(t) = ex(t), namely

C+6 o C-8
ay D=l =

1)

or
20
KO e yee L

The optimal identification error is then
C+6(alt -1 t—1
CraE D rat=1)

<1 + %) (@it —1)+a(t—1)) —a(t—1)
1)+

0
20( a(t —1) +a(t —1)).

> (1+6/C)/(1-6/C)
by induction. Suppose that(t—1)/a(t—1) >
(1+6/C)/(1—6/C). Then, we haveu(t)a(t — 1) >
C + 6§ andu(t)a(t — 1) < C — 4, which, respec-

1
Zelt —
2

3)

1

2)

1905

tively, leads toa(t)/a(t) = (u(t)a(t —1))/(C —§)
(1+6/C)/(1—-6/C) in the case wheres(t)
and a(t)/a(t) (C+6)/(u(t)a(t - 1))
(146/C)/(1—=6/C) in the case where(t)
Thus, by the initial condition thatz(0)/a(0)
(1+46/C)/(1—6/C) we have a(t)/a(t)
(1+6/C)/(1—-6/C)forallt > 1.

By a(t—1)/a(t—1) > (1+6/C)/(1-6/C), we
have u(t)a(t — 1) < C — ¢ andu(t)a(t — 1) >

VIV 2SIV E IV

C + 6, which givesa(t) = a(t — 1) and
aDfalt—1) = (C—5)/(u(a(t—1) > 1 in
the case where(t) = 1, anda(t) = a(t — 1) and
a(t)/a(t—1) = (C+06)/(u(t)a(t—1)) < 1in the
case wheres(t) = 0. Thus, {a(¢)} is monotonely

increasing andd(¢)} is monotonely decreasing.
Furthermore, bya(t)/a(t —1) > 1 anda(t — 1)/
a(t) > 1 we obtain(a(t)a(t — 1))/(a(t)a(t — 1)) > 1,
i.e,a(t—1)/a(t — 1) > a(t)/a(t). Hence {a(t)/a(t)}
is monotonely decreasing.
The dynamic expression (32) can be modified as

e(t) = % <1 - g) e(t—1) + (40)

e(t) = % <1 + g) e(t—1)+ gg(t —1).

By taking ¢ — oo on both sides of (40) and
(41) we geta(oo) = ((CH+6)/20)e(c0) and
a(o0) ((C = 6)/26)e(00). This leads to
lim;—oa(t)/a(t) = (14+6/C)/(1 = 6/C).

From (32), it follows that the uncertainty is reducible if
andonlyif(6/C)(a(t—1)+a(t—1)) < e(t—1) =a(t—

1) — a(t — 1). This is equivalent ta(t — 1) /a(t — 1) >
(1+6/C)/(1=6/C). O

o _
Ea(t— 1)

or
(41)

C. Proof of Theorem 15

From (40) and the monotone decreasing property Of

we have
sa(t—1) o~
)_f_%zal
1=0

and from (41) and the monotone increasing property of

a(t)

e(t) > ale(0

e(t) < ape(

()) + M iaé
(1 —aof)/(1 = ay),

The results follow fromy~'—} o} =

iz s = (1—0b)/(1—as), 1 —a1 = ap anda(t) <
a < a(t).
From item 2 of Lemma 14, it follows that the eredt) =

a(t) — a(t) is monotonely decreasing. Thus, the upper
bound on the time complexity is obtained by solving the
inequality for the smallesWV satisfying

Sa(1 — ad)) <.

COél
Similarly, the lower bound can be obtained by calculating
the largestV satisfying
sa(1 —ad)

COéz

e(N) < aleg+

e<aley+ < e(t).
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3) This follows from (33) and Item 2 of Lemma 14, which

implies the existence dfim;_, - e(t).

4) From the last two lines of the proof of Item 2 of

(8]

9]

Lemma 14 it followsa(co) = ((C +§)/26)e(o0)
anda(oco) = ((C —6)/28)e(c0). This, together with  [10]
(34),gives (35). O g
D. Proof of Theorem 16 [12]
1) The results follow from the definition af,; and Theorem  [13]

15, with 6 replaced byym,.

2) From (37) and (36), it follows that the uncertainty is re- 14

ducible if and only ifpm;/u(t) < (1/2)e(t — 1)
(1/2)(a(t — 1) — a(t — 1)). This is equivalent toy <

E. Eweda, “Convergence analysis of an adaptive filter equipped with
the sign-sign algorithm,IEEE Trans. Automat. Contrvol. 40, pp.
1807-1811, Oct. 1995.

W. Feller, An Introduction to Probability Theory and Its Applicatigns
3rd ed. New York: Wiley, 1968, vol. I.

——, An Introduction to Probability Theory and Its Applicatiqrnd

ed. New York: Wiley, 1971, vol. II.

A. Gersho, “Adaptive filtering with binary reinforcementEEE Trans.
Inform. Theoryvol. IT-30, pp. 191-199, Mar. 1984.

A. Gersho and R. M. Grayector Quantization and Signal Compres-
sion Norwell, MA: Kluwer, 1992.

K. Gopalsamy and I. K. C. Leung, “Convergence under dynamical
thresholds with delays,1IEEE Trans. Neural Networksvol. 8, pp.
341-348, Apr. 1997.

R. G. Hakvoort and P. M. J. Van den Hof, “Consistent parameter
bounding identification for linearly parameterized model sefgjto-
matica vol. 31, pp. 957-969, 1995.

_ _ [15] A. L. Hodgkin and A. F. Huxley, “A quantitative description of mem-
(.1/2)(a(t —1)—a(t-1))ora(t—1) > a(t—1)+2n, brane current and its application to conduction and excitation in nerve,”
sincem,/u(t) > 1. J. Physiol, vol. 117, pp. 500-544, 1952.

B 7). we hav [16] P. R. Kumar, “Convergence of adaptive control schemes using least-
3) y (3 )’ € have squares parameter estimatd&EE Trans. Automat. Confwvol. 35, pp.
1 un e 416-424, Apr. 1990.
e(t) = 5 (1 + 5) e(t - 1) + —C Q(t - 1) (42) [17] A. N. Kolmogorov, “On some asymptotic characteristics of completely
bounded spacesDokl. Akad. Nauk SSSRol. 108, pp. 385-389, 1956.
and [18] H. J. Kushner and G. YinStochastic Approximation Algorithms and
1 nmy nmy Applications New York: Springer-Verlag, 1997.
e(t) == (1 - —) e(t—1)+ —a(t—1). (43)  [19] L. Ljung, System Identification: Theory for the UserUpper Saddle
2 c ¢ River, NJ: Prentice-Hall, 1987.
Further, fromg(t) <a< a(t) forallt >0 [20] M. Milanese and G. Belforte, “Estimation theory and uncertainty inter-
vals evaluation in the presence of unknown but bounded errors: Linear
e(t) < ,Bg(t)e(t _ 1) + e a families of models and estimatordEEE Trans. Automat. Contrvol.
- C AC-27, pp. 408-414, Apr. 1982.
and [21] M. Milanese and A. Vicino, “Information-based complexity and non-
parametric worst-case system identificatioh,'Complexityvol. 9, pp.
m 427-446, 1993.
e(t) > Br(t)e(t —1) + ua. 22] ——, “Optimal estimation theory for dynamic systems with set mem-
C

[31 e(t

Then, the inequalities in (38) can be obtained by iteratingl23]

the previous two inequalities ih

4) Since for allt > 1, a(0) > a(t) > a(t) > a(0)
(24]
u(t) = 2C _C

()= a(t—1)+a(t—1) = a(0) [25]

which implies thatC'/a(0) < k; < C/a(0). This leads
o fi(t) > pr = (1/2)(1 - n/a(0)) andfs(t) < p = 9
(1/2) (1 4+ n/a(0)). Hence [27]
_ 1)+% < e(t) < Poe(t—1)+ % forallt >1.  [28]

(44)

As a result, the inequalities of Theorem 15 can be adopte®®]

here to get (39).

O
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