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Convergence rates in stochastic adaptive trackingt
HAN-FU CHEN{ and JI-FENG ZHANG}

For stochastic control systems described by the ARMAX model with unknown
matrix coefficients, the stochastic adaptive control is designed so that the
parameter estimates converge to the true values with a rate of convergence
O((log n)(log log n)°/n*) with «>0, ¢>1 and the tracking error tends to its
minimum value at a speed of O(n~ /%) with ¢ > 0.

1. Introduction

Since Astrém and Wittenmark introduced the self-tuning regulator in 1973, the
stochastic adapative tracking problem has drawn much attention from control
scientists (Goodwin et al. 1981, Goodwin and Sin 1979, Chen and Caines 1985, Caines
and Lafortune 1984, Chen and Guo 1987 a, b, Chen 1984). The difficult and important
problem of simultaneously identifying unknown parameters and tracking a reference
signal was first considered by Caines and Lafortune (1984), where consistent
estimation and suboptimal tracking were simultaneously obtained. Subsequently,
Chen and Guo (1987 a,b, 1986 a), introducing an attenuating excitation to the
control, achieved the consistent parameter estimate and the minimal tracking error
simultaneously. However, these results are all based on the stochastic gradient
algorithm for parameter estimation which is not as good with convergence properties
as the estimate of least squares (ELS) algorithm. The essential difficulty of applying
the ELS algorithm to the stochastic adaptive tracking problem consists in that
a posteriori rather than the a priori information is used in the ELS algorithm, as pointed
out by Kumar (1985).

The ELS-based adaptive tracker for the unit delay case is designed by Lai and Wei
(1986) for single-input single-output systems with bounded noise and by Guo and
Chen (1987) for stable multi-input multi-output systems but without boundedness
restriction for noise. In this paper the multi-delay case is treated and the stability
assumption on the system required by Guo and Chen (1987) has been removed so
that the same convergence rates as those obtained by Guo and Chen (1987) are
established.

2. Statement of the problem
Consider the stochastic control system

A(2)y,=B(2u,_ 4+ C(2)w,, d=1, y,=w;=0, u;=0, i<0 (1)
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with [ inputs u,, m outputs y, and m-dimensional driven noise w,, where

Az)=T+A;2+...+ A,2%, p=0 (2)
B(z)=B,+B,z+..4+B,;z*"!, g=>1 (3)
C(2)=1+Cyz+...+C7, 120 (4)

are matrix polynomials in a shift-back operator with unknown coefficients denoted by
=[-dy «w —4, By .. B, € .. €] (5)

and {w,, #,} is a martingale difference sequence with

sup E[[W,+.[*/#] <y< o, as. (6)
l:mwaw—R>0 (7)
n—+o A=

Problem A

In the adaptive tracking problem the %, -measurable control u, is designed to force
the output y, ., to follow a given #,-measurable reference signal y*, ,. In addition,
{y¥} is mutually independent of {w,}.

It is not difficult to show (see Appendix A) that

; 1. = d—1
lim sup Z Iy — y¥I? = lim — Z (F(z2)w;)*+ (F(z)w;) = tr _;0 F,RF; (8

n— oo i=0 n—w Ni=0

where G(z) and F(z) = Fq+ F,z+...+ F,_,z*" ' with F, = I are the unique solution
(see Appendix A) of the Diophantine equation

(det C(2))] = F(z)(Adj C(2)) A(2) + 2 G(z) (9)

So it is natural to call u, leading to

thup Z (=¥ ye— ) = ZFRF’

n—+x

the optimal control and the convergence rate of

Z (yi—yt (yl—ler—— Z (F(2)w) (F(z)w;)*

ﬂlf

the tracking speed.

Problem B

In the stochastic model reference adaptive control (MRAC) problem the
Z,-measurable control u, is designed in order to reduce system (1) to

A%(z)y, = B(2)uy (10)

where 4%:z) and B(z) are given matrix polynomials of orders p and § respectively,
A°(z) is stable and uf is #,-measurable external input. Obviously, (1) can be written in
the form

A%(2)y, = B2)u3-4 + &, (11)



Convergence rates in stochastic adaptive tracking 1917

with
& =(A4%(2) — A(2))y, + B(2)u, g — BO(2)uy_ 4 + Cl2)w, (12)
It is not difficult to show (see Appendix B) that

lim sup Zssz,hm sup Z (F(z)w)* - (F(z)w) =tr Y. F;RF; (13)
n=*o n—+oo i=0
where
Fz)=Fy+F,z4...+F;_, 2! (14)
and
A%2)F(z2)=Fy+ Fyz+ ..+ F,_ 2 '+ 2N(2) (15)

Therefore, the adaptive control u, leading to

lim sup Z g8t = ): F,RF:

n—+m ji=0

is optimal and the speed of

et = 3. (Flaw) (Flawy'

1
n

i

is the convergence rate of MRAC.

In the present paper we shall give optimal stochastic adaptive controls based on
the ELS algorithm for both problems of 4 and B and characterize their convergence
rates.

For the unknown matrix 6 the ELS estimate 6, is defined as follows:

Ons1="0n+ a,Pro,(yis1— 030,) (16)
Poiy=P,— 0, P00, 03Py, ay=(1+ @i Prip,) ™" (17)
P,=sl, s=m(p+r)+lg
er=[yn - Yi-p+1 Un—as1 o Un—a—g+2 (18)
Yi—@h-18y e Vi-pti— @nrla-rial

with an arbitrary initial value

BE}:[*A‘.ON. —AFU BIO“'BQ(} Clo...cro]

3. Adaptive control laws for m =1

Problem A
Set
Af2)=1+ A,z + ...+ A,2° (19)
B(z)=B,,+By,z+...+ Bz} (20)
Clz)=1+4+Ciz+...+C,2 (21)
det C(z)=1+¢z+...+ Ep2™ (22)
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G(z) =Go+ Gz +...+ G, 2 (23)
F(2)(Adj C(2)) B(z) = Do + Dy z + ...+ D, 27" (24)
0*=[GoG, ... G,, D¢Dy...D,, &I...EnIT"

where D, = B, is non-degenerate, p,=(m— 1)r+q+d—1 and p, = max (mr —d,
(m—1)r+p—1).

In Guo and Chen (1987), for an ELS-based adaptive tracker the desired control
ul!) is defined by

Blnup(ul)=y:+1_6::q)n+31nun (25)

where B, denotes the estimate given by 8, for B, and u, is the attenuately excited
version of u{". Clearly, (25) is reduced to the well-known equation defining adaptive
tracking control if the dither is removed, i.e. u, = u'" (Goodwin et al. 1981, Kumar
1985).

In this paper the delay may be greater than one and in order to define an
appropriate adaptive control we should find the predicted value ¥, , for y,., on the
basis of {u;, y;, i < n}. Using (1) and (9) we have

(det C(2))(yu — F(2)w,) = G(2) y, -4 — (det C(2)) F(z)w,
+ F(2)(Adj C(2)) A(2)y,
= G(2)y,—q — (det C(2)) F(z)w,
+ F(z)(Adj C(2))B(2)u,_, + (det C(2))F(z)w,
= G(2)yn-a + F(2)(Adj C(2))B(z)u, 4 (26)
Hence
Ju+a=(det C(2)) " (G(2)y, + F(z)(Adj C(2)) B(2)u,)
and the optimal tracking control should be defined from
(det C(2))yxsa = G(2)y, + F(2)(Adj C(2)) B(2)u, (27)
This leads us to define the undisturbed adaptive control u! from the following
equation
By, u,! = (det C(2))y¥s s — Gu2)yn — (F(2)(Adj Cy(2)) B,(2))uty + Byyu,  (28)
instead of (25), where F,(z) and G,(z) satisfy the Diophantine equation
(det C(2))] = F,(2)(Ad] C\(2))A,(2) + 2 G (2) (29)

which is tantamount to (9) and is solvable as shown in Appendix A.

If the growth rates of the input and output are not too fast, then we take u!!’ as the
desired control with the hope of getting better parameter estimates because the ELS is
implemented. If the output grows up too fast, then we switch the parameter estimate
from the ELS algorithm to the stochastic gradient (SG) algorithm and the minimum-
phase property guarantees y, tracking y*. Finally, if u\"’ itself grows too fast, we then
simply take zero as the desired control. To be precise, we specify the random intervals
on which we apply one or other desired control. Let the stopping times {z;} and {o;}
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be such that

O=1,<0,<1,<0,<...

i=1

Uk=SUP{T>Tk E Iyill® <G =DM+ Ny % VJ'E(T;“T]} (30)

i tlogt
rk+l—1nf{r>ak Z il < Z lyill> < 2,(g
prr okt tlogt
T <Y <SR } (31)
where
1—2e(p+1) 1
60e|0,——|, 0, 32
E[ 20+ 3 ) ":E( 2(,u+1)) (32)
i=mp+ max (p, g, 1). (33)

Paying attention to (26), the SG algorithm estimating 6* is given by

a
% — A% * E3 *
6nd+no_9(n—l)d+nu+r* (p(n—l)n‘+nn[y;d+no—‘P(nt-l}d+m)9(n—1)d+na] (34)
(n—1)d+ng

forny=0,1,..., d—1;and
= [}’; '"y::—plu un P2 qpu 19: 1- _(Pn —mr r| mr]t (35)
rE=rf_ +loFl? rti=rt,==rt,=1 (36)

where the initial value 6% _,(n, =0, 1,...,d — 1) is arbitrary but with D§, _, being
non-degenerate where D}, is the component of 6} written in the form

Ox =[G8 ... Gpn DGn---Dpn Claoo. Cond' (37)

Similar to (25), the SG-based adaptive tracking control u{? should satisfy the
following equation

D3, u? = yira— 05 0% + DEuuy. (38)
The desired control i is then defined by
ul?if n belongs to some [1,,0,)NA
u, =140, if n belongs to some [1,, 0,) NA® (39)
u!®,  if n belongs to some [0, T4y 1)
where u!! is defined by (28) and A is a set of integers
A={j Pl <t (40)

and the adaptive control u, for tracking is the attenuately excited version of u;, (Chen
and Guo 1987 a, b, 1986 a; Guo and Chen 1987; Kumar 1985; Lai and Wei 1986), i.c

U, =ty + 0, (41)

where {v,} is a sequence of m-dimensional mutually independent and independent of
{w,} and {y¥} random vectors with independent components having continuous
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distributions so that

=2
Ev,=0, Ev,,vf,=g—:l, loall? € @3/nf, v;=0, for i<0 (42)
7

where 7, and &, are two constant numbers.

Problem B
By (11), (15) and (26) we first rewrite
&= A%2)y, — B2},
= A%2)F(z)w, — (det C(2)) ' A%2)(G(2)Yu-4
+ F(2)(Adj C(2))B(2)u, - s) — B®(2)uy
= F(2)w, + N(2)W, -y — BY(2)uy— s — (det C(2)) ™' A%(2)(G(2) Yn-a
+ F(z)(Adj C(2))B(2)u,—a) (43)

Noticing that in the exact matching case ¢, = 0 and F(z)w, is independent of the other
terms on the right-hand side of (43) we find that the optimal control u, should satisfy

0= N(z)w, — B%(z)uy — (det C(2)) "' A%2)(G(2)y, + F(2)(Adj C(2))B(2)u,)

Hence, replacing (28) we define u!!’ from the following equation
By,uy!) = (det C,(2))(A%2) " (B%(2)up — N 2) (¥ — 07 0n-1))
+ Gu(2)y, + (Fi(2)(Adj C(2)) B,(2))u, + By,u, (44)
where N,(z) is given by
A°(2)F(2)=Fg,+ Fraz+ ...+ F;_ 1,21+ N(2)2*

Adaptive control u, is again defined by (30)—(42) but with u\" given by (44) rather
than (28).

Lemma 1

Let u and u* be measurable with respect to ;= {w;, v;_,, y};4.j < i} for any
i<n and k=1, 2. Then u®(k=1,2) can be solved from (44), (28) and (38)
respectively.

Proof
The proof is given in Appendix C.

4. Main results (m=1)
We first list conditions used later on.

(i) C™Y(z) —1I is SPR.
(11) det C(z) —(a/2) 1s SPR for some a > 0.
(1i1) All zeros of det B(z) lie outside the closed unit disc.
(iv) A(z), B(z) and C(z) have no common left factor and A, is of full rank.
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Lemma 2
If condition (ii) holds then

- zil?
*
i

s

<o, as. (45)

i=0 F;

and {6#} is bounded a.s., where

Zp—a=Yn— F(DIW, — 0,074 (46)

with F(z) given by (A 1) and (A 2) of Appendix A.

Proof
The proof of the lemma is given in Appendix D.

Lemma 3
If conditions (i)—(iv) hold and control is defined by (30)—(42), then

3. (yil? + lal) = O(n) (47)

(log n)(log log n)*
“8—6n”2=0( 1=+ 1)E+3) , Vex>1 (48)

==

Proof

The proof is given in Appendix E.
Estimates (47) and (48) are the intermediate results and used only for proving
Lemma 4. From Theorem 1 we shall see that (47) and (48) in fact hold for 6 =0.

Lemma 4

Under the conditions of Lemma 3 there exists an integer k (possibly depending on
sampling) so that

T, < 00, O0,=00, as. (49)

and the set A° is finite, (50)

Proof

The proof is given in Appendix F.

This lemma tells us that after a finite number of iterations u§ = u!"’ (see (39)) and
only the ELS algorithm will be used in the adaptive control system.

For Problem A we have the following theorem showing that minimal tracking
error and consistent parameter estimates are achieving simultaneously.

Theorem 1
If conditions of Lemma 3 are satisfied, then

1 n
lim SUP*_ZO(HinIZJr||ui||2)<00, as. (51)

n—+xc n
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1 2
Hﬁ Y, =y =y == ¥ (F(2)w)(F(z)w)| = O(n™ /%% (52)
ni=o Hi=o

FG,,9H2=O((10g:3(_13§ﬁgn)c), Ve>1 (53)

We note that (51) follows from (52), (7) and condition (iii) while the fact that (53)
follows from (51) is proved completely in the same way as (48) from (47). So we need
only to show (52). This is given in Appendix G.

Remark 1
For the case where m < [ if det B(z) is replaced by

L
det B(z)|: 5 }

in condition (iii), then Theorem 1 and Lemmas 3 and 4 remain valid. The proof is
similar to that given by Chen and Guo (1986 b).

Remark 2
Theorem 1 and Lemmas 3 and 4 still hold true if condition (7) on the driven noise
is weakened so that

n

lim su (54)
1
lim sup — . Z wwi< R, (55)

for some R, >0 and R, > 0, because Theorems 1-3 of Chen and Guo (1986 ¢) can be
shown to be true under (54) and (55). In particular, if (54) holds and

lim sup Z w;wi=0

then
) 1 &2
lim sup - Z (Yi—yO(yi—y*)=0
n— w0 ni=op

Remark 3

In the unit delay case, we can give an adaptive control u, that leads to (51), (53)
and

=0(n™") (56)

12 u
w2, =D =y ; (F(z)w) (F(2)w)"

For Problem B we have the following Theorem which indicates the rates of
convergence of the parameter estimates to their true values and of the model tracking
error to its minimal value.
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Theorem 2

Assume that conditions (i)—(iv) are fulfilled, control u, is given by (30)—(42) with
u'!) defined by (44) and the external input u) is % ,-measurable and satisfies

~ 3 1l = o) (57)
Then (51) and (53) hold and

1 1 B ~
n -;0 & "y (F(z)w) (F(z)wy)| =O0(n~ 1/2e) (58)

i

where &, F(z) are given in (12) and (15) respectively.

Proof
The proof is given in Appendix H.

Remark 4
We can weaken condition (7) in a way similar to Remark 2.

5. Conclusion

We have designed the optimal stochastic adaptive control for tracking both a
given reference signal and a given reference model and the convergence rates have also
been established. After finite steps the adaptive trackers are based on the ELS
algorithm, but in the first steps we have invoked an adaptive controller based on the
stochastic gradient algorithm to slow down the growth rate of

Ilylll2

||M;

1

Avoiding the second algorithm belongs to further research.

Appendix A
Proof of (8)

We first consider the existence and uniqueness of the solution for the Diophantine
equation (9).
Let [F, F,...F;_,] satisfy

I A, it
o 1 A, i,
[F &l 8 gll=Fo FruFpgd|® 0. 1, : (A1)
i . A
o 0 .. .01 |

where ¢, (i=1,2,...,d — 1) are given by (22) and 4, (i=1, 2, ...,d — 1) satisfy
(Adj C(2)A(2) = I+ Ay 2+ o+ Ay 14 2™ D0
with 4;=0, forie((m— )r+p,d—1];¢=0, forie(mr,d—1].
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By straightforward computation we know that all the coefficients of z', i =0, 1, ...,
d—1in
(det C(z))I — F(z)(Adj C(2))A(z)
are zero, where
F(z)=Fy+ Fyz+...+ Fy_,z¢7! (A2)
Therefore, there exists a polynomial matrix G(z) such that
(det C(2)) — F(z)(Adj C(2))A(z) = 2°G(z) (A3)

This implies that the Diophantine equation (9) is solvable.
The uniqueness of the solution with deg (F(z)) <d — 1 of (9) is clear.
We now prove (8). From (26) we have

Yn— i = F(2)w, + (det C(2) " (G(2)y,-q4 + F(2)(Adj C(2))B(2)u, -,)
7y: = F(Z)wn + .l_ln*d

Using Lemma 2 in Chen and Guo (1987 ¢) and noticing that ,_, is uncorrelated
with F (z)w we see that

1 n it
- Z (yz 1 '_yl Z ﬂl dlur d+o( (Z‘b lﬁ;d”z)>

ni=0

4 3 (R (Fw) (A4

for any e (4, 1), and

. j B . | M
lim sup— 3" ||y, — y¥[* > lim sup — Z IF(z)w; ]
n— o ni=o n—w ni=q
=tr lim sup Z (F(z)w;) (F(z)w,)*
—tr'Y F,RF; (AS)
=0
Appendix B
Proof of (13)

Similar to (A 4) and (A 5), it follows from (43) that

lim sup Z ll&]l? = lim sup Z | F(z)w;]|?

H— 00 n—
d=i

=tr Y F,RF: (B 1)
i=0

Appendix C

Proof of Lemma 1
The solvability of (38) is shown by Chen and Guo (1986 b) while the proofs of
solvability for (28) and (44) are similar. We now show it for (28). For this it suffices to
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prove
det B;, #0, as.
Setting
mp m m{r+q—1)
— N e
e=[0 ... 0 1 0 ... ... 0]!m
we have

Bi,=Bi, 1+ (Va0 10u-1)0n- 1 Puye
For w € {w:det B,, =0, det By,_, # 0}, from (C 3) it is easy to see
det (I +a,— (¥ — 05— 1 @p—1)@s— 1 Pu_yeBi,l ) =0
hence

1 +an*1(pfif1PnfleBl—nl-l(yn_gfl—l(pu—l) =0

1 +(P;*1Pn—l(¢pn—I + (p;—lpn—leBl_n]—l(yni 62—14’“—1) :0
Denoting
zn—1:yn—8;—1‘¢9n—1_(Bl_Bm—l)Un—L
(-ibnflchnfl_evnfl
we can rewrite (C 6) in the form

l T+ (ébn—l + E’U"_l)r B Pn—l(&)n—l + evn—l)

+(¢n—l +€Un_1)t ) Pu—leB;nlfi(—éufl +(Bl - Bln*l)unfl) =O

Setting
M, =¢&" Pu*IEB;nLIBl

Joo1=¢€" Pn—IEBl_nl—IEn—l +{(Bj + By~ 1) Bry—1 € ° Py Pyi-y

Gy -i= L Py 3Bt (b;—an—leBl_nl—lzn—l
it follows from (C 7) that

Upe g My g0 g F e fyq 85— =0

1925

(C7)

(C3)

By induction it is easy to conclude that M, _,, f,-, and g,_, are independent of
v, 1. Hence the technique used in Lemma 4 of Chen and Guo (1986 b) applies to the
present case and leads to that (C 8) cannot hold for almost all . Since det B, # 0,

then by induction we conclude that det B,, # 0, almost surely.

Appendix D

Proof of Lemma 2
From (26) we know that

(det C(z))z(n- d+ng = G(2)Vin-1)d+no T F(z)(Adj C(Z))B(Z)“(n— 1)d +ng
— (det C(z))ﬂ?:f_ 1)d+ng (0(*::— 1)d +ng

O
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= G(2)Yin—1)a+no + F(2) (Ad) C(2)) B(2)ths— 1)+ ny

—((det C(z)) — 1)9§T~ 1)d+nn‘Pf':r Dd+ng — Gﬁtﬁmnn@a—ndwn
= B*I‘P(ﬁ— Dd+ng 93:— 1)d+ng(pz:— 1)d+ng
:at’:t—l)d+no(9(’:ﬁ—1)d+no

and Zg,_ 1)4+no 15 Fn— 14+ n,-measurable, where

g{fs—l)d+nq =6*— Gﬁx—nﬁno

Zin—1)d+ng = €nd+ng — | S
Cratno = Ynd+no — Otn=1)a+noPln—1)d+no
hnd+n0 = F{z)wnd+ug

Hence by strictly positive realness of (det C(z)) — (a/2) there are p > 0, and p, = 0 such
that

s a+p
zfi— 1)d+n0(6?§t 1)d+m,§0?57 1)d +ng __2‘ Z(i- 1)d+ng) +p=0.

1=

S[n—mﬂm =2a .

i=0

Noticing S, - 1)4+no 15 Fn - 1)a+n,-measurable and

=< * * =5 2
2az(n— 1)d+n98(n— Dd+noPin—1)d+n, — & ”z(n— 1]d+nu"

= S(n* 1d+ng — S(n*2]d+ng 2k Pﬁ"Z(n— 1)d+n0”2

by (34) we find that

ey N — tr 0% g
tr Bndt+ no Gnd +ng tr B(rat— 1)d+ng 8(n = 1)d+ng

2a =
_ *T * T
e trH(r:-1)d+n0(P(n—1)d+noend+no
Fin—1)d+no
=2
*T 2y
+ 53 o8 13 enoll ™ * l1€ng+ng
Fin—1)d+no

I

— tr %t %
=tr B(n— 1Jd+n06(n— 1)d+no

2a .
_ T * 13
. tr 9(n—1)d+n099(n—1)d+noz(n—1}a+no
(n—1)d+ngp
2a ~
% *
T U 08 1)+ no Pin— 1)+ o Md +no
(n—1)d+ng
242

2
+ ”(P?;-n“nn” qu~1)4+n0hnd+nn

*2
Fin=1)d+ng

~2
2 2
+——r*2 ||€0?;1—1)d+n,,“ : “Z(n—1)d+noH
(n—1)d+ng
-2
a
2 2
b OG-ttt acll” * | Bt

Fin=1)d+ng
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Taking conditional expectation we conclude that

E[tr JTJ+H9 :d+nglgi:(n— 1)ﬂ+no] =tr 9?::—1):1+n06:1—1)d+n0

2da i
T ox tr 9(’:(—1)“"0@0?::—1)d+n°2fn—1)a‘+n0
(n—1)d+ng
=2
2
+r*27 [y LS | — |
(n—1)d+ng
52 5 d—1
L a— o8- 1yasnoll® =7 - tr Z F;-F;
(n—1)d+ng j=0

<tr 9 g’* _ S(nf 1)d +no + S(n*l)d-ﬁng
(n—1)d+ng“(n—1)d+ng * 3
(n—1)d+np  Tn—1)d+ng

ap
_T* ‘!Z(n—i}d+no|[2
(n—1)d+ng
a’ -
+r*27 H@a—ndﬂuu “y-tr Z F Ft
(n—1)d+ng

and hence

*

S
(m—1)d +ng
|:tf 8nd+n0 nd +no e

‘#(n —1)d +nu:|

(n—1)d+ng
< tr G o* Sin—2)d+nq ap 5
ke = e ("—1)d+"°+ ¥ T x ||Z(,,,“d+,m”
(n—znr+no Fln—1)d +ng
a’ -1
* 2.y
+‘*—2‘—"§0(n—1)d+nﬂ\| “ir Z F;*F;

Fin—1)d+ng

It is easy to see that

= H(P(*n—ud+nn”2

~—y <, loray #y=01...d—1

i=0  Fp=1)d+ng

Then by the convergence theorem of supermartingales we find that
tr 0%, ,. 0% ., tends to a finite limit and hence

=1 e
%<o@, forany n,=0,1,...,d—1 O
i=0 Fn—1)d+no

Appendix E

Proof of Lemma 3
For (47) by stability of B(z) and (7) it suffices to show

~ 3 Ina? =00 (E1)

(i) If 1, < o0, 0, = oo for some k, then (E 1) follows from (30).
(i) If oy < 00, 74+, = o0 for some k, then by (38) for n = o, we have

02" on = Viva+ D3y vn, (E2)
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which combining with (46) yields
rr+d 1
- Z lyill? = (; 2, Iz ||2+1) (E3)

Noticing g = 1 and

> Y = 3, + 0((2 uuw) )

+ Z lvill>— o0, Vie(3,1)

n—w

from (45) we know

Iz:112 = o(r) (E4)

I

Further, by (E2) we have

n+d
e s (Z Lvill* + Z Iy¥a+ DG, L?IIZ-F”)

n+d
=0(__ZO iy1||2+n) (E5)
Combining (E 3)—(E 5) leads to

n+d
||2 Iz—O(Z ly:l? +?1) or

From this and (E 3) we have

:illz Hz—o( _i||yi||2+1) (E6)

3l~

\IM:

n+d

= Z lyell* = Oo(1) (E7)

which implies (E 1).
(iii) If ¢, < o0 and 1, < oo for all k, then for sufficiently large k we have

n
2
1l

sup

w<n<ax 1 i=0

12 n

< sup Ilylll2 Z ly:ll* +... + Z Iyl + 3 I|}’I-H2)

rkSn<akn i=a =gk =1

log 1,

S_ Sup Z r+1 g :+1+ Z ”y[‘z)

rkSu<ak i= =t
<2+ sup Z lyl?

tk~<.n<a'k =1

1
<2+ sup nl”(nwa + [1911%)

wE€n<og
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Similarly, we can show
Tk Tk
Z ””i”z < 3t log 14, Zo H}’f“z <3t log (E9)
i=0 i=

Hence, for (E 1) it suffices to prove

1
sup TF

orSn<teiq N i

When ne oy, 0, +d — 1] [0, 141 1), by (E 8) we have

||}’;\|2 =0(1) (E 10)

|LM;,

;!

Hy;\l2 Z lyell* + Z Iyill?=0(a ™) + ¥ Iyill?

i=0 i=ay

II[\/J::

=0(n' %) ZII;V;H (E 11)

:o‘k

Using (26) as k— cc we see

i ||y1-|12=0(ﬂ)+0(i ll(det C(2)) ™' G(2) ;-4

i=ok =g

+(det C(2)) "' F(2)(Adj C(Z))B(Z)ui—d|2)

~otn+0('% 1yl + %, ) (E 12)
(a) When 1, = n—d, then by (E9)

T lul?< Y ] = 0(sk %) = 0(n' %) (E13)
(b)) When n—d>t,>2a0,—d, we have g,—12n—d, hence n—d—1,+1<

ak—l—rk+1=ak—rksdand by (39) and (40)

Tk n—d
ZHMII?‘ _ZI\M;II2+ > lwl?

i=re+1
<3 Juwl? +d-nt o= 0(n' ) (E 14)
i=0

(¢) When 1, < g, —d, then

n—d ar—d—1
Tl ="Y, e Yl

i=0 i=op—d

=0(6_"Z n|yi||2+ak)+d-n“*=0(n“f’) (E 15)

i=0

(E 12)—(E 15) show that

|IM:

”}’1”2 =0(n'*?), for neloy, a+d—11n[0oy, T4 1)
For ne o, +4d, 'c,ﬁ,l) from (46), (E 2), (39) and (E 6) we have

ktd—1
\Iy.ll _Z ly:l® + Z Hy[-i\z

i=0 i=oxt

IIM:
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=0(n"*"% + Z Iy + F(z)w; + D§;_ aVi—gt+ Zi- d||2

i=oi+d

=0(n' %) + O(Zz Z.-!z) =0(n' ™) + o(__io Jy;||2)
which means that
3 Iyli? =009
Hence (E 10) and consequently, (E 1) are verified. O

Convergence rate (48) is proved in the same way as that used for Theorem 3 of
Chen and Guo (1986 c).

Appendix F

Proof of Lemma 4
For (49) it suffices to prove the impossibility of the following situations:
(a) oy < o0, 7,4, = o0, for some positive integer k;
(b) 7, < 0, 6, < o0, for every positive integer k.

We first show the impossibility of (a). If (a) were true, then from the stability of B(z)
and (ii) of the proof of Lemma 3 it follows immediately that

\I[\/J:

Hy I?=0(n) and ii llu:]I* = O(n)
which contradicts 7, ; = oo (see 31)).
We now prove the impossibility of (b). Setting
te=sup {n:je 1, 0)nA, Vjel[r,n]} (F1)
and noticing (28), (48), (E 9) and condition (iii) we find that
1% = O(z; log 7,)

and hence, for sufficiently large k, the t, given by (F 1) exists.
Combining (E 9) with (26) we have

td
3 il = 0tz log ) (F2)
which implies that
+d
.ZO l(det C(2))yil|* = O(z; log 1) (F3)
Setting
OR=DV o Viper Uharr oo We—geasz Wi . Wi, iT
we find

Ot .0 _ .0 t .0
Yara = Onea— 1+ Wara=0,00 41 + 6500, 4, + Wyta
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or
B,(z)u,

Gl va—y + Cl2)Wosa= A2 Ynra—

Then from this and (28) it follows that for every n e [1,, ]

)
A0 v a- 1 + Co D)Wt )

( (Ad.l Cn)) )n(z)yn+d . ((Fn(Ad.l Cu))B)n(Z)un
(

(F
= ((det C(2)] — G,(2)z')yn+a— ((F(Adj C,)) B)o(2)u,
+ (F(Ad) C,))A)u(2) — (F,(Ad] C,)4,)(2) Y+
= (det C(2))yn+a — (det Cy(2))yrsq — Biav,
+ ((Fu(Adj C,))A)(2) — (Fo(Adj C,)4,)(2)) Yn+a
+ (Fi(Adj C,)B,)(2) — ((F,(Adj C,)) B),(2))u,

(Fu(2)(Adj C

(F4)

where for any polynomial matrices A,(z), B,(z) and F,(z), we set

((FHA n(z Z Fm jann I— J l+1+k

(FnAan)(z) Z Fln jannzl+J+k

From (F 4) we have
(det C(z))yn+d — (F"{Z)Ad_' Cn(Z)))(g:[(;92+d_l + Cn(z)wn+d)
+ (det C(Z) —det Cn{z)Jyn +a T (det Crr(z))y:+d' e Blnuu

—((F(Ad) C,))A),(2) — (Fi(Ad] C,)A4,)(2))Yn+4

—((F(Adj C,)B,)(z) — ((F,(Adj C,))B)(2))u, (F5)
Setting
Z 16912 + 1y, for i>1
§;=0, for i<l
and noticing (47) we have
5 =00 (F6)
Ld—1)isa

Comparing (29) and (9), similar to (A 1) we know that F,, (i=0, 1
finite product of coefficients of (det C,(z))! and (Adj C,(z))A,(z). Thus from (47), (48)
(F 6) and (F 5) it follows that there exists a constant n, so that

ng log?
L o2+ |y.-_,-12)) (F7)

ZZ

j==di=1

3 lldet C(2))yisall® = O(m) + 0(

=1t
where a=1—(u+ 1)(¢ + 9).
We now show that

forany je[—d, ng] (F 8)

LI
bl O 0,1 + Ly %) = O,
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Noticing

N\
s ]0g(1+?)
2 Py ga 2l = % 23 = — T
(log? i)(1 + i)* — i* log? (i + 1) = i*(log? i) (”f) Ll
1
= i*(log? i)(o,( + o(.))
1 1
we have

1 log L. 6 .3 .. log?n nl log?i log?(i+1)
0 12 = . e »
Z ”(px J” + Hya JH ) nm n J+ iZ‘I iq (l+ l)cz S‘ 7

log? n n=1 Jog?i
=0 S R I +O «1+d
( n* " ) (jzl l(l + 1)“ '

=0(n'"%), forany je[—d, ny]

since (41D (e+0) +30 <(u+ (e +(1—2e(p+ 1)/2u+3)) + (1 —2&(u+ 1))/
(22u+3)=Ltand u=1, wesee x — 6 >¢.
From (F 8), (F 7) and (F 3) we have
Y ldet C(=Dyieal = Ot log 1)

and hence
A_ZO | vi+all* = O(r, log ;) (F9)

since det C(z) is stable, consequently, it follows from (28) and (48) that
te+1 1§13
lugh 1% = O(Ik+ Y wlr+ 3 Ju.-llz)
i=0 i=0

= O(Ik + 'Zo 1 Vi+all 2) = 0(1, log t;)

Combining this with (F 1) we see
ty=0,—1 (F 10)
and which by (F 9) implies

+d
”J’:'HZ=O(0'1¢ log ay) (F 11)
and hence

2 1yl < e + )2
which contradicts (30). Thus the proof of (49) is completed, and (50) follows from
(F 1), (F 10) and (49) immediately. O
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Appendix G

Proof of (52)
From (F 5) we see that forn>=r1,

Yura— Vira=(det C(2)) " {(F(2)(Adj C2))r07+a-1 + Byats
+ ((Fu(2)(Adj C(2)))O)(z) — F(2)(Ad] C(2))C(2)) Wy 4.4
+ (det C(z) —det C(2)) (Va+a — Vi+d)
—(((F(Adj C,))A)(2) — (F,(Ad] C,) A,) (2)) Vn+a
—((F,(Adj C,)B,)(2) — ((F,(Adj C,))B),(2))u,}
+ F(2)Wy 44
2 F(2)Wara+ (G
and thus we have

n

1
- Z (.V: yl (y! — ¥ ) n Z (F(Z)W[)(F(Z)Wl)t

i=0

4 1
=E lu’l d+ Z F(Z)Wt)ul d+ Z Hi— {F(Z)W) (G 2)

Similar to (F 7) and (F 8) we can obtain

$ =0 33 ottt o4+ of 5, o)

j=—di=1

log

=0(n'9)

and hence

1 n
=’_ Z (F(z)wi)pi-a
Ri=0

1 1/2
=0((— - muz) )=0(n'”2f).
ni=o

From this and (G 2), (52) follows immediately. Thus the proof is completed. |

I n
“— Z i 4(F(2)w)"
ni=o

Appendix H

Proof of Theorem 2
Similar to (G 1), by using (44) it is not difficult to show that for n e [1,, g})

Vara— (4%2) (B2 — N(2)&, — No(2)w,)
= (det C(2)) " {(Fo(2) (Ad] Cu(2) T 07+ a- 1 + Byuty
+ (det C(z) — det Cy(2))(Ya+a— (A%(2) "1 (B2 — Ni(2)& — No(2)Ws))
+(((F,(Adj C,))C),(2) — (det C(2)) F(2)) W +4
—(((F,(Adj C,)A)ul2) — (Fi(Ad) C)A,)(2)) Y+
—((F{(Adj C,)B,)(2) — ((Fu(Adj C,)) B)o(2))ut,}
+ F(2)W, 44 (H1)
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where &, =y, — 6,¢,_, —w, and condition (ii) implies (Chen and Guo 1986 c) that
3 Il = 0((log r,) g log 1), Ve> 1 (H2)
where
n=1+3 lol?
From (H 2), (47) and (48), we can see that
jﬂ &2 = O(log? n). (H3)

Combining this with (H 1), similar to the proof of Lemma 4, we can conclude that
there exists a positive integer k so that 7, < o0, 6, = o0, almost surely and A® is finite.
Therefore, from (H 1) it follows that for n= 1, + p,

A%2)Ynsa — B2)uy
= F(2)W, 14— N(2)€, + (N(2) — N, (2)w,
+ (det C(2) " A% {(F(2)(Adj C(2))0;07 14— 1 + By,
+ (det C(z2) — det C(2)) (Va+a — (4%(2) “H(B(2)ug — N (2)E, — N (2)W,))
+(((Fy(2)(Adj C(2)))C)(2) — (det C(2)) F(2))Wp +4
= ((F.(Adj C,))A)(2) — (F,(Adj C,)4,)(2)) Vn+a
—((F.(Adj C,)B,)(z) — ((F,(Adj C,))B),(2))u,}

From this and noticing 7, < cc, 0, = co0, almost surely, similar to the proof of
Theorem 1, we can show that (51), (53) and (58) are true. Thus the proof is completed.

|
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